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We study localized photonic excitations in a quasi-two-dimensional non-ideal binary microcavity
lattice with use of the virtual crystal approximation. The effect of point defects (vacancies) on the
excitation spectrum is investigated by numerical modelling. We obtain the dispersion and the energy
gap of the electromagnetic excitations which may be considered as Frenkel exciton-like quasiparticles
and analyze the dependence of their density of states on the defect concentrations in a microcavity
supercrystal.

P
hotonic structures and metamaterials are presently in the focus of theoretical and experimental interdis-
ciplinary studies, which span laser physics, condensed matter physics, nanotechnology, chemistry and
information science1,2. Many papers have been devoted to realization of light-emitting devices based on

polaritonic crystals3,4. In this context, semiconductor microcavities represent quantum confined optical systems5

featured by strong coupling between elementary crystal excitations (excitons) and the optical field. Photonic
supercrystals can be built from spatially-periodic systems of coupled microcavities6.

The physics of photonic supercrystals is in many ways similar to the physics of crystalline solids. Due to
imperfections of the supercrystal lattice photonic gaps may contain impurity states, which are of crucial import-
ance in realistic photonic structures. While the theory of impurity bands and excitons in semiconductor crystals
has been developed in 1970–1980s, a similar theory for photonic crystals is yet to be constructed. In this work we
carry out a theoretical study of exciton-like electromagnetic excitations in disordered photonic supercrystals
composed by coupled microcavities.

Semiconductor microcavities are widely used in optoelectronic devices nowadays7,8. Nanocavities in photonic
crystals9,10 represent a particular case of microcavities characterized by a discrete photonic spectrum. Nanocavities
with embedded quantum dots have been used to demonstrate the strong light-matter coupling regime in Ref. 11 and
proposed for realization of quantum solitons coupled to lower-branch polaritons (LBPs)3,4. Refs. 3, 4 indicate also
that chains of microcavities may be used for practical realization of quantum-information processing.

Recent progress in fabrication of reliable semiconductor microcavities with Bragg mirrors and embedded
quantum wells led to demonstration of a Bose-Einstein condensation of exciton-polaritons and finding features
of their superfluidity12–14. In those specified systems polaritons can be treated as a quasi-equilibrium two-dimen-
sional gas of interacting bosonic quasiparticles.

Basing upon the previously developed3 concept of photonic structures, Ref. 15 studies a non-ideal polariton
supercrystal realized in a system of coupled microcavities, whose atomic subsystem contains impurity clusters. It
is important to know the dispersion of electromagnetic eigenmodes in such non-ideal microcavity supercrystals
in order to develop opto-electronic and quantum computation devices based on such structures. Here we study
dispersions of localized electromagnetic excitations in an array of coupled microcavities, which form a non-ideal
supercrystal containing numerous point-like defects.

Theoretical background
One of the methods of fabrication of polaritonic crystals is the trapping of two-level atoms in an ideal coupled
resonator optical waveguide (CROW)3 or in a non-ideal photonic structure15. Refs. 3, 8, 9, 15 study coupled
cavities with dopant atoms. In the present work, we do not consider photon mode coupling with dopant atoms.
Instead we concentrate on exciton-like electromagnetic excitations of the disordered multicavity structure. We
consider a 2D lattice of microcavities, each characterized by a single confined optical mode. An overlap of optical
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fields of the eigenmodes of neighboring microcavities is taken into
account, so that photons are allowed to move along the surface of the
microcavity array. For the sake of generality, we assume that each cell
of the photonic supercrystal lattice may contain an arbitrary number
of elements.

Hamiltonian H of the model system we consider (for more details
see also Ref. 3) writes:

Hph~
X

na

EnaY
z
naYna{

X
na,mb

AnambY
z
naYmb: ð1Þ

Subscripts n and m are two-dimensional integer lattice vectors, a and b
numerate sublattices, whose total number is s. Ena;"vna, where vna is
the frequency of photonic mode localized in the na-th site (cavity).
Quantity Anamb defines the overlap of optical fields of the na-th and
mb-th cavities and the transfer of the corresponding excitation,
Yz

na, Yna are bosonic creation and annihilation operators describing
the photonic mode. Hamiltonian (1) is formally identical to the tight-
binding excitonic Hamiltonian in a semiconductor crystal16,17, for which
reason the studied electromagnetic excitations can naturally be referred
to as exciton-like. It is worth stressing that we discuss photonic super-
crystal excitations and no electronic transitions are involved.
Nevertheless, it will be seen below that the dispersion relations of purely
electromagnetic crystal excitations in the studied system are quite sim-
ilar to the Frenkel exciton bands in molecular crystals16,20.

Let us consider a topologically ordered non-ideal lattice of micro-
cavities with point-like defects, namely vacancies and non-typical
microcavities. In such a system, Hamiltonian (1) is no more trans-
lation invariant, hence the quantities vna and Anamb are configur-
ationally dependent. A convenient tool to study the quasiparticle
excitation spectrum in a system with randomly distributed defects
consists in configurational averaging of the resolvent of the corres-
ponding Hamiltonian18. An averaged resolvent is translation invari-
ant, hence the corresponding elementary excitation spectrum can be
characterized by a wave vector k. This type of calculation can only be
carried out if adopting a certain approximation specific to the con-
sidered system. A widespread method of computation of quasipar-
ticle states in disordered media is the virtual crystal approximation
(VCA)18,19. It proves sufficient to elucidate the transformations of
elementary excitation spectra under varying defect concentrations.
In what follows we rely on this method to compute and analyze the
spectrum of electromagnetic excitations as well as the corresponding
optical characteristics of the considered non-ideal supercrystal.

Since the VCA consists in replacement of configurationally
dependent Hamiltonian parameters with their averaged values,
Hamiltonian of a ‘‘virtual’’ crystal Hph

� �
in our case reads as follows:

Hph
� �

~
X

na

Enah iYz
naYna{

X
na,mb

Anamb

� �
Yz

naYmb: ð2Þ

Here angular brackets denote configurational averaging. In an imper-
fect lattice of coupled cavities quantities Ena and Anamb are con-
figurationally dependent and can be written in terms of the random
variables

gn
na : Ena~

Xs að Þ

n að Þ~1

En að Þ
a gn að Þ

na ;

Anamb~
Xs að Þr bð Þ

n að Þ,m(b)~1

An að Þm bð Þ
ab n{mð Þgn að Þ

na g
m bð Þ
mb

ð3Þ

where gn,m
na,mb~1 if the na (mb)-th supercrystal cell is occupied by a

n(a)-th or m(b)-th type of cavity (the total number of types is s(a) and
r(b) correspondingly) and gn,m

na,mb~0 otherwise. Configurational aver-
aging of Eqs. (3) carried out in accordance with the VCA (similarly to
the quasiparticle approach15,22) yields

Enah i~
Xs að Þ

n að Þ~1

En að Þ
a Cn að Þ

a ; Anamb

� �

~
Xs að Þr bð Þ

n að Þ,m(b)~1

An að Þm bð Þ
ab n{mð ÞCn að Þ

a Cm bð Þ
b ,

ð4Þ

where Cn að Þ
a and Cm bð Þ

b are concentrations of the n-th and m-th types of

cavities,
X
n að Þ

Cn að Þ
a ~1. Configurational averaging ‘‘restores’’ the trans-

lation invariance of the considered supercrystal system.
Eigenvalues of Hamiltonian (2) are found via its diagonalization by

means of the Bogolyubov-Tyablikov transformation16,17, and are ulti-
mately determined by the system of algebraic equations of the order s:

L̂ kð Þul kð Þ~El kð Þul kð Þ: ð5Þ

ul(k) are eigenfunctions of the s3s matrix L̂ whose elements are
expressed through the corresponding characteristics of the
Hamiltonian (2):

Lab~ Enah idab{
X

m

Anamb

� �
exp ik rna{rmb

� �� �
~

~ Enah idab{
Xs að Þr bð Þ

n að Þ,m(b)~1

An að Þm bð Þ
ab kð ÞCn að Þ

a Cm bð Þ
b ,

ð6Þ

rna being the radius-vector of a resonator belonging to the a-th sublattice
of the n-th elementary cell. The solvability condition of the system (5)

Enah idab{�hvl kð Þdab{Aab kð Þ
�� ��~0 ð7Þ

yields the dispersion law vl(k) of electromagnetic excitations in the
considered photonic supercrystal.

Results and Discussion
Consider localized electromagnetic excitations in a two-sublattice
(s52) system of cavities. The left-hand side of Eq. (7) is then a
second-order determinant, which when equated to zero gives the
following dispersion of photonic excitations:

v1,2 kð Þ~ 1
2�h

L11 kð ÞzL22 kð Þ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11 kð Þ{L22 kð Þ½ �2z4L12 kð ÞL21 kð Þ

q
 � ð8Þ

Here L11(k)5E12A11(k), L22(k)5E22A22(k), L12(k)52A12(k) and
L21(k)52A21(k) are the matrix elements of operator L̂.

To be more specific, let us consider a spectrum of electromagnetic
excitations in a binary system where each sublattice contains only two types
of cavities. In such a case, the quantities Enah i and Anamb

� �
are given by

Enah i~
X2

n að Þ~1

En að Þ
a Cn að Þ

a , An1m1h i~
X2

n að Þ,m(b)~1

An að Þm bð Þ
ab kð ÞCn að Þ

a Cm bð Þ
b .

Being applied to the supercrystal lattice of microcavities where the
only defects are vacancies, these expressions take the form

En1h i~E 1ð Þ
1 C 1ð Þ

1 ; An1m1h i~A 11ð Þ
11 n{mð ÞC 1ð Þ

1 C 1ð Þ
1 ,

En2h i~E 1ð Þ
2 C 1ð Þ

2 ; An2m2h i~A 11ð Þ
22 n{mð ÞC 1ð Þ

2 C 1ð Þ
2 ð9Þ

An1m2h i~A 11ð Þ
12 n{mð ÞC 1ð Þ

1 C 1ð Þ
2 , An2m1h i~A 11ð Þ

21 n{mð ÞC 1ð Þ
2 C 1ð Þ

1 ,

where C 1ð Þ
1 :C1 is the cavity concentration in the first sublattice,

C 1ð Þ
2 :C2 is the cavity concentration in the second sublattice,
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C 1ð Þ, 2ð Þ
1(2) :CV

1(2) is vacancy concentration in the 1st and/or 2nd
sublattices. Concentrations must obviously satisfy the rela-

tions C 1ð Þ
1 zCV

1 ~1, C 1ð Þ
2 zCV

2 ~1. In (9) matrix elements

A 11ð Þ
11 :A11, A 11ð Þ

22 :A22, A 12ð Þ
11 :A12, A 21ð Þ

22 :A21, A 12ð Þ
11 :A12, A 21ð Þ

22 :
A21 characterize the overlap of optical fields of cavities pertaining to
the same sublattice but different cells.

The energy spectrum of exciton-like electromagnetic excitations is
defined by the type of the considered sublattices and the quantities
Enah i and Anamb

� �
. Below we carry out a nearest-neighbor calcula-

tion for the case of a square Bravais lattice of period d3. Location of
cavities is defined by the radius-vector rna5rn1ra, hence their loca-
tion in the zero elementary cell (rn50) is defined by vectors r0150

and r02~
d
2

e1ze2ð Þ respectively, where e1 and e2 are the basis vec-

tors of the rectangular coordinate system (Fig. 1). In the adopted
approximation the matrix elements Aab(k) can with reasonable accu-
racy be written as:

A11 kð Þ~2A11 dð Þ coskxdzcoskyd
� �

, A22 kð Þ

~2A22 dð Þ coskxdzcoskyd
� �

,

and thus the corresponding matrix elements of operator L̂ take the
form

L11
~k
� 

+L22
~k
� 

~

~v1 1{CV
1

� �
+v2 1{CV

2

� �
{

{4 A11 dð Þ 1{CV
1

� �2
+A22 dð Þ 1{CV

2

� �2
h i

cos
d kxzky
� �

2
cos

d kx{ky
� �

2
,

L12 kð ÞL21 kð Þ~

16A12 0ð Þ 1{CV
1

� �
A21 0ð Þ 1{CV

2

� �
cos2 kxd

2
cos2 kyd

2

ð10Þ

In (10) the overlap characteristic of optical fields A11(22)(d) defines
the transfer probability of electromagnetic excitation between the
nearest neighbors in the first (second) sublattice, and A12(21)(0) is
the excitation transfer probability between cavities in the first (sec-
ond) and second (first) sublattices in an arbitrary cell. Substitution of
expressions (10) for Lab(k) into Eq. (8) gives the dispersion law
v6(k) for electromagnetic excitations (Fig. 2a,b,c). We performed
calculation for modeling frequencies of resonance photonic modes in
the cavities of the first and second sublattices v1: E~n1h i=�h~

6:1015Hz and v2: E~n2h i=�h~8:1014Hz respectively and for the over-
lap parameters of resonator optical fields A11/2 53?1014Hz, A22/
2 55?1013Hz and A12/2 <A21/2 55?1013Hz. The lattice period
was set equal to d53?1027m.

Figure 1 | Schematic of a non-ideal two-dimensional two-sublattice
system of microcavities, e1 and e2 are the basis vectors of the square
Bravais lattice. ‘‘V’’ denotes vacancies.

Figure 2 | Dispersion v+ k,C1
V ,CV

2

� �
of electromagnetic excitations in the non-ideal two-dimensional two-sublattice system of microcavities for a)

CV
1 ~0:55, CV

2 ~0:1; b) CV
1 ~0:84, CV

2 ~0:2, c) CV
1 ~0:9468, CV

2 ~0:7.
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Figs. 2a,b,c give three examples of surfaces depicting the
dispersion dependence of collective excitation frequencies in the
considered non-ideal microcavity lattice. Concentration de-
pendence of the energy gap width Dv CV

1 ,CV
2

� �
:min

k

vz k,CV
1 ,CV

2

� �
{v{ k,CV

1 ,CV
2

� �� �
is shown in Fig. 3. The surface

Dv CV
1 ,CV

2

� �
proves non-monotonic and turns to zero in a certain

range of CV
1 ,CV

2

� �
. In other words in a certain region of

CV
1 ,CV

2

� �
[ 0,1ð Þ electromagnetic excitations pass unhindered

through the binary two-sublattice microcavity system. Surfaces in
Fig. 2a, plotted for CV

1 ~0:55, CV
2 ~0:1 and in Figs 2b,c plotted for

CV
1 ~0:84, CV

2 ~0:2 and CV
1 ~0:9468, CV

2 ~0:7 exemplify the cases
of Dv CV

1 ,CV
2

� �
=0 and Dv CV

1 ,CV
2

� �
~0 respectively. The presence

of two dispersion branches v6(k) (see Eq. (8)) reflects a two-sub-
lattice structure of the resonator system. For molecular crystals with
two molecules in a cell an analogous occurrence of two branches in
the dispersion law is referred to as the Davydov splitting of exciton
zone20.

It is important to know how the specificities of the spectrum of the
studied quasiparticles are manifested in their density of states
g v,CV

1 ,CV
2

� �
. For a non-ideal two-dimensional system with a square

lattice the function g v,CV
1 ,CV

2

� �
is given by an integral (see Ref. 21):

gn v,CV
1 ,CV

2

� �
~

d
2p

� �2 þ
vn kð Þ~v

dl
+kvn kð Þj j, ð11Þ

where integration is carried out along an isofrequency contour
vn(k)5v in the (kx,ky)-plane (Figs. 4a,b,c,d,e,f). Dispersion of
quasiparticles in the considered system (Figs. 2a,b,c) has nine
critical points in the k-space (where =kvn(k)50), which is in-
dicative of a possible occurrence of singularities in the density of
states g v,CV

1 ,CV
2

� �
. These do in fact always arise as demonstrated

in Figs. 5a,b,c,d,e,f. Points kx,ky

� �
~ 0,0ð Þ, +p=d,+p=dð Þ, +p=d,ð

+p=dÞ fail to yield a singularity because there the tending to zero
gradient =kvn(k) is offset by a shrinking integration contour, which
ultimately gives a finite result of integration in (11) (Figs. 4a,b,c,d,e,f).
Singularities of g{ v,CV

1 ,CV
2

� �
for the low-frequency dispersion

branch are due to the critical points (kx,ky)5(0,6p/d),(6p/d,0)
(indicated by black diamonds in Figs. 4d,e,f). The high-frequency
branch in its turn can behave in a more peculiar way. In the case
Dv?0 the singularities of the high-frequency density of states g1 are
due to the already mentioned points(kx,ky)5(0,6p/d),(6p/d,0)
(black diamonds in Fig. 4a). For Dv50 however the corresponding
points may fall inside the Brillouin zone on either the centerlines of
the (kx,ky)-square (Fig. 4b) or on its diagonals (Fig. 4c). In Figs. 5a,d

Figure 3 | Cavity concentration dependence of the photonic gap width
Dv CV

1 ,CV
2

� �
in the studied microcavity supersystem.

Figure 4 | Isofrequency lines for a), d) upper and lower surfaces in Fig. 2a; b), e) upper and lower surfaces in Fig. 2b; c), f) upper and lower surfaces in
Fig. 2c. The frequency is measured in the units of 1015 Hz. Black diamonds indicate saddle points, which yield singularities in the corresponding densities

of states (see Fig. 5).
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solid curves show the densities of states g+ v,CV
1 ,CV

2

� �
for the sur-

faces v1 and v2 in Fig. 2a. Dashed lines show the transformation of
functions g1 and g2 under varying CV

1 and CV
2 . It turns out that in the

region Dv CV
1 ,CV

2

� �
=0 the density of states g1 is all but independent

of CV
2 , while g2 is almost unaltered by variations in CV

1 . This is
explained by the smallness of the term L12(k)L21(k) as compared to
[L11(k)2L22(k)]2 in Eq. (8). Figs. 5b,c and 5e,f give examples of the
typical g1 and g2 curves for concentration values corresponding to
Dv50 (here we took CV

1 ~0:84, CV
2 ~0:2 and CV

1 ~0:9468,
CV

2 ~0:7). Their evident non-monotonic and discontinuous char-
acter is similar to the analogous dependence g(v) obtained in Ref. 21
for phonon excitations.

Conclusion
A number of recent experimental works indicate that microcavity
supercrystals may have interesting applications, in particular for
creating the optical clockworks of unprecedented accuracy22–24. We
have used the virtual crystal approximation to model the effect of
lattice point defects (vacancies) on the spectrum of exciton-like elec-
tromagnetic excitations in a quasi-2D binary microcavity lattice. The
energy spectrum of electromagnetic excitations affects the density of
states of electromagnetic excitations and alters propagation of nor-
mal electromagnetic waves. The obtained dispersions of electromag-
netic excitations are noticeably more complex than those of primitive
lattices. This complexity is due to the non-ideality of the structure
and to the presence of two sublattices. The latter entails multiple
manifestations in experimentally observable integral characteristics
of optical processes. Evaluation of excitation spectra in more com-
plex photonic systems requires the use of more sophisticated com-
putational methods. Depending on particular cases such can be the
one- or multiple-node coherent potential method18 and the averaged
T-matrix method25 along with their various modifications. Our study

contributes to the modeling of novel functional materials with con-
trollable propagation of electromagnetic excitations.
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