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Recent empirical studies have confirmed the key roles of complex contagion mechanisms such as memory,
social reinforcement, and decay effects in information diffusion and behavior spreading. Inspired by this
fact, we here propose a new agent–based model to capture the whole picture of the joint action of the three
mechanisms in information spreading, by quantifying the complex contagion mechanisms as stickiness and
persistence, and carry out extensive simulations of the model on various networks. By numerical
simulations as well as theoretical analysis, we find that the stickiness of the message determines the critical
dynamics of message diffusion on tree-like networks, whereas the persistence plays a decisive role on dense
regular lattices. In either network, the greater persistence can effectively make the message more invasive. Of
particular interest is that our research results renew our previous knowledge that messages can spread
broader in networks with large clustering, which turns out to be only true when they can inform a non-zero
fraction of the population in the limit of large system size.

O
ver the last few years, many empirical works1–7 or practical model8,9 have identified the strong relevance
of complex contagion mechanisms such as memory effect, social reinforcement and decay effects to
information diffusion or behavior spreading. On account of memory effect, the previous contact activ-

ities can affect the current spreading process4,10. Specifically, individual’s selection of message items can be
naturally expedited by the increasing frequencies of the same choices of other people if they find the items
interesting or crucial enough3,8,11. This is usually interpreted as the results of social reinforcement9,12,13. On the
other hand, there are an increasing amount of new messages an individual is facing every day in modern real life,
whereas the attention and processing abilities of people are finite and saturated4,11,14. The novelty of a message
usually trend to fade with time and hence the attention people pay to it, which is normally described as decay
effects1,4,11,15. It is shown that the social reinforcement effect could be weakened or even counterbalanced by decay
effects4,5,11.

Although the competition between social reinforcement and decay effects has been emphasized and used as a
guideline to measure the natural time scale that attention fades away11, to our best knowledge few works have been
attempted to model explicitly the competition and memory effect, and study deeply how it shapes the spreading of
information on complex networks. Here we want to point out that the three mentioned effects in information
spreading are quite different from those have been considered in the studies on Naming Game (NG) and Category
Game (CG), since either NG or CG is a two-step multi-state negotiation process16–19, whereas information
spreading is not. First, herein memory effect performs as the storing of the times of contact of people with
recipients of information3,8, rather than the possible words (or names) for the object (or a category) in NG (or
CG)16–19. Second, decay effect in information spreading reflects the decay of people’s interest or attention in a
message owing to the competition with other news or stories4,11, contrary to the NG (CG) in which it means the
decrease of the number of different words used in the system (or average number of words per category)16–19.
Third, unlike the phenomenon that an hearing would have more opportunities to add (or remain) one word only
if more selected speakers try to transmit the same one to it16–19, the reinforcement effect in information diffusion
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indicates the more simple situation that the more neighbors adopting
the message, the higher likelihood an individual following them3,5.

Next, the big challenge we are confronted with is the possibility of
modeling and studying the message spreading along with both social
reinforcement and decay effects based on the memory effect. Recent
researches6 have shown that the variation in the ways that different
information spread is attributed to not only the stickiness – the
probability of information adoption is mainly dominated by the first
few exposures6,7, but also the persistence – the relative extent to which
more repeated exposures to the message continue to have durative
effect. Similar results especially the exposure response behaviors
were also confirmed by a lot of empirical studies4,5,7. The two
mechanisms, stickiness and persistence, thus enable us to quantita-
tively study the joint action of the three effects together.

At the same time, the structures of complex social systems can be
characterized by complex networks, on which many spreading activ-
ities may take place, ranging from the spreading of epidemics20–23, the
diffusion of behaviors and news3,8, to the promotion of technique
innovations24, etc. Consequently, motivated by the empirical stud-
ies3–8,11 mentioned above, we propose a new agent-based model offer-
ing an opportunity to explore the impact of social reinforcement and
decaying effects quantified by stickiness and persistence on the mess-
age (information) diffusion on various networks. In the presence of
strong decay effects, we find that a message is more likely to outbreak
(i.e., it can reach a non-zero fraction of the population in the ther-
modynamic limit) on the tree-like networks such as scale-free (SF)
networks and Erdős-Rényi (ER) random networks rather than on the
regular lattices (RLs). Specifically, a message can spread broader in
the RLs than that in the tree-like networks only if it can outbreak. The
critical behaviors of the diffusion process can be reasonably esti-
mated by the bond-percolation theory considering spatial correla-
tions of the underlying networks through which message diffuses. In
addition, we develop a verification approximation, whose solutions
confirm well the non-negligible role of the dynamical correlations
between transmission events in the RLs.

Results
Here, we first carry out extensive simulations for the agent-based
model of message diffusion on square lattice. We then compare the
simulation results with the predictions from the analytical bond
percolation theory and verification method involving time correla-

tions of the spreading events. Finally we extend our model and ana-
lytical methods to other networks such as RLs, SF networks, and ER
networks to validate the robustness of our findings.

Message diffusion on square lattice. We first consider the message
diffusion on a square lattice of size N 5 L 3 L with periodic boundary
conditions. The message starts spreading from the center node
(selected as the seed), while all the others are in the susceptible
state (i.e., they hear nothing about the message).

To intuitively grasp the roles of stickiness and persistence, we
begin by presenting the time evolution of spatial patterns of message
spreading in Fig. 1. The message with stickiness a 5 0.40 (see the
Methods for the precise definitions of a, b and other parameters)
spreads in an irregular manner (see Fig. 1(a1)). By comparison, the
message with a slightly stronger stickiness a 5 0.45 diffuses outward
to susceptible areas in a quasi-circular manner with a broader rim of
informed (infected) individuals (see Fig. 1(a2)). This indicates that
messages with different strength of stickiness could give rise quite
different spreading patterns and behaviors. Figs. 1(b1) (b2) and
Supplementary Fig. S1 show that the persistence b also affects con-
siderably the whole spreading size, by governing the number of the
isolated susceptible islands (blue domains surrounded by red areas,
the emergence of these islands arises from the fact that continually
increasing number of infected neighbors fail to infect those indivi-
duals owing to small persistence). The above arguments suggest that
the stickiness and persistence have great but different influences on
the spreading of message.

We next explore the critical behaviors of message diffusion for
various stickiness and persistence, by providing a quantitative assess-
ment of the message burstiness. By means of the theory of non-
equilibrium phase transition in statistical physics which has been
successfully generalized to study the epidemic dynamics, previous
studies25,26 on spreading dynamics have shown that the fluctuation of
the order parameter is divergent at the critical point. We thus use the
procedure proposed in26 to numerically determine the critical areas.
To be more specific, a series of variabilities v(a, b) are firstly obtained
as

v a,bð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr2

R a,bð Þw{vrR a,bð Þw2
p

vrR a,bð Þw , ð1Þ

Figure 1 | The time evolution of spatial patterns, for two different values of stickiness (a1) a 5 0.40, (a2) a 5 0.45 (bottom panel) where b 5 0; and for
two values of persistence (b1) b 5 21.00, (b2) b 5 1.00 (bottom panel) where a 5 0.45. Red sites represent recovered or alerted nodes, bright green sites

represent infected ones, and blue sites denote susceptible nodes. Other parameters are chosen as ns 5 2 and N 5 101 3 101.
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where rR and v(a, b) denote, respectively, the density of recovered
individuals in the population and the relative standard deviation
(RSD) at parameter point (a, b). There exists a maximum variability
vmax(b) for each value of b when varying a from 0 to 0.5, and the
values of vmax(b) with b g [21, 1] can be used as the numerical
estimation of the threshold position.

Although a bond-percolation process can be mapped to the SIR
model27,28, its extension to the current model is not straightforward.
First, in our model, the transmission probability that a susceptible
individual approves the message varies with the times he has received
it from his infected neighbors (i.e., the number of informed neighbor
he has had). Second, the time correlations between different trans-
mission events En

27 (the transmission event En(t) represents that an
individual, who has received the message at least once before, suc-
cessfully approves the message when he has received it another n
times until time t). To confirm the existence of the time correlation,
in Fig. 2 we compare the dynamic proportions of the four transmis-

sion events (an a,b,tð Þ~ vn a,b,tð ÞP kh i{1
m~0 vm a,b,tð Þ

) obtained from numer-

ical simulations with those predicted by the bond percolation

considering spatial correlations (bn a,b,tð Þ~ qnTn a,bð ÞP kh i{1
m~0 qmTm a,bð Þ

and see the Methods section for definitions of qn and Tn(a, b)) for
three parameter points (a, b). Here, vn(a, b, t) represents the occur-
rence frequency of En(t) obtained from numerical simulations, and
Ækæ denotes the average degree of the networks. In Figs. 2 (b) and (c),
we see that a0(t) (a2(t)) is greater (less) than b0(t) (b2(t)) during the
spreading process, whereas a1(t) (a3(t)) is equal or close to b1(t)
(b3(t)). The reason is that the existence of time correlations of the
transmission events En(t) can determine whether the subsequent
events Em(t) (m . n) happen or not in the spreading process. If
En(t) does not happen, the events Em(t) (m . n) will probably hap-
pen; otherwise Em(t) (m . n) will never happen since an informed
individual transmits the message only one time and then becomes
recovered (i.e., completely ignores the message) forever.
Consequently, E0 (E2) contributes more (less) than predicted by
percolation theory to the spreading course (also see Supplementary
Fig. S2). To overcome the challenge, we develop a verification
approximation involving the time correlations of the transmission
events, besides the spatial correlations originating from the spatial
structure of the lattice27. It is necessary to mention that the discrete-
time synchronous transmission of the message enables us to avoid

concerning about the additional synergistic effect29. Moreover,
Figs. 2(b) and (c) show that an(a, b, t) is dynamically stable, which
shows that this correlation always exists. It allows us to adopt average
values of the four indices an(a, b, t) at the critical regions for the
verification approximation.

Based on the proposed methods in the Methods section and Eq.
(1), we yield both the analytical prediction and the verification
threshold for ns 5 2, plus the numerical results for various ns, as
depicted in Fig. 3. We note that the numerical thresholds stay at a <
0.32, which is mainly determined by the stickiness of message (i.e.,
the parameter a), regardless of the values of b and ns. This means that
most informed individuals are actually infected by their first one or
two infected neighbors (also see Supplementary Figs. S2–S6).
Furthermore, the numerical estimations are fairly reproduced by
the bond-percolation theory. Comparing the analytical boundary,
the verification approximation involving both spatial and time cor-
relations gives a higher accurate estimation than the bond-percola-
tion method considering only spatial correlations (the dashed black

Figure 2 | The evolution of proportions of the transmission events. The parameters are chosen at (a) subcritical point a 5 0.20, b 5 0.20; (b) critical

point a 5 0.35, b 5 0.20; and (c) supercritical point a 5 0.43, b 5 0.20.

Figure 3 | The phase diagram of the message spreading. The real

numerical critical boundaries (crosses) are obtained by Eq. (1) for various

ns on square lattice of size N 5 101 3 101. For comparison, analytical

boundary (black line) and verification boundary (dash black line) for ns 5

2 are also shown (the cases for ns 5 3, 4, 5 do not allow us to analytically

identify the critical lines). Herein, we select a narrow parameter ranges b g
[21, 1] and a g [0.32, 0.36] containing the numerical critical boundary

for the calculation of verification threshold (see more detailed method in

the Methods section).
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line is clearly closer to the numeric markers than the black solid line
is).

Message diffusion on regular lattice networks and regular random
networks. Centola’s work3 concludes that social behaviors can
spread farther and faster across clustered-lattice networks than
across corresponding regular random networks (RRNs), owing to
the strong social reinforcement induced by clustered ties. RRNs are
networks that all nodes have exactly the same degree while links are
randomly distributed among nodes, avoiding self-connections and
multiple connections. To check whether the findings by Centola are
still fulfilled for information diffusion, we further investigate our
model defined on the RLs (Hexagonal network and Moore
network) and the RRNs.

To get a comparison, we present in Fig. 4 the differences of the
final size of recovered population on the two networks with the same
average degree. The blue areas characterize the parameter regions
where the conclusion of Centola’s experiment (that the information
spreads farther across the RLs than across the corresponding RRNs)
does not hold. The violation is attributed to the presence of strong
decay effects (b , 0) in the vicinity of the critical regions. Specifically,
the outbreaks of message can happen more easily in the RRNs than
that in the RLs for negative persistence owing to that strong decay
effects outcompetes the weak reinforcement effect (also see
Supplementary Fig. S7, strong reinforcement effect (decay effects)
is reflected by large stickiness and/or positive persistence (negative
persistence) in our model). As a and b get larger, things turn out
differently, the message is able to seize a larger population in the RLs,
which is accordant with the anticipation of Centola’s experiment.
This means that high level of clustering created by redundant ties that
linked each node’s neighbors to one another in the RLs strengthens
the reinforcement effect, and hence facilitates the diffusion of the
message3. Moreover, larger ns improves the performance of stickiness
in facilitating the message diffusion, making social reinforcement
effects be the most prominent for the RLs. Consequently, the blue
areas shrink with increasing ns. Thus, the above differences investi-
gated indicate that network topology and ns (which can be regarded
as one of the intrinsic characteristics of the message) simultaneously
determine the effects of stickiness and persistence on the spreading
dynamics.

Using Eq. (1), we obtain the numerical thresholds for various
values of ns. According to the methods described in the Methods
section, we can yield the analytical (theoretical) thresholds of mess-

age diffusion on both the RRNs and the RLs, in addition to the
verification thresholds on the RLs for ns 5 2 (Supplementary Fig.
S10 and Fig. 11 show that the time correlations between the trans-
mission events in Hexagonal lattice and Moore lattice are notice-
able). In the case of RRNs (Figs. 5(a) and (b)), we observe that the
positions of the critical boundaries are mainly determined by both
the stickiness and Ækæ instead of the persistence and ns, on account of
weaker social reinforcement3,27 resulting from the low clustering
coefficient. Unlike the case of RRNs, the theoretical analysis by
means of bond-percolation theory gives rather accurate predications
of the position of the threshold with strong persistence, but not for
negative persistence (i.e, with the presence of strong decay effects) on
the RLs. When the underlying networks for message diffusion are
Hexagonal lattice and Moore lattice, more available edges for mess-
age spreading will further strengthen the role of persistence in mess-
age diffusion, especially with stronger social reinforcement (positive
b). That enables all transmission events involve in the diffusion (see
Supplementary Figs. S10–S13), so that bn(a, b, t) gets close to an(a, b,
t) (see Supplementary Figs. S10 and S11). On the other hand, the
trajectories obtained by verification approximation are in good
agreement with the simulations, from which one can conclude that
the effect of time correlations of transmission events is indeed gen-
eral on the RLs. Additionally, the message steps forward to arrive in
half of the neighbors of the same host on the RLs by flowing through

almost
kh i
2

edges connecting it. This makes the message with positive

persistence (b . 0) outbreak more easily in the presence of denser
local connections, and the persistence thus imposes a greater influ-
ence on outbreaks of message on RLs with larger average degree for

small ns (
ns

kh iv
1
2

). The message also has reached a saturation state

when the subsequent events Ei iw
kh i
2

� �
happen (see Supple-

mentary Figs. S14–S21). Also in RLs, higher ns limits the effect of
persistence, and the phase transitions are determined by not only the
topologies of the networks but also the stickiness and persistence of
the message.

In addition, the reinforcement effect begins to work as the message
is bursting and prevailing on both the RLs and RRNs. Therefore,
the results for positive persistence near the thresholds (see
Supplementary Figs. S12–S24) elucidate the actual phenomenon
‘‘Three men make a tiger’’ (or ‘‘A lie, if repeated often enough, will
be accepted as truth’’), where the majority do not believe the message

Figure 4 | The differences of spreading sizes between RLs and RRNs networks (rRL 2 rRRN). (a,b) ns 5 2, (c,d) ns 5 3. The average degrees of the

networks are Ækæ 5 6 (a,c), and Ækæ 5 8 (b,d), respectively. rRL (rRRN) represents the recovered density of population (i.e., spreading size) on RLs (RRNs).
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as a truth until at least three neighbors have tried to transmit this
message to them.

Message diffusion on SF networks and ER networks. To further
check the robustness of our above findings, we finally investigate our
message diffusion model on SF and ER networks with Ækæ 5 6, 8, 10,
12. Since two or more transmission events fail to last over the long
time at the critical points (see Supplementary Fig. S24), we do not
take the time correlations into consideration in theoretical analysis.
Compared with the simulation data, the analytical results for SF
networks and ER networks with different average degrees show
that the theoretical approaches are already sufficient to give fairly
precise expressions of the outbreaks of message completely
determined by the stickiness a (see Supplementary Fig. S25).
Nevertheless, the persistence also partly boosts its impact on the
size of message diffusion as Ækæ gets larger (see Supplementary
Fig. S26).

Fig. 6 displays evident differences of the final spreading sizes on
the RLs and SF (ER) networks with the same degree. The spreading
sizes are larger in SF (ER) than those in the RLs at the parameter
regions where the message has already outbroken on SF (ER) but not
yet on the RLs, owing to the hubs and shorter shortest paths in SF
(ER)30 (see Supplementary Fig. S25 for the critical boundaries of
message on SF and ER). Just for strong persistence, denser local
connectivity of the RLs can make an invasion take place more easily.
As a and b increase beyond the critical boundaries displayed in Fig. 5,
the message can capture a larger population again on the RLs, despite
of the existence of hubs the short characteristic path length in the SF
(ER) networks. The reason is that very smaller clustering coefficient
gives rise to weak social reinforcement effect3,31, which again leads to
weak performance of persistence in promoting the spread of message
on the SF (ER) networks. Our results indicate that the role of rein-
forcement effect is more important than that of hubs or shortest
paths in facilitating message spreading only when the message out-
breaks on the RLs. Otherwise, especially for the presence of decay
effects (negative persistence) the facilitation of hubs and shortest
paths to the diffusion on SF (ER) cannot be neglected. In addition,
the results for positive persistence on SF and ER networks can also be

treated as evidence of the mechanism ‘‘Three men make a tiger’’ (see
Supplementary Fig. S27 and Fig. S28).

Discussion
In conclusion, taking into account social reinforcement and decay
effects based on memory effect in reality, we have proposed a new
agent-based message spreading model with stickiness and persist-
ence, and carried out extensive computer simulations of our model
on various types of networks. By means of the relative standard
deviation method and the bond percolation theory involving the
spatial correlations, we are able to determine numerically and ana-
lytically the positions of critical boundaries. Moreover, the remark-
able accuracy of verification approximation involving the time
correlations between different transmission events validates the wide
existence of such correlations for the message diffusion on regular
lattices.

Our preliminary results show that in RLs, the persistence depends
greatly on the position of inflection point ns and average degree Ækæ of
the underlying networks, and begins to play a pivotal role in the
spreading process with increasing Ækæ owning to the emergent large
clustering coefficient3. Stronger social reinforcement arising from
larger clustering coefficient leads readily to stronger infectivity of
the message, which can invade a great number of susceptible indivi-
duals in the RLs, confirming the conclusion of Centola’s work. By
comparison, in tree-like networks such as RRNs, SF and ER, the
critical thresholds of message diffusion are only dominated by the
stickiness, and both the hubs and the short characteristic path length
facilitate the outbreaks of message in the presence of decay effects. It
worth emphasizing that the results presented in this paper has suc-
cessfully substantiated the phenomenon ‘‘Three men make a tiger’’
(or ‘‘A lie, if repeated often enough, will be accepted as truth’’).

Placing our study in the context of social media, the hub nodes
actually play a role of broadcasters, advertisements and so on, which
are very important for the large scale spreading of information.
However, the intrinsic contents of messages and their adaptation
to hosts are extremely relevant in determining the message diffusion.
In particular, the results for the message diffusion on the SF and ER
networks constitute a proof that exposure to mass media can favour

Figure 5 | The phase diagrams of the message spreading on RLs and RRNs. The underlying networks are (a) RRN with Ækæ 5 6, (b) RRN with Ækæ 5 8, (c)

Hexagonal lattice, and (d) Moore lattice. The predictions from the bond-percolation theory (solid lines) and verification approximations (dashed lines)

for ns 5 2 are illustrated to compare with the simulation data (markers) for various ns. To get the verification trajectory on Hexagonal lattice (and

Moore lattice), we select two parameter regions containing the numerical thresholds (see more detailed method in the Methods section). One region is b

g [20.3, 1.0] and a g [0.06, 0.24]; the other one is b g [20.3, 1.0] and a g [0.01, 0.19] in Hexagonal lattice. One region is b g [21.0, 20.3] and a g
[0.23, 0.24]; the other one is b g [21.0, 0.3] and a g [0.15, 0.18] in Moore lattice.
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the outbreaks of behaviors, news or messages, despite the decay
effects, only if the stickiness of the message is large enough. On the
other hand, the RLs are efficient in taking advantage of social rein-
forcement effects to promote the global spreading of the message,
owning to more cluster ties (or local pressures) that function as form
of ‘initial groups’ or ‘small groups’ through interpersonal commun-
ication or ‘machine-interpersonal communication’32. It is also veri-
fied by our research that the local, personal communication is
irreplaceable to lead to propagation of message despite of the
developed media industry today, from the perspective of
communication.

Recent studies have started considering the memory effect3,8, social
reinforcement and decay effects4 in information spreading. The
mechanisms were yet investigated in isolation. Our work is the first
attempt to account explicitly for the three key mechanisms together,
and to evaluate the joint action of them by quantifying their effects as
stickiness and persistence. It provides a quantitative guideline for
future social experiments for message spreading.

In reality, the ways in which information spread may be very
complicated. In the present study, we do not capture the difference
of individual-level preference33 that might have also influenced their
decisions to adopt one message. For example, in an online social
network such as Twitter, individuals may prefer different hashtags,
and significant variations in the ways that the hashtags on different
topics spread were observed7. In addition, one need to concern about
the diverse cultural and societal backgrounds34 which would lead to
the different styles by which individuals contact with the medium, or
even hamper communications among different groups of mem-
bers32. Moreover, the volatilities of complex contagion of controver-
sial topics, psychological status of individuals35 reveal that the status
of the individuals in the communication systems are time dependent,
which should be addressed in future research.

Methods
Message spreading model with stickiness and persistence. The message spreading
model is implemented on a network consisting of N nodes and E edges, where the
nodes represent the individuals in a population and the edges the social interactions
among them, through which information propagates. Each individual is allowed to be
in one of three states at each time step: (i) Susceptible (or uninformed) state—the
individual has not yet heard the message or is aware of the news but not willing to
transmit it. (ii) Infected state—the individual catches the message and forwards it to
all his nearest neighbors. (iii) Recovered state—the individual will never transmit the
message any more after having transmitted it once before.

Specifically, the information propagation is modeled in a probabilistic framework
at individual level8,9. A susceptible individual i will adopt the message with a prob-
ability lnu (a, b), given that he has heard it from his informed neighbors nu times (i.e.,
nu informed neighbors he has had), plus the first time. In detail, nu 5 n 1 1 when
individual i has owned at least one informed neighbors, otherwise nu 5 0. Here
lnu (a, b) is a linear piecewise function of the times he has received message from his
informed neighbors:

lno a,bð Þ~
min ano,1f g, 0ƒno

ƒns;

min bnozns a{bð Þ,1f g, nsvno
ƒki;

(

and lno a,bð Þ~0, if lno a,bð Þv0;

ð2Þ

where ki is the degree of node i. ns is the inflection point beyond which persistence is
the dominant factor for the infection probability of message, and the parameters a
(stickiness) and b (persistence) characterize how lnu (a, b) change with nu, as illu-
strated in Fig. 7. Since empirical data3,6,7 have shown that social reinforcement sets in
such that initial exposures generally increase infection probability, the parameter a
should be non-negative when nu # ns. For nu . ns, the competition between social
reinforcement and decay effects, characterized by the parameter b, will be taken into
account for the message adoption. If the reinforcement is strong enough the indi-
vidual will be more likely to adopt the message with increasing nu (b . 0). Otherwise,
even if many infected neighbors try to transmit the information to the focal individual
i, the multiple exposures will lead to a decreased probability for the information
adoption (b , 0). In the present study, we set b g [21, 1] and a g (0, 0.5] so that the
spreading dynamics of the message can be comprehensively investigated. For sim-

Figure 6 | The differences of spreading sizes between the RLs and SF (ER) networks (rSF/ER 2 rRL). (a,b) the difference rSF 2 rRL, (c,d) the difference

rER 2 rRL. (a,c) The average degrees of the networks are Ækæ 5 6 (a,c), and Ækæ 5 8 (b,d), respectively. Here, rSF (rER, rRL) represents the recovered density

in SF networks (ER networks, RLs). Other parameter: ns 5 2.

Figure 7 | The adopting probability of message as a function of n6. The

degree of stickiness and persistence are quantified as ans and b, respectively.

ns denotes the position of inflection point.
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plicity, we do not consider the diversity of individuals’ response to the message, and
all individuals behave identically with the same values of parameters a and b.

We perform Monte Carlo (MC) simulations with synchronous updating of the
states of all the individuals. Each MC step consists of the following three procedures:
(i) All susceptible individuals decide whether or not to adopt the message with
probability lnu (a, b); (ii) If an individual adopts the message, he will try to transmit
what he has approved to all his nearest susceptible neighbors in the next step, and then
becomes recovered immediately; (iii) Otherwise, the susceptible individuals will wait
to repeat the procedure (i) in the following MC steps. The above elementary spreading
processes are repeated T ’S ~500 steps until there are no infected individuals anymore
in the population.

Theoretical analysis of the model. For the occurrence probability of transmission
event En, Tn a,bð Þ~1{e{lnz1 a,bð Þt~1{e{lnz1 a,bð Þ with t 5 136. We consider the
spatial correlations that affect the process of diffusion, but do not yet influence the
critical behaviour of the message spreading27. The transition point from susceptible to
infected phase is determined by27,36

TC~ Th i, ð3Þ

where ÆTæ and TC are, respectively, the mean transmissibility and the critical
topology-dependent bond-percolation threshold. On the other hand, the mean
transmissibility can be gotten as

Th i~
Xkh i{1

n~0

qnTn a,bð Þ, ð4Þ

where qn~
kh i{1

n

� �
pn 1{pð Þ kh i{n{1 is the probability that the recipient has other

n (n 5 0, 1, 2, 3) infected neighbors except for the one chosen beforehand when
considering the spatial correlations (p is the probability that one nearest neighbor of
the focal individual is in infected state).

Combine Eqs. (2), (3), (4), and Tn a,bð Þ~1{e{lnz1 a,bð Þ, the mean transmissibility
for the discrete case reads as

Th i~
Xkh i{1

n~0

qn 1{e{lnz1 a,bð Þ
� �

~
Xkh i{1

n~0

qn{
Xns{2

n~0

qne{lnz1 a,bð Þ{
Xkh i{1

n~ns{1

qne{lnz1 a,bð Þ

~1{
Xns{2

n~0

qne{ nz1ð Þa{e{ns a
Xkh i{1

n~ns{1

kh i{1

n

 !
e{ n{1ð Þb:

ð5Þ

Then we have

h2e{2azh1e{azh0~0, ð6Þ

where h2~
X kh i{1

n~1

kh i{1ð Þ!
n! kh i{n{1ð Þ! pn 1{pð Þ kh i{n{1e 1{nð Þb , h1 5 (1 2 p)Ækæ21 and

h0~TC{1~{
1
2

. The positive root is selected as the theoretical prediction

a bð Þ~ln
2h2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2
1{4h2h0

q
{h1

0
B@

1
CA: ð7Þ

In SF networks, the critical point TC beyond which the message can reach a finite

faction of the population can be obtained36 as Tc~
kh i

k2h i{ kh i . Since RRNs and ER

networks are generated by connecting randomly selected pair of nodes, Tc~
1

kh i{1
.

Due to the randomness of connections in these networks, each edge of a neighbor of
one host can probably connected to any other N 2 2 individuals. Therefore, the
transmission of message from an informed neighbor to the susceptible host (i.e.,
message flows through the edge in the system) will happen only if there is at least one
infected individual in the left N 2 2 ones to transmit the message to the recipient. In
other words, the probability that the message flow can reach the susceptible host

through the edges connecting to the recipient is p~
1

N{2
for the three networks (i. e.,

the RRNs, SF networks, and ER networks). Also, two or more transmission events fail
to last over the long time at the critical points (see Supplementary Fig. S8, Fig. S9, and
Figs. S25), so the time correlations are ruled out in the theoretical analysis for the cases

of RRNs, SF networks, and ER networks. In the regular lattices, p~
1

kh i{1
since each

one has exact Ækæ specific neighbors. Specifically, p~
1
3

<0:333 for square lattice with

von Neumann neighborhood, p~
1
5

for Hexagonal lattice, and p~
1
7

<0:143 for the

lattice with Moore neighborhood. The bond percolation threshold TC~
1
2

for a

square lattice, TC 5 0.347 for Hexagonal lattice, and TC 5 0.232 for square lattice with
Moore neighborhood27,37.

Verification approximation of information threshold. In analogous to qn(a, b), we
first set Q’n a,bð Þ n~0, 1, 2, 3ð Þ. According to Eq. (4), Q’n a,bð Þ n~0, 1, 2, 3ð Þ can be
calculated numerically by counting the relative number of successful attacks (i.e,
transmission events) an(a, b) from infected neighbors to hosts for given values of a

and b and equating this to an a,bð Þ~
PT ’S

t~0 vn a,b,tð ÞP kh i{1
m~0

PT ’S
t~0 vm a,b,tð Þ

~
Q’n a,bð ÞTi a,bð Þ

T a,bð Þh i . In

other words, an(a, b) represents numerically the proportion of En occurring at
parameter point (a, b). Furthermore, Q’n a,bð Þ can be normalized as

Qn a,bð Þ~ Q’n a,bð ÞP kh i{1
m~0 Q’m a,bð Þ

~

an a,bð Þ T a,bð Þh i
Tn a,bð ÞP kh i{1

m~0
am a,bð Þ T a,bð Þh i

Tm a,bð Þ

~

an a,bð Þ
Tn a,bð ÞP kh i{1

m~0
am a,bð Þ
Tm a,bð Þ

:

ð8Þ

Qn(a, b) actually represents the probability that the recipient owns n (n 5 0, 1, 2, 3)
infected neighbors expect for the preselected informed one, involving both the spatial
and time correlations of the message diffusion.

Herein, we select different parameter regions containing the numerical critical
boundaries for corresponding lattices with ns 5 2 for the calculation of Qn(a, b). We
average all non-zero Qn(a, b) in the selected parameter ranges for the expected indices
Qn, and substitute them into the equation

TC~ Th i~
Xkh i{1

n~0

QnTn a,bð Þ ð9Þ

to get the verification thresholds.
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