
Experimental linear-optics simulation of
multipartite non-locality in the ground
state of a quantum Ising ring
Adeline Orieux1, Joelle Boutari1, Marco Barbieri2, Mauro Paternostro3 & Paolo Mataloni1,4
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Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be
reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We
demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of
entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the
correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we
connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring.

I
n his 1982 paper1, Feynman put forward the thought-provoking idea that powerful synthetic emulations of
quantum physics and chemistry would be possible by using quantum mechanical simulators rather than their
classical versions. Thirty years later, the vision inherent in such a suggestive proposal could see materialisation

in the form of the experimental simulation (based on light-matter interactions) of simple yet interesting quantum
many-body effects2–4. Thermal states of frustrated magnets and the time evolution of spin chains of up to six
qubits have been simulated in a nuclear magnetic resonance and a trapped-ion system, respectively5,6.

Due to the good level of control of the wavefunction and the high level of isolation from noise, photonics is
another suitable architectures for quantum simulators7. Demonstrations include the design and realization of
photonic settings for the quantum simulation of elementary quantum chemistry8, open-system dynamics9, and
quantum walks10–12, the latter exhibiting Anderson-like disorder-induced effects. Anyonic statistics13 and frus-
tration in a Heisenberg chain14 have been studied in analog photonic quantum simulators, while special topo-
logically protected bound states predicted by models of condensed-matter physics have been emulated15,16.

As these examples show, faithful simulations need not implement the actual network of couplings behind the
simulated many-body Hamiltonian model. Instead, one can take the approach of constructing multi-photon
states enjoying the same symmetries as the ground states by using continuously tuneable quantum gates realized
by means of pre-available entangled pairs of particles and measurement-induced interactions, when neces-
sary14,16. This approach is relevant when obtaining statistical information by classical computation might be
challenging, e.g. the spin correlation function of a one-dimensional antiferromagnetic Heisenberg model17,18. In
this sense, simulating the ground state, albeit known in principle, would provide direct access to the value of such
correlators.

While photonics simulation does not allow, in general, the assessment of the dynamics arising from a given
Hamiltonian, it gives access to the direct engineering of interesting energy eigenstates of such models, in
particular their ground state. In this paper we follow such an approach to demonstrate the nonlocal properties
of the ground state of a paradigmatic many-body system: the transverse Ising model.

Close to the quantum critical point of a quantum spin model, long-range quantum correlations settle across the
system as a result of the enhancement of quantum fluctuations associated with a phase transition19. This is
manifested in peculiar behaviors of figures of merit for the quantification of general quantum correlations (from
entanglement to discord), as recently shown in Refs. 20–22. While previous studies dealt with the quantum
correlations characterising the state of two spins picked from a many-body system, Refs. 20–23 have shown that
much information can be gathered from the study of global quantifiers, which are able to faithfully characterize
quantum criticality even in situations where two-spin indicators fail, such as at high temperature. In order to
experimentally test the occurrence of such effects in the transverse Ising model, we encode the wavefunction of a
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ring of three interacting spins under the effect of a simulated mag-
netic field using an entangled photon pair. By simulating variations
of the effective magnetic field, we study the changes in the quantum
correlations between the spins of the simulated model, which are
encoded in multiple degrees of freedom of the photon pair. We focus,
in particular, on the multipartite Bell-like inequality embodied by the
Svetlichny formulation24. The violation of such inequality witnesses
the occurrence, in the state of a system, of genuine multipartite non-
local correlations. We show that the Svetlichny function evaluated
using the simulated ground state of the Ising chain violates the N-
party local-realistic bound that, even for a short chain, is very close to
the quantum critical point defined in the thermodynamic limit N R
‘. By exploiting the analytical link between the Svetlichny parameter
and the measure of genuine multipartite entanglement embodied by
the three-tangle25 and the tripartite negativity26, we estimate the
degree of tripartite entanglement shared by the spins of an Ising
chain at a set degree of violation of the Svetlichny inequality

Results
The system. We have realized the ground state of the Ising ring

ĤI~{J
XN

n~1

ŝx
nŝx

nz1zB
XN

n~1

ŝz
n ð1Þ

with ŝk
i the k Pauli operator of spin i and ŝk

Nz1:ŝk
1 k~x,y,zð Þ. In Eq.

(1), J is the inter-spin coupling strength and B is the magnetic
energy of the spins subjected to a global transverse magnetic field
[cf. Fig. 1 (a)]. Besides being a key Hamiltonian in quantum
statistical mechanics as it embodies one of the simplest models to
show a phase transition, ĤI has also attracted much attention from
the quantum information community in light of the interesting
quantum correlation properties of its ground state19,27. As shown in
Ref. 27, for b~B=J?0, the ground state jgN(b)æ of the Ising
model approaches an N-spin state that is locally equivalent to the
Greenberger-Horne-Zeilinger (GHZ) state GHZj i~ zj i6N

z
�

{j i6NÞ
� ffiffiffi

2
p

with j6æ the eigenstates of ŝx, thus exhibiting long
range quantum correlations and multipartite quantum entangle-
ment. While most of the attention has been focused on the
behaviour of bipartite entanglement, it has been shown in Ref. 23

that jg(b)æ is endowed with strong multipartite non-local properties,
as witnessed by the violation of the Svetlichny inequality. For b R 0,
the degree of violation approaches the maximum allowed value of

4
ffiffiffiffiffiffiffiffiffiffiffi
2N{k
p

with k 5 1 (k 5 2) for an even (odd) number of spins, which
is achieved for an N-spin GHZ state28, thus reinforcing the claim on
the form of the ground state in such limit23. Quite remarkably, the
violation of a generalised Svetlichny inequality occurs close to jbj5
1, which for a ring in the thermodynamic limit (N R ‘) at zero
temperature identifies the quantum critical point of the quantum
Ising model at which a ferromagnetic-to-paramagnetic phase
transition occurs29. In this context, the total spin magnetization
plays the role of an order parameter, which exhibits a singularity at
the critical point. For the finite-size chain addressed here, there
cannot be a direct link between the establishment of such onsets
and the model’s quantum phase transition. A connection, on the
other hand, should be searched with the changes of symmetries in
the system occurring close to the critical point, which can affect the
way quantum correlations are shared by the spins.

To simulate the low-lying part of the spectrum of a system and its
changes, one could make use of the adiabatic theorem: an initial
Hamiltonian can be adiabatically evolved to a final one so as to
induce a corresponding change in its ground state. An adiabatic
quantum simulator can thus be built by engineering interactions
among particles using tunable external parameters (e.g. an external
magnetic field). The system will remain in its ground state if the
system parameters change slowly enough. In our work we used a
tuneable operation without the necessity of either discretizing the
quantum evolution or engineering physical interactions. This is in
line with the approaches used in Ref. 14, 16, 30. We thus consider a
special form of analog simulation that tracks the ground state of the
system rather than its Hamiltonian, and for which the change of
quantum evolution is made through a tuneable gate. The ground
state of an N53 spin Ising ring with b , 0 (realised considering
Jw0 and Bv0) reads

g3 bð Þj i~ 1ffiffiffiffiffiffiffiffiffiffiffiffi
3za2

0

p a0 000j iz 011j iz 101j iz 110j ið Þ123 ð2Þ

with a0~{ 1z2b{2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zbzb2

q� �
. As mentioned, for b R 0

such state is locally equivalent to a GHZ state. We thus aimed at
implementing a quantum circuit that achieves such state. We use a
source of polarization-entangled photon pairs that generates, by
spontaneous parametric down-conversion (SPDC), the entangled

state of spins 1 and 2 Wzj i12~
1ffiffiffi
2
p 00j iz 11j ið Þ12, which is encoded

in the polarization state
1ffiffiffi
2
p HHj iz VVj ið ÞBA of photons A and B [cf.

Fig. 1 (b)]. Here, jHæ and jVæ stand for the horizontal and vertical
polarization states of a photon. The third spin is encoded in the path
degree of freedom of photon B by passing it through a 50-50 beam

splitter (BS) and creating the state
1ffiffiffi
2
p rj iz tj ið ÞB. This encodes the

logical state
1ffiffiffi
2
p 0j iz 1j ið Þ3. Finally, spin 3 is entangled to spin 1 by a

controlled-NOT gate that is physically implemented between the
path of photon B (the control spin) and its polarization (the target
one): a half-wave plate (HWP) with its axis oriented at 45u with
respect to the horizontal direction and inserted in the transmitted
path of photon B performs a bit-flip on spin 1 depending on the state

of spin 3. We thus obtain the state g3 0ð Þj i123~
1
2

000j izð

110j iz 101j iz 011j iÞ123:
1
2

HHrj iz VVrj iz VHtj iz HVtj ið ÞBAB

which corresponds to the ground state of the spin ring with no

Figure 1 | Experimental set-up. (a) Schematic picture of the three-spin

ring (qi, i 5 1, 2, 3) in a transverse magnetic field B. The spin-spin coupling

strength is J. (b) Conceptual sketch of the photonic setup. SPDC source:

spontaneous parametric down-conversion source generating photon pairs

in the entangled state |W1æ of spins q1 and q2. BS: beam-splitter; PBS:

polarizing beam-splitter; QWP: quarter-wave plate; HWP: half-wave plate;

SPAD: single photon avalanche photodiode. For photon B, the red (blue)

line between the BSs corresponds to the transmitted (reflected) path (spin

q3), and the solid (dashed) line between the PBSs correspond to the

horizontal (vertical) polarization of photon B (spin q1).
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magnetic field and is locally equivalent to jGHZæ123 upon application

of the three-spin Hadamard transform ŝxzŝzð Þ
. ffiffiffi

2
ph i63

.

The changes in the transverse magnetic field resulting in b ? 0 and
the possibility to explore the properties of the ground state of the
Ising ring, is then simulated by introducing a variable attenuation on
photon B depending on the joint state of spins 1 and 3. This is
achieved by first splitting the four path-polarization components
of photon B with two polarizing beam-splitters (PBS) and then
inserting a variable attenuation filter on the modes corresponding
to j011æ123, j110æ123 and j101æ123. Correlations among the spins can
then be determined through coincidence measurements in different
projection bases. This conceptual scheme is implemented in a doubly
displaced Sagnac interferometer to guarantee the perfect phase
stability of the state. The tunability of the parameters that enter
our experimental simulator allowed us to achieve b g [22, 0], which
are sufficient to explore the most salient features of the model at
hand. Details on the source and on the experimental procedure are
reported in the Methods.

Entanglement characterization. Our goal is to characterise the
fundamental symmetry changes occurring in the ground state of
the Ising ring when crossing the quantum critical point by
assessing multipartite non locality and entanglement. In order to
achieve this, we have measured the amount of both bipartite and
tripartite entanglement in the simulated jg3(b)æ for each value of b
in our experiment. We perform our characterisation of the quantum
correlation properties of the model in a gradual manner, starting for
an assessment of the bipartite entanglement between any two spins
taken out of the ring. This is pursued by considering the
entanglement witness operator Ŵ2~ v2j i v2h jpt, where jv2æ is the
eigenvector of r

pt
2 bð Þ associated with the smallest eigenvalue31.

Here, pt stands for the partial transposition operation and r2(b) is
the two-spin reduced state

rij bð Þ~ 1
a2

0z3

a2
0 0 0 a0

0 1 1 0

0 1 1 0

a0 0 0 1

0
BBB@

1
CCCA with i=j~1,2,3: ð3Þ

Achieving Ŵ2
� �

v0 guaranties bipartite entanglement in the state of
the spin pair. Although the translational invariance of the Ising ring
makes any spin-pair equivalent, in our experiment we have
considered spins 2 and 3 and decomposed the witness into the
combination of local measurement settings Ŵ2

� �
~ b2b3{
�

ŝx
2ŝx

3zŝ
y
2ŝ

y
3{ŝz

2ŝz
3i
�

4. When calculated over separable states, we

have Ŵ2
� �

§0, so that a negative value signals non-zero bipartite
entanglement.

As it has been shown in Refs. 20–23, two-point correlation func-
tions are in general suitable witnesses of criticality only at strictly null
temperature. For non-zero tempertature, on the other hand, their
structural changes occurring at criticality is quickly overcome by
thermal fluctuations, rendering them ineffective to reveal the occur-
rence of a quantum phase transition. This is not the case as far as
multi-point correlations are considered. In fact, as at criticality the
correlation length of a critical system typically diverges, it is a global
indicator of correlations that should be addressed. Our study gives
strong experimental evidence of this feature by investigating critical
structural changes in the multipartite non-locality of jg3(b)æ. This is
done by demonstrating experimentally the violation of the tripartite
Svetlichny inequality24, which would witness genuine tripartite non-
locality in the same manner as the Bell inequality does for bipartite
non-locality. The inequality is written as Ŝ3

� �		 		~ M3{M’3h ij jƒ4

with the Svetlichny function Ŝ3
� �

that can be built as the combina-

tion of the Mermin-Ardehali-Belinskii-Klyshko functions28,32–34 ÆM3æ
and M’3h i given in the Methods section. The Svetlichny inequality
has been violated using a photonic GHZ state in Ref. 35. It is straight-
forward to show that one expression of Ŝ3

� �
which maximizes the

violation for the state at hand is

Ŝ3
� �

~
ffiffiffi
2
p

ŝ
y
1ŝz

2ŝ
y
3

� �
z ŝz

1ŝ
y
2ŝ

y
3

� �
z ŝ

y
1ŝ

y
2ŝz

3

� �
{ ŝz

1ŝz
2ŝz

3

� �� 

, ð4Þ

which can be easily measured in our set-up by implementing four
local measurement settings. An important point should be stressed
here: needless to say, being the transverse Ising model, exactly solv-
able, its ground state is perfectly known. However, our goal here is
the assessment of a global figure of merit that would require, in
principle, an optimization over a large number of parameters [such
optimization his already inherent in Eq. (4)]. As the size of the ring
grows, the problem would become quickly intractable and no closed
formula is known to hold, currently. It is thus clear that the imple-
mentation of a quantum simulator able to assess directly the multi-
point correlation function needed to study the N-party Svetlichny
function ŜN

� �
will be the only way to attack the problem. Our experi-

ment embodies the demonstration of the viability of such an
approach for the first non-trivial case of spin ring, i.e. N 5 3.

From the knowledge of Ŝ3
� �

it is also possible to estimate the value
of measures of genuine tripartite entanglement. For instance, for the
case at scrutiny here, we can link the violation of the Svetlichny
inequality to the measure of tripartite entanglement embodied by

the three-tangle t3~C2
1 23j {

X3

j~2
C2

1 jj
25 with C1 jj the concurrence of

the bipartite state composed of spin 1 and j 5 2, 3 and
C1 23j ~2

ffiffiffiffiffiffiffiffiffiffiffiffi
det r1

p
that measures the entanglement between spin 1

and the two-spin system composed of spins 2 and 3. Another mea-
sure that can be linked to ÆS3æ is the tripartite negativity

N 3~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 1 23j N 2 13j N 3 12j

3

q
with N i jkj the negativity of the bipartite

system composed of spin i and (j, k)26. By calculating explicitly each
element of Eq. (4) for the state jg3(b)æ and inverting the relation
between a0 and jÆS3æ, it is straightforward to link analytically the
degree of genuine tripartite entanglement as quantified by t3 and
N 3 to the values taken by the Svetlichny function ÆS3æ as

N 3~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1za2

0ð Þ2
p

3za2
0

with a0~
3
ffiffiffi
2
p

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

ffiffiffi
2
p

S3h ij j{3 S3h ij j2
q

S3h ij j{
ffiffiffi
2
p and

t3~
3 Ŝ3
� �		 		2{2

ffiffiffi
2
p

Ŝ3
� �		 		{4

� �
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 Ŝ3
� �		 		 4

ffiffiffi
2
p

{ Ŝ3
� �		 		� 
3

2

q
36

: ð5Þ

The functional link between such measures of multipartite entangle-
ment and the Svetlichny function is shown in Fig. 2, where we have
identified a threshold value of t3 and N 3 above which genuine tri-
partite non locality is ensured. Notice that, while the value of t3 is
strongly determined by the similarity between our resource state and
a GHZ state (and is null, for instance, for a W state such as

011j iz 101j iz 110j ið Þ
. ffiffiffi

3
p

), this is not the case for N 3, which

can attain significant values also for other forms of multipartite
entangled states, not necessarily of the GHZ form. The results of
the measurements performed on the simulated state are presented
in Fig. 2 as a function of b, together with the theoretical predictions.
Moreover, we have been able to provide an estimate of the values
taken by t3 for the state of the simulated chain at hand made on the
basis of the experimentally measured values of Ŝ3

� �
and a compar-

ison with the value that can be reconstructed by writing both t3 and
N 3 in terms of multi-spin correlation functions and putting together
the outcomes of our experimental measurements (cf. Fig. 2 d). This
comparison includes the experimental imperfections of our simu-
lator, in particular we have observed some background noise whose
amplitude depends on the set value of b (cf. Methods).

www.nature.com/scientificreports
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Discussion
As seen from Fig. 2, the quantum correlations of rexp(b) undergo
a profound modification at the critical point. First, the bipartite
non-locality (Fig. 2 a), which is null for b R 0 and b R 2‘,
reaches a non-zero value close to the point of structural changes
b^{1, which would correspond to the critical point for N R ‘.
At the same time, the tripartite non-locality witnessed by Ŝ3

� �		 		
[Fig. 2 (b)], which is maximum for b R 0, when the ground state
is close to a GHZ state, decreases as jbj increases and reduces to
values lower than the non-locality threshold just after b^{1.
The inflexion point that is visible in the behavior of Ŝ3

� �		 		 against

b, close to the expected critical point, reveals that Lb Ŝ3
� �		 		 will be

maximum at that point. This is clearly seen in Fig. 2 (c), which
demonstrates the sensitivity of the figure of merit embodied by
Lb Ŝ3
� �		 		 to the modifications undergone by the structure of mul-

tipartite quantum correlations for b^{1.
Let us also notice that the noise affecting the simulated state only

induces a quantitative reduction on the Svetlichny parameter but
does not change the value of b at which the modifications to the
sharing of quantum correlations occur. The maximum of Ŵ2

� �		 		
and the point of inflexion of Ŝ3

� �		 		 are found at b^{1 indepen-
dently of the amount of noise affecting the state. This guarantees the
detection of the critical point even though the system is not perfectly
simulated, which is encouraging for potential medium-size systems.
On the other hand, the mixed nature of the state affected by noise

demands the modification of the definition of t3 and its reformula-
tion in terms of convex-roof extensions25. The calculation of t3 for
general three-qubit states is a very demanding task that goes beyond
the scopes of our experimental work. However, the results in Fig. 2
(d) show that both our experimental reconstruction and the values
estimated using Eq. (5) are very close to the behavior expected for the
proper ground state of the simulated chain, hinting strongly at the
high quality of the data. Moreover, N 3 (complemented with the
information on multipartite inseparability provided by the violation
of the Svetlichny inequality) is well suited for three-spin mixed states
without modifications to the definition above. This has enabled us to
generalise the link between N 3 and Ŝ3

� �		 		 so as to provide a non-
tomographic estimate of the tripartite entanglement content of
rexp(b) based on the experimental values of Ŝ3

� �		 		. These are
reported in Fig. 2 (e) (see also Table 1), showing the excellent agree-
ment of our estimates and the expected relation between N 3 and

Ŝ3

� �		 		.
We have experimentally studied multipartite non-locality in the

ground state of an Ising ring undergoing important changes at the
level of the quantum-correlation sharing. A major step forward in
this context would be embodied by the simulation of non-zero
temperature equilibrium states. An interesting approach to this
problem has been reported in30. The simulation of thermal equilib-
rium states will pave the way to the investigation of interesting
many-body effects in photonics quantum simulators7, from critical-
ity to thermodynamics.

Figure 2 | Results. Measured values of (a) the bipartite entanglement witness Ŵ2
� �

, (b) the Svetlichny function Ŝ3
� �		 		 and (c) its derivative Lb Ŝ3

� �		 		 as a

function of b. The square dots show the measurements performed on the ground state; the red line shows the expected behaviors for the ideal ground state;

the blue line represents the theoretical values for a state affected by noise. The vertical dotted line identifies the ‘critical point’ b 5 21; the horizontal

dashed line in (a) and (b) show the lowest (highest) possible value that can be achieved by Ŵ2
� �

( Ŝ3
� �		 		) for a (bi-)separable state; and the full black

horizontal line in (b) shows the highest value that can be achieved by a GHZ state. (d) Relation between Ŝ3
� �		 		 and t3 for the ground state | g3(b)æ. The

dashed vertical line marks the local realistic bound imposed to the Svetlichny parameter. This identifies the threshold value t3 5 0.25 above which the state

is non-local in a tripartite sense. The (blue) circle-shaped points are the values of t3 obtained using the analytic relation with Ŝ3
� �		 		 discussed in the body

of the paper, evaluated at the experimental values of the Svetlichny parameter. The (magenta) square-shaped data points are the values of t3 estimated

using local measurement settings. (e) Analogous plot forN 3. In this case, the threshold for tripartite non-locality isN 3^0:67. The same color-code used

in panel (a) holds here. Error bars are determined by standard error propagation with Poissonian distributions attached to the experimental counts.
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Methods
Experimental set-up details. The experimental photonic quantum simulator consists
in the doubly displaced Sagnac interferometer setup presented in Fig. 3 that allows to
prepare the two-photon three-qubit state jg3(0)æ123, simulate a transverse magnetic
field and measure two-photon coincidence detection events in different projection
bases of the three spins. The conceptual setup was already described in the main text,
in Fig. 1 (b); here we clarify the correspondence between the actual Sagnac-based
setup and the former and give details on the role played by the different optical
elements.

The source of polarization-entangled photon pairs we used is based on Ref. 36: it
consists of a 0.5 mm-long type-I b–barium borate crystal (BBO), pumped back and
forth by a CW laser beam at 355 nm (100 mW), and emitting photon pairs by
spontaneous parametric down-conversion (SPDC). After the first passage of the
pump beam in the crystal, both the pump beam and the first emission cone of photon
pairs are reflected back using a spherical mirror, with a rotation of 90u of the polar-
ization of SPDC photons. A second cone, superimposed with the first one, is emitted
at the second passage of the pump beam through the crystal. This allows, by selecting
two diametrally opposite spatial modes A and B of the cones, to generate the input

state
1ffiffiffi
2
p HHj iz VVj ið ÞBA of photons A and B. Frequency-degenerate photons are

selected by two interference filters centered at 710 nm with a bandwidth of 10 nm,
and detected by single photon avalanche photodiodes (SPADs) connected to single-
mode optical fibers.

Typical detected coincidence counts where of the order of 100 Hz when the
attenuation filters were all tuned at their maximal transmission. For all measurements
reported in Figs. 2, the integration time was chosen to accumulate around 4000
coincidence events; this ranged from 60 s for jbj 5 0 to 400 s for jbj 5 1.

The entanglement quality of the state was partially estimated during the alignment
of the set-up: the 2-qubit polarization state measured on the transmitted path
(respectively on the reflected path) gave a fidelity of 92% to jW1æ (respectively 89% to
jY1æ); the visibility of the path qubit interference in the Sagnac interferometer was
measured to be 90%.

The preparation of jg3(0)æ123 is achieved thanks to the beam-splitter BSS and the
45u-oriented half-wave plate (HWP45u) in the transmitted path. The optical delay
introduced by this HWP was compensated by a second HWP with its axis at 0u with
respect to the horizontal direction in the reflected path (HWP0u).

The effect of the transverse magnetic field is then simulated by splitting the
polarization components of photon B, both for the reflected and transmitted path,
with the polarizing beam splitter PBSS and introducing a variable attenuation filter
(aB) common to the paths jHtæB, jVræB and jVtæB. Again, a second glass slab (a0) on the
path jHræB is used to maintain paths of equal optical length in the interferometer. The
polarization components are then recombined on the PBS before projective mea-
surements are performed.

Let us notice that, because of an unbalance in the BS double transmission (gt/2 5

66%) and double reflection (gr/2 5 34%) coefficients, as well as in the SPDC source

HH-cone (gHH/2 5 58%) and VV-cone (gVV/2 5 42%) emission probabilities, the
state that is actually generated in our experiment is

g3exp 0ð Þ
		 �

123
~N ffiffiffiffiffiffiffiffiffiffiffiffi

gHH gr
p

a0 000j iz ffiffiffiffiffiffiffiffiffiffiffiffi
gVV gr
p

110j i
�

z
ffiffiffiffiffiffiffiffiffiffiffiffi
gHH gt
p

101j iz ffiffiffiffiffiffiffiffiffiffiffiffi
gVV gt
p

011j i



123

ð6Þ

with N{1
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gVV grzgHH gtzgVV gtzgHH gra2

0

q
. This is why we chose to trace out

qubit 1 for the evaluation of the bipartite entanglement witness W2: we can see that in
this case we obtain more balance between the jW1æ and jY1æ parts of the reduced
density matrix r2, as is the case in the ideal ground state. The correspondence between
the attenuation coefficient and the simulated value of a0 (and thus of b) is given by

a~
P011zP101zP110

P000
~

gVV gtzgHH gtzgVV gr

gHH gra2
0

, where Pijk stand for the probability

of two-photon coincidence of state jijkæ1,2,3. In the experiment, we could vary a from
0.1 to 4, and thus achieve values of b within the interval [22; 0].

Finally, projective measurements are done on both photons before registering their
coincidence detection with two single photon avalanche photodiodes (SPAD) and a
coincidence counting electronics. For both polarization qubits, this is achieved by a
standard polarization analysis set-up consisting of a quarter-wave plate (QWP), a
HWP and a PBS, while for the path qubit the projection on different basis is achieved
by the second passage through BSS and a glass plate (Qt) that can be rotated in the
transmitted path so as to change the relative phase between jræB and jtæB. The optical
delay introduced by this glass plate is compensated by two glass plates (Q0 and Qr)
inserted in the reflected path. Note that these two glass plates are also used to correct
for the p phase difference introduced by HWP0u between the horizontal and vertical
polarization components of the reflected path.

Noise considerations. A fair comparison between experimental results and
theoretical predictions will have to account for the imperfections of the optically
simulated ground state with respect to the ideal one jg(b)æ. Specifically, we have
observed some background noise whose amplitude depends on the set value of b. In
particular, the real photonic state is affected by background noise that mixes the
ground state of the spin ring to white noise, so to obtain the Werner state
rexp bð Þ~p g bð Þj i g bð Þh jz 1{pð Þ =8, where p 5 RSNR/(2 1 RSNR) depends on the
signal to noise ratio RSNR. In our simulator, the value of the effective magnetic field is
changed by attenuating the signal in specific paths in the interferometers. This implies
that there is less signal in those paths for large values of jbj than for small ones, which
results in a RSNR that diminishes with increasing values of jbj. In turn, this makes p
dependent on b. For each value of jbj, we estimated the signal to noise ratio as:

RSNR~
P000zP110zP011zP101ð Þ{ P010zP100zP001zP111ð Þ

P010zP100zP001zP111
, where Pijk stand for

the probability of two-photon coincidence of state jijkæ1,2,3, from which we obtained
values of p as a function of b. A linear fit of these experimental values gave us p 5

0.128b 1 0.927, which allowed us to compute the blue theoretical curves in Fig. 2 (a),
(b) and (c). The good agreement between the measured and theoretical values
confirms that this simple model captures the main imperfections of our setup.

Expression of the Svetlichny inequality. The Svetlichny inequality can be expressed
as Ŝ3

		 		~ M3{M’3j j with M3 5 E(a1, b1, c2) 1 E(a1, b2, c1) 1 E(a2, b1, c1) 2 E(a2, b2,
c2) and M’3~E a2,b2,c1ð ÞzE a2,b1,c2ð ÞzE a1,b2,c2ð Þ{E a1,b1,c1ð Þ23,24,28,34 the
Mermin-Ardehali-Belisnskii-Klyshko function32,33. Here, E(ai, bj, ck) (i, j, k 5 1, 2) is
the statistical correlation function for local spin measurements with the angle settings
ai, bj, and ck respectively: for each setting we have E(ai, bj, ck) 5 A(ai)flA(bj)flA(ck),
with Â hð Þ~ cos hŝzz sin hŝy . In the case of the ground state of the N53 Ising ring, it
can be shown that Ŝ3

� �		 		 is maximal for a1 5 3p/4, a2 5 p/4, b1 5 c1 5 p/4 and b2 5 c2

5 2p/4.

Estimation of the tripartite negativity. In Table I we report the values of the
tripartite negativity that could be deduced from the measured values of Ŝ3

� �
exp .

Figure 3 | Actual experimental implementation of the photonic
simulator based on a doubly displaced Sagnac interferometer setup.
SPDC source: spontaneous parametric down-conversion source

generating photon pairs in the entangled state |W1æ of spins q1 and q2. BSS:

beam-splitter; HWP45u and HWP0u: 45u-oriented and 0u-oriented half-

wave plates; PBSS: polarizing beam-splitter; aB and a0: attenuation filters;

Qt, Q0 and Qr: glass plates; QWP: quarter-wave plate; HWP: half-wave plate;

SPAD: single photon avalanche photodiode. For photon B, the red (blue)

line inside the Sagnac interferometer corresponds to the transmitted

(reflected) path (spin q3), and the solid (dashed) line after the PBS

correspond to the horizontal (vertical) polarization of photon B (spin q1).

Table I | Tripartite negativity. Estimates of the tripartite negativity in
the noise-affected ground state of a three-spin Ising ring corres-
ponding to the experimental values of the Svetlichny function, here
dubbed ÆS3æexp, measured at the values of b reported in Fig. 2

ÆS3æexp N 3

4.83 6 0.15 0.90 6 0.02
4.89 6 0.31 0.88 6 0.03
4.47 6 0.12 0.82 6 0.03
4.32 6 0.13 0.71 6 0.05
3.64 6 0.10 0.59 6 0.05
2.98 6 0.09 0.41 6 0.06
2.18 6 0.07 0.26 6 0.05
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