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When starved, a swarm of millions of Myxococcus xanthus cells coordinate their movement from outward
swarming to inward coalescence. The cells then execute a synchronous program of multicellular
development, arranging themselves into dome shaped aggregates. Over the course of development, about
half of the initial aggregates disappear, while others persist and mature into fruiting bodies. This work seeks
to develop a quantitative model for aggregation that accurately simulates which will disappear and which
will persist. We analyzed time-lapse movies of M. xanthus development, modeled aggregation using the
equations that describe Ostwald ripening of droplets in thin liquid films, and predicted the disappearance
and persistence of aggregates with an average accuracy of 85%. We then experimentally validated a
prediction that is fundamental to this model by tracking individual fluorescent cells as they moved between
aggregates and demonstrating that cell movement towards and away from aggregates correlates with
aggregate disappearance. Describing development through this model may limit the number and type of
molecular genetic signals needed to complete M. xanthus development, and it provides numerous additional
testable predictions.

M
yxococcus xanthus is a flexible rod-shaped bacterium that can move across a semi-solid surface in either
direction along its long axis1. Under laboratory conditions, M. xanthus is grown either vegetatively in
liquid culture or as a motile biofilm, called a swarm, on agar. A small swarm can be initiated by spotting a

few microliters of liquid culture on an agar surface and letting it dry. If the agar is nutrient-rich, the swarm will
expand outward in all directions across the surface through multicellular projections called flares2. If the agar is
non-nutritive, movement turns inward and the swarm appears to contract. Within several hours, the millions of
starving cells self-organize into several hundred dome shaped aggregates, each of which contains many thousands
of cells. Following this period of aggregation, a subset of cells at the interior of each aggregate differentiates to
become quiescent spores. When aggregation and sporulation are both completed, aggregates are considered to
have matured into fruiting bodies. The entire developmental process can take less than 24 hours3,4.

Prior research2 has reported that only about half the aggregates that appear at the beginning of the aggregation
process will persist through maturation to become fruiting bodies, while the other half will shrink and disappear.
Xie et al5 sought to identify differences between persisting and disappearing aggregates, and found that aggregate
size was the only statistically reliable determinant: persisting aggregates were larger. This determinant can be used
to accurately predict disappearing and persisting aggregates, but it provides no model to explain why or how this
happens.

At present, the only models for M. xanthus aggregation are based on the ‘‘traffic jam’’ hypothesis, which states
that during aggregation cells will clump together and become stuck, or jammed, at positions within the swarm
when the concentration of cells is sufficiently high. Cells within these traffic jams undergo a transition from motile
to non-motile, and in this way an aggregate is initiated. Additional motile cells encounter these initial aggregates,
and they become jammed and undergo the same transition. Variations on this model based on a ‘‘capitalistic
economic system’’ or reaction diffusion mechanism have been proposed for Pseudomonas aeruginosa6 and
Dictyostelium discoideum7 respectively. The problem with these types of models in M. xanthus is incorporating
a method for disappearance. Agent based models implementing the traffic jam hypothesis accurately predict
aggregate formation, but have no disappearance component8–12.

In this report we propose a new hypothesis for controlling aggregate disappearance based on a model of
Ostwald ripening in thin liquid films13. We implement previously published two-dimensional pairwise equations
that describe Ostwald ripening in a simulator (o-simulator) that operates over an area large enough to cover
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dozens of aggregates. This o-simulator predicts the change in volume
of each aggregate based on its current volume and the volume and
relative proximity of its neighbors. We then test our hypothesis by
experimentally deconstructing M. xanthus development, isolating
the disappearance of aggregates, observing the transient swarm
structures and the movements of individual cells, and then matching
these observations to the results produced by the o-simulator.

A method similar to this was successfully applied in M. xanthus to
provide a mechanism for describing the density waves, called rip-
ples14–16, that sometimes travel across the surface of a swarm. Welch
et al14 were able to partially reveal the mechanism of rippling by
isolating one set of opposing ripples, observing their behavior and
the behavior of individual cells within ripples, and then matching
these observations with a set of equations that describe non-zhabo-
tinsky waves.

Results
A quantitative comparison between Ostwald ripening and M.
xanthus aggregation. To observe and record swarm-scale dyna-
mics of M. xanthus aggregation, we used bright field time-lapse
microcinematography at 60 3 magnification, 1 frame/min, cover-
ing an ,50 mm2 area from an interior section of a 1 cm diameter
swarm composed of 2.5 3 107 wild-type (DK1622) cells on starvation
TPM agar (Figure 1a). A stack (movie) of 1440 sequential images

(frames) were taken for each sample over of 24 hours, beginning no
later than 15 min after starvation onset (for a detailed protocol, see
methods). We independently repeated this procedure 20 times to
produce 20 replicate experiments.

Individual cells are not distinguishable under these conditions, but
we can estimate from the cell concentration of the liquid culture, the
volume spotted onto agar, the area of the initial swarm following
liquid absorption and evaporation, and the area of the microscope
field-of-view, that there are approximately 8.3 3 106 cells within the
field-of-view at starvation onset (Figure 1a, Frame 1). Images
recorded at starvation onset have a dappled appearance, with irregu-
lar variations in grayscale representing local differences in cell den-
sity. Initial aggregates begin to emerge as dark spots within the first 6
to 8 hours (Figure 1a, compare frames 1 and 2). We define each
microcinematography experiment frame (e-frame) as a data struc-
ture that contains the positions and radii of each aggregate in the
frame. We begin the analysis of aggregate disappearance at the first e-
frame (Figure 1a, frame 3), when initial aggregates are clearly visible
and distinguishable from earlier and more transient fluctuations in
grayscale.

To create the first e-frame, the position and size of each aggregate
is manually determined, recorded, and then tracked for the rest of the
image stack using a semi-automated method. Briefly, our method is
to manually curate changes in the size and position of all aggregates

Figure 1 | M. xanthus aggregation and accuracy of the o-simulation. (a) Five microcinematography images selected from a time-lapse image stack that

shows the progression of aggregation (taken from stack 19). Elapsed time is indicated in the upper left corner of each frame (0, 6, 10, 15 and 24 h).

Blue circles with ID numbers represent the positions and volumes of aggregates, and red circles represent the positions and volumes of simulated

aggregates (10, 15 and 24 h). Blue circles are not visible in frame 3, which is the first e-frame, because red circles exactly overlap blue circles on that frame.

(b) The black line displays the average accuracy (61 SD) of the disappearance model over 5 prediction replicates. The blue line represents the average

percent aggregates remaining for the 20 replicates.
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every tenth image, record these changes and interpolate them over
the intervening nine sequential images, manually check and adjust
the interpolation and move on to the next set of ten images. Using
this method we tracked changes in the position and size of a total of
1,727 aggregates. Tracking data is visualized in Figure 1a as blue
circles in frames 3, 4, and 5, and in each of the movies provided in
supplementary materials.

To synchronize the start of data collection and the start of the o-
simulator, the size and location of aggregates in the first e-frame were
used to construct the first o-simulator frame (o-frame). These data
are visualized in Figure 1a as red circles in Figure 1a frames 3, 4, and
5, and in each of the movies provided in supplementary materials.
Because Figure 1a frame 3 represents both the first e-frame and first
o-frame, the red circles and blue circles are identical and exactly
overlap. The blue circles are rendered behind the red circles in the
image, and so only the red circles are visible.

The simulation examines each pairwise set of circles in each o-
frame, and adjusts their size according to the following equations
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outcome from these pairwise equations is that the larger aggregate
will increase in volume at the expense of the smaller aggregate, and
the amount gained by the larger aggregate will be equal to the amount
lost by the smaller aggregate. Distance between aggregates mediates
the volume change, so that closer aggregates have more effect than
distant aggregates. An aggregate will disappear when the volume
drops below a minimum threshold, and touching aggregates will
merge into a single aggregate of their combined volume. For a
detailed description of the o-simulation, see methods.

To measure the accuracy with which the o-simulation can predict
the timing of aggregate disappearance, we first determined the
appropriate rate of mass transfer between droplets, which is repre-
sented as tau (t) in the volume equation (Eq. 2). The rate of mass
transfer between cells appears to undergo a synchronous increase
midway through development, and so t was determined twice (t-1
and t-2); t-1 was determined for the first half of the o-simulation,
and t-2 was determined for the second half (see methods). To cal-
culate these values, we optimized t for both halves using 15 randomly
chosen replicates as training replicates, resulting in a t-1 of 160 and a
t-2 of 700. We then determined the accuracy for the remaining 5
prediction replicates. Specifically, we paired every aggregate to its
corresponding o-simulated aggregate from each sequential e-frame
and o-frame, and then employed a scoring mechanism that mea-
sured how accurately the o-simulation matches experiment with
respect to aggregate disappearance. The scoring starts at 100% accu-
racy because the first e-frames and first o-frames are identical.
Sequential e-frames and o-frames were then examined, and if one
half of an ‘‘e-frame::o-frame’’ aggregate pair disappeared while the
other half persisted, the accuracy score would decrease accordingly
for that frame and subsequent frames. If the other half of the pair
disappeared in a later frame, the accuracy score for that pair would be
restored for the remainder of frames. In this way the score represents
the accuracy for each frame, so that changes in accuracy can be
plotted as a function of time (Figure 1b).

Aggregate disappearance occurred during the entire period
covered by the o-simulation, as seen in Figure 1b (blue line). The

accuracy score initially fell to ,80% after the first 20 frames,
remained relatively constant until 60 frames, and then increased
slightly, reaching a final score of 81% 6 4.29%SD. The overall aver-
age accuracy score was 85.1% 6 7.09%SD during the entire 10 to 14
simulated hours since the first e-frame. The relative consistency of
the accuracy score indicates that the o-simulation was also able to
match the timing of disappearance reasonably well.

To compare our results to previous research, we repeated this
comparison using the only other proposed determinant to predict
aggregate disappearance in M. xanthus, the size threshold hypothesis
proposed by Xie et al5. The size threshold hypothesis does not include
a time component; small aggregates below a threshold simply dis-
appear while the larger ones above the threshold persist. From this
hypothesis we created a size simulation (s-simulation) that predicts
aggregate disappearance if it is below a specified threshold size based
on the first size frame (s-frame), which is also matched to the first
e-frame. We determined the best size threshold for the same 15
training replicates that we used for the o-simulation, executed the
s-simulation in same manner as the o-simulation, and then gener-
ated an accuracy score for the 5 prediction replicates. Because the size
threshold hypothesis includes no time component, the rate of mass
transfer (t) is not a component of the s-simulation.

We compared the accuracy scores of the s- and o-simulations with
respect to time (Figure 2). The mean accuracy score of the o-simu-
lation is always greater than 80%. In contrast, the mean accuracy
score of the s-simulation is less than 40% after the first 20 frames, but
this is due to the lack of a time component in the size simulation;
between the first and second s-frames, everything below the thresh-
old disappears, and all sequential s-frames are identical from the
second to the last frame. In other words, the second s-frame is the
last s-frame, and if the s-simulation is an accurate predictor of which
aggregates will disappear during development, then s-frames and e-
frames should converge from the second to the last frames. We
observed this effect; the mean accuracy score of the s-simulation
increases steadily over the next 60 frames, reaching the average accu-
racy of the o-simulation by frame 100. After that, the accuracy of the
two simulations remains similar. Therefore we conclude that the
Ostwald ripening hypothesis matches the accuracy of the size thresh-
old hypothesis in predicting which aggregates will disappear and,
because it includes a mechanism, it is also able to predict when they
will disappear.

Experimental validation of Ostwald ripening as the mechanism
underlying aggregate disappearance. Ostwald ripening in a thin
liquid film represents entropy minimization through the reduction
in surface area. The surface area of a hemispherical droplet increases
more slowly than its volume, and so the total surface area of the thin
liquid film decreases as droplets become larger in size and fewer in
number. Ostwald ripening also represents a zero-sum game, so
shrinking droplets lose liquid to growing droplets13. By analogy,
in a developing M. xanthus swarm, shrinking aggregates must lose
cells to growing aggregates. If aggregates shrink for a different reason,
such as cell death, then the aggregation-as-Ostwald ripening analogy
does not hold.

To test the analogy, we repeated the development microcinemato-
graphy experiments using a 15150 mixture of fluorescent M. xanthus
cells. First we used bright-field microcinematography at 60 3 mag-
nification to identify aggregates as either growing or shrinking, then
we increased magnification to 1503, positioned the aggregate in the
middle of the field-of-view, and used fluorescence microcinemato-
graphy to track the movement of cells immediately outside the ag-
gregate over 15 minute intervals.

To determine if the net migration of cells was toward or away from
an aggregate, we examined the paths of fluorescent cells relative to
the centered aggregate; if a cell moved closer to the aggregate, then
the cell was designated ‘‘towards’’, if it moved farther from the

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6376 | DOI: 10.1038/srep06376 3



aggregate it was designated ‘‘away’’, and if there was no net move-
ment it was designated ‘‘none’’. A total of 197 cells were tracked for 12
aggregates (7 growing and 5 shrinking) (Figure 3).

The results are unambiguous. Cells near a growing aggregate
(Fig. 3a) are more likely to be moving toward it (Fig. 3c), and cells
near a shrinking aggregate (Fig. 3b) are more likely to be moving
away from it (Fig. 3d). The overall difference is two-fold (Fig. 3e),
which strongly supports the idea that disappearing aggregates shrink
because they are losing cells to growing aggregates that persist.
Therefore, these data support the aggregation-as-Ostwald ripening
analogy.

Characterizing phenotypic boundaries for an aggregation-as-
Ostwald ripening analogy. Ostwald ripening is only one of two
behaviors that describe the dynamics of entropy minimization in a
thin liquid film. The second behavior is called migration, which
describes how droplets move across a thin liquid film. Ostwald
ripening and migration can be represented by separate sets of
equations, but they are mechanistically linked, and collectively they
are called coarsening.

Migration is caused by asymmetries in the density of particles
around a droplet as a function of Ostwald ripening by neighboring
droplets. M. xanthus aggregates sometimes move across the swarm
in a manner that appears similar to migration, but the speed and
direction of aggregate movement is highly variable. Equations that
describe droplet migration on thin liquid films fail to predict aggreg-
ate movement any better than equations that describe random move-
ment (supplementary materials).

We note two phenotypic features clearly visible in image stacks
from the 20 replicates that may partly explain why aggregate move-
ment is not comparable to droplet migration. We refer to these two
features as ‘‘snakes’’ and ‘‘scars’’. Neither snakes nor scars are pre-

dicted by a coarsening model, and they may indicate important ways
in which coarsening and aggregation are dissimilar. We discuss
snakes and scars separately.

Snakes sometimes occur when an aggregate disappears (Figure 4a,
also stack 20 inset within frames 800–1000). They can be observed in
the image stacks as elongated slightly darker regions that travel
quickly away from the disappearing aggregate, usually in two oppos-
ing directions. Often a snake will seem to travel directly toward a
nearby aggregate. We hypothesize that snakes represent the transfer
of large quantities of cells from one aggregate to another through
structures called slime trails. M. xanthus cells deposit trails of a
polysaccharide matrix, called slime, as they move across agar, and
cells encountering previously deposited slime trails tend to follow
them17. This effect of slime trails functions together with other forces,
such as surface tension, to cause the formation of parallel lines of
cells, called streams18. Our observation that snakes frequently travel
in opposing directions may indicate where slime trails have formed,
and our observation that snakes frequently travel to nearby aggre-
gates may indicate that slime trails cause a preferential transfer of
cells between aggregate pairs.

Scars also sometimes occur when an aggregate disappears
(Figure 4b, also stack 17 inset within frames 1180–1440). Scars seem
residual, as though the disappeared aggregate had caused a change in
the substrate that permanently altered the structure of the swarm in
that region. Cell movement is observed within and around scars, but
the scars do not move across a swarm. The overwhelming majority of
disappearing aggregates that leave scars also do not move, but even in
the few cases where the disappearing aggregates do move, the scars
they leave behind do not. We hypothesize that scars represent the
aborted maturation of an aggregate to a fruiting body. Perhaps they
are the beginnings of mucoid stalks that would have suspended the
bolus of spores.
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Figure 2 | A comparison of the average accuracy score between the o-simulator (blue bars) and s-simulator (red bars) with respect to predicting
aggregate disappearance over time for 5 prediction replicates. Error bars report one standard deviation.
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We further hypothesize that snakes and scars are phenotypic fea-
tures that indicate two aspects of aggregation that make it unlike
coarsening. Snakes indicate that cells leaving a disappearing aggreg-
ate do not diffuse evenly into a swarm, but preferentially follow slime
trails. This would cause coarsening and aggregation to deviate with

respect to both movement and disappearance, since the asymmetry
of cell density would be greatly increased, and cell transfer between
pairs of aggregates would depend on more than size and proximity.
Scars indicate that aggregate movement may be disconnected from
disappearance. In coarsening, Ostwald ripening and migration are

Figure 3 | Towards/away comparison of fluorescent cells moving in and around growing and shrinking aggregates. (a) Fluorescent images of

growing aggregates and (b) shrinking aggregates with fluorescent cells visible in and around them. (c) Total individual tracked cells on seven growing and

(d) five shrinking aggregates. Blue lines represent cell tracks moving toward the aggregates, and red lines represent cell tracks moving away from the

aggregates. The letters ‘E’ within the tracks indicates the endpoints of tracks, and the letters ‘S’ indicates the starting points of tracks. (e) The total number

of cells tracked as moving ‘towards’ (blue bars) or ‘away’ (red bars) from growing and shrinking aggregates.

Figure 4 | Representative examples of snakes and scars. (a) A snake (red arrow) traveling from a disappearing aggregate to a growing aggregate (stack

20). (b) Scars remaining (blue arrows) where aggregates have disappeared (stack 17).

www.nature.com/scientificreports
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linked by the same underlying mechanism. In contrast, if aggregates
can anchor themselves to the substrate so that they don’t move, but
they still exchange cells and may disappear, then aggregate move-
ment and disappearance have been mechanistically uncoupled.
Perhaps snakes and scars are some visible manifestations of why
our predictions for movement are not accurate, and why the accuracy
of the o-simulations top out at ,85%.

Discussion
We have demonstrated that a model simulating M. xanthus aggrega-
tion based on equations that describe Ostwald ripening in thin liquid
films is able to predict which aggregates will persist and which will
disappear with ,85% accuracy. We also tested and validated one of
the central predictions of such a model: that aggregates grow because
of cell accumulation, and shrink and disappear because of cell loss.
This provides a mechanism for the size threshold determinant5, and
is the first alternative to the traffic jam model that includes aggregate
disappearance.

Our argument from analogy is not to claim that M. xanthus aggre-
gation is coarsening in thin liquid films; enough is known about M.
xanthus genetics, cellular behavior, and multicellular self-organization
to refrain from making this much stronger claim. For example, we
know that M. xanthus synchrony and symmetry breaking is under
genetic control by molecular signals and pathways that coordinate
swarm cell movement2,19. We also know that M. xanthus cells are
active1,20,21, they move along a semi-rigid axis with a genetically con-
trolled reversal frequency22,23, and they form streams that steer them
over long distances18,24. Finally, we know that the shape and structure
of an M. xanthus fruiting body requires the coordination of thousands
of cells because it is much more than a droplet, with a cell-free mucoid
stalk and a bolus of myxospores at the center25.

Instead, our argument is that Ostwald ripening is similar enough
to M. xanthus aggregation that it can provide testable genetic and
behavioral hypotheses and a mechanistic model consistent with
Occam’s Razor. An Ostwald ripening aggregation model reduces
the number of developmental decisions that must be assigned to
quorum sensing and cell-contact mediated mechanisms. It also pro-
vides a hypothesis that links individual cell movements to an import-
ant aspect of swarm self-organization.

Methods
Growth and development culture conditions. Liquid cultures of M. xanthus were
grown in agitating nutrient CTTYE (1.0% Casitone [Difco], 0.5% yeast extract
[Difco], 10.0 mM Tris- HCl [pH 8.0], 1.0 mM KH2PO4, and 8.0 mM MgSO4), and
development assays were performed using starvation TPM agar (10.0 mM Tris-HCl
(pH 7.6), 1.0 mM KH2PO4, 8.0 mM MgSO4, and 1% agar). To prepare cells for
development assays, growing cells were harvested from liquid culture at Klett 80–120
(log phase). Development assays were prepared as previously described2,22 with the
following modifications: The gasket used to contain the agar was thicker (2.5 mm)
than the gasket used to provide the airspace (0.5 mm); the initial spot had a
concentration of 5.0 3 109 cells/mL. Microcinematography was performed at 30uC.
Wild-type DK1622 was used for development assays to record the behavior of
aggregates, and a 1/150 mixture of DK1622 and fluorescent DK1054714 was used to
record the behavior of individual cells.

Time lapse microcinematography and image processing. For aggregates: To obtain
the data for aggregates, we created a custom C# application that allows identification
to be performed semi-automatically. First, the image within the stack containing the
highest number of aggregates is selected as a starting point (this is usually within
10 hours after the initiation of development). The user of the application clicks on the
image and a blue circle appears that can be moved by dragging or expanded/reduced
in size by moving the mouse wheel. Once a frame is completely annotated, the
designated aggregates (blue circles) in the frame are extended ten frames forward. The
tenth frame is adjusted for changes by the user, and then the positions and radii are
interpolated within the ten frame range by the application. This process is repeated
for the entire movie in ten frame batches. The positions and radii of each annotated
aggregate in each frame are saved to a file format that can be read using the
simulations written in Java.

For tracking individual cells: To obtain the data on the movement of individual
cells, we performed microcinematography on developmental cultures using a 15051
mixture of wild-type and GFP-expressing cells that develop as wild-type. At the
period of development when disappearance is occurring, we identified individual

aggregates as either growing or shrinking, increased magnification to 1503, moved
the slide so that the aggregate was in the middle of the field-of-view, and then
continued, acquiring time-lapse fluorescence images every minute. Using these
images we were able to identify and track individual cells moving around a growing or
shrinking aggregate.

We manually recorded x/y coordinates of the cell at each time step and placed the
coordinates into an excel spreadsheet. A Java program parsed the excel spreadsheet
and visualized each trail relative to the center of the aggregate on an image. Then we
manually determined whether each trail was moving towards, away or none, and
inserted this new information into an updated spreadsheet. Another Java program
then read the updated spreadsheet, colored the annotated trails, and placed them on
composite images (Figure 3c and 3d). We were then able to calculate the percentage
moving towards/away when the aggregates were growing and shrinking (Figure 3e).

Dynamical model to predict aggregate behavior. The o-simulator has a front end
that can read the data files from the custom C# application which contain aggregate
position and radii (first e-frame). The front end creates unique identifiers for each
aggregate in the first e-frame and matches the closest aggregate in subsequent e-
frames to associate aggregates by identifier throughout the image stack.

We seed the first o-frame of the o-simulation with the position and radii data from
first e-frames as the only input (besides the free variables t-1 and t-2). For each
subsequent o-frame, the discretized pairwise equations for Ostwald ripening are
applied to each unique pair of simulated aggregates, and then changes in volume are
accumulated in each hemisphere. Simulated aggregates whose volume is less than one
are removed, and pairs of simulated aggregates whose edges touch are merged; the
merged simulated aggregate has the combined volume of the two original simulated
aggregates, and a center point that is the midpoint between the two. The e-frame
aggregate movements are applied to the o-frame simulated aggregates so that
movement and disappearance can be considered separately.

To determine the percent accuracy of the o-simulation, for each ‘‘o-frame::e-
frame’’ pair we find the number of pairs where the simulated aggregate matches the
experimental aggregate, and then divide this number by the initial number of
aggregates at the first e-frame. A pair is scored as a match if it exists or does not exist in
both the e-frame and corresponding o-frame. To control for boundary conditions, the
simulation is run using all of the aggregates in the frame, but the accuracy is measured
only for the aggregates inside of a border 250 pixels around the edge of the image
(approximately the size of two large aggregates). This reduces the possibility that
aggregates just outside the image will have a significant impact on the accuracy score.

To solve for the rate of mass transfer between droplets (t-1 and t-2) in the o-
simulation, we attempted every value between 0 and 1500 using increments of 10. We
determined which values for t-1 and t-2 are best for the 15 training replicates by
trying every combination and selecting the pair that maximized the mean area under
the accuracy plot. The decision to calculate two values for t was made after observing
a change in the collective behavior of the swarm in the middle of development.
Evidence of this change appeared in the accuracy plots when a single value for t was
used. The single t plots display an early drop in accuracy that recovers around the
middle of the simulation. A single t must represent the average rate of mass transfer
for the entire o-simulation, so the drop in the accuracy plot means that the o-simu-
lation is faster than the experiment in the beginning, and the experiment catches up
by the end. These kinds of synchronous changes in behavior are not surprising for a
multicellular bacterium like M. xanthus, and may be the result of quorum sensing or
some other cell signaling system. At this point, however, we have simply observed and
noted the behavior and its effect, but proposing a mechanism would be premature.
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