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Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of
models were proposed to characterize these traits for understanding the networks. Because different models
used very different mechanisms, it is widely believed that these traits origin from different causes. However,
we find that a simple model based on optimisation can produce many traits, including scale-free,
small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks.
Moreover, by revising the proposed model, the community-structure networks are generated. By this model
and the revised versions, the complicated relationships of complex networks are illustrated. The model
brings a new universal perspective to the understanding of complex networks and provide a universal
method to model complex networks from the viewpoint of optimisation.

omplex networks have been found to be efficient and effective in illuminating various biological, social,
and technological systems'™, for examples, the Internet>®, WWW and protein-interaction networks’.
Through the efforts of many scientists, numerous traits of complex networks, such as the scale-free
property?®, the small-world effect”"", the community structure® and the fractal structure”'?, have been discovered.
Such traits are the foundation to model the real-world networks for understanding their origins and mechanisms.

To explain such traits, hundreds of models have been proposed. For example, the Watts-Strogatz (WS) model’
illustrates the origin of the small-world effect and demonstrates the relationships of small-world networks,
random networks and regular networks: i.e., small-world networks are an intermediate form between random
networks and regular networks. The Barabasi-Albert (BA) model>" demonstrates the scale-free property of
networks, and Amaral et al."* clarified the relationship between scale-free networks and small-world networks.
Li et al."” demonstrated the relationship between scale-free networks and random networks through the locality
hypothesis. Song et al.”'> proposed a method to define fractal networks, which involves the relationship between
small-world networks and fractal networks.

Generally speaking, based on current knowledge, complex networks can be categorized into many types
according to the traits, such as random™', regular, scale-free’, small-world>", ultra small-world", community-
structure, compact', fractal, and Delta-distribution networks. However, the relationships among these types of
complex networks only have been partially explored.

Considering the number of the proposed models'®!>'>!%!8-2 that explains the types of complex networks, it
is reasonable to believe that these types of complex networks would have different causes: different types of
complex networks originate from different origins and different mechanisms. However, when a network has
multiple traits, multiple different mechanisms should be used to explain their corresponding traits; and there
should be an assembling mechanism to combine these mechanisms of traits together. The combinatorics
would make such a schema quite complicated, no matter that there are hundreds of different mechanisms for
only one trait. People has to solve the competition of these mechanisms as well, if we take the Occam’s Razor
for granted.

Here, by using only three common measures, the degree of nodes, the degree of edges, and the average shortest
path length, we implemented a simple model based on optimisation that can produce random, regular, scale-free,
small-world, ultra small-world, compact, fractal and Delta-distribution networks. Moreover, with a slight revi-
sion, the model also can produce community-structure networks. Furthermore, all traits and their combinations
can be explained by revising the proposed model. These results suggest that we can illustrate the relationships of
various types of complex networks under the framework of optimisation, and bring a new perspective on
understanding the real-world networks such as the Internet and WWW.
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Figure 1 | Definitions on the edge degree. (a) In the simplest case, the
edge degree of every edge is 1, irrelative to the degrees of both nodes at the
ends of the edge. (b) The edge degrees of node A are the degrees of the
neighbors, irrelative to the degree of node A itself. Here, regarding the
nodes on two ends of an edge, the degrees of an identical edge relative to the
different nodes are different. (c) The edge degrees are the product of the
degrees of nodes on the ends. (d) In the general form, the edge degree is the
product of the power functions of the degrees of both nodes at the ends.
The previous cases are special cases with different values for a and b.

Results

A network or graph is a set of nodes with edges. Regarding the nodes,
the degree is the primary measurement. As to the edges, the concept
of edge degree has been defined in various ways. To characterize the
holistic features of the entire network, the average shortest path
length is widely used*'. These three measures are the most commonly
used measures in the study of complex networks.

It may appear that these measures have no bearing on the resultant
types of complex networks. However, our model shows that there is
an intrinsic relationship among them. The types are determined by
three common measures.

The model. As mentioned above, the model requires a definition on
the edge degree. Because the degree is the most commonly used
measure of nodes, the degree of an edge could be defined as a
function of the degrees of the two nodes at its ends. Here, the edge
degree is defined as the product of the power function of the degrees
of two nodes at both ends (see Fig. 1).

Based on the definitions above, the proposed model can be stated
as follows.

A connected undirected network evolves to minimise the sum-
mation of the degrees of the nodes and to maximise the summation
of the degrees of the edges with a constant average shortest path length.

That is, every network is evolving and should be optimised to
achieve two objectives with a constraint on its average shortest path
length.

Mathematically, this model is expressed by equation (1).

N
minF; (A)= > x;

max F,(A) = i (% xf’ij5ﬁ>

s.t.

y=c

N > x; >xmin

Here, x; is the degree of node i, y for the average shortest path length,
A for the evolving network, and c¢/xmin/a/b/N are non-negative con-
stants. Furthermore, xmin is the minimum degree of the nodes
throughout the entire network. The function J; is equal to 1 when
a link between node i and node j exists; or it equals 0.

In equation (1), the proposed model is a bi-objective optimisation
problem. The proposed model has feasible solutions, each solution
indicating a network, and every best solution is a desired resultant
network.

As to single-objective optimisation problems, the concept of “the
best solution” is easy to understand. If one solution has the largest
function value for a maximisation problem or the smallest function
value for a minimisation problem, then it is the best solution.
However, bi-objective optimisation problems are quite different™.
Commonly, the solution with the best function value for the first
objective is far from the best for the second objective. Therefore, the
concept of “the best solution” must be extended in bi-objective opti-
misation problems.

The simplest way to extend this concept is to define “the best
solution” as “no solution is better at satisfying both objectives”.
This extended concept often results in multiple best solutions.
Because none of the best solutions are dominated by a feasible solu-
tion, they form a non-dominant set, which is known as the “Pareto
front”, a term coined by David E. Goldberg® in honor of V. Pareto™.
By the way, another great achievement of V. Pareto is the finding of
the power law phenomenon in the wealth distribution. For more
detailed information on the Pareto front, please refer to the SI.

For any given parameter setting, there is a Pareto front for the
proposed model. When optimisation algorithms are used to solve the
proposed model, they actually obtain sampling points of Pareto
front. According to these sampling points, the resultant networks
can be constructed.

With the implementation of different parameters, the obtained
network would exhibit different traits and would correspond to dif-
ferent types. Because theses types are obtained for the same model,
the origin of these types and the relationships of the types can be
determined.

Types of networks. Researchers have observed many types of
complex networks. Here, we discuss the most common types: i.e.,
the scale-free, small-world, ultra small-world, fractal, community-
structure, compact, Delta-distribution, random, and regular
networks. Here, we theoretically demonstrate that these common
complex networks can be produced by the model described above.

Scale-free network. The most popular theoretical description of scale-
free networks is the BA model’. However, if we treat the node degrees
asarandom variable, the proposed model can also produce scale-free
networks. Obviously, some scale-free networks that satisfy the equa-
tion (1) are in the Pareto front, while others are not. Here, we dem-
onstrate that the proposed model can produce scale-free networks in
the Pareto front, which we refer to as optimal scale-free networks.
When discussing the scale-free property or and random networks,
we actually are discussing the degree distribution, i.e., treat the degree
values as samples of a random variable. Therefore, here we treat x;
and x; as samples of the random variable X. Because the samples are
independent and identically distributed, based on the Lagrangian
relaxation method®, equation (1) can be rewritten as equation (2).

min f; (x;) =%+ 0(y—c)*

min f(x;) = (lN xfx}’é,-j) +0(y—c)? (2)
j=1

s.t. N>x; >xmin

Here, 0 is an arbitrary positive real number.

| 4:6197 | DOI: 10.1038/srep06197



Because x; and x; come from the same random variable, we use x; to
approximate x;, so f, can be further rewritten as equation (3).

0D 0y 8

Equation (3) has an analytic solution of a Pareto front*’, which can be
rewritten as equation (4), when y = ¢, where c does not constraint the
random variable X through the validation of the network topology
structure.

fola) = (x) et (4)

Because f, is a function that can be defined on the sample space, we
can obtain equation (5).

p)=cx)~ ey (5)
Here, Cis a constant to normalise p(X) and satisfies the equation (6).
1
RS ——y “
(X)
X=1

Equation (5) indicates that under the condition thata # 0 or b # 0
and when ¢ does not constraint the distribution of X, i.e., is proper,
the network is scale-free, and the exponent of the degree distribution
obeys equation (7).

y=1+a+b (7)

According to the definition of the optimal scale-free network, all
optimal scale-free networks are the best solutions of this model.

Regarding the non-optimal scale-free networks, when F; is fixed,
F, is not optimal: i.e., the hub nodes are not linked together. When
the hub nodes are divided into two or more groups, the network is
called a community-structure network. Thus, the non-optimal scale-
free networks are actually community-structure networks or trans-
itional forms between optimal scale-free networks and community-
structure networks.

Community-structure network. Community-structure scale-free net-
works can also be depicted by this model with a slight modification.
With this modification, community-structure scale-free networks
become the best solutions of the new model.

Community-structure scale-free networks are non-optimal scale-
free networks. Assume that there are two identical communities
linked by only one edge; when certain edges in no. 1 community
are moved to no. 2, F, of the entire network can increase as the
average shortest path length decreases, and simultaneously, no. 1
community loses some edges, resulting in an increased average short-
est path length; that is, we can reach a solution that exhibits a larger F,
but with the same c. Therefore, the community-structure scale-free
networks are non-optimal.

To produce optimal community-structure scale-free networks, the
proposed model should be modified.

In the real world, community structure often relates to similarity
distances, such as geographic distances, cultural distances or cognit-
ive distances. By taking these distances into consideration, optimal
community-structure scale-free networks can be produced by an
enhanced model (see the SI). This result indicates the origin of the
community-structure scale-free networks.

The modified model here can produce typical networks with com-
munity structures. To address the other non-optimal scale-free net-
works, more constraints must be added. We leave these issues to
future work.

Compact network and Delta-distribution network. According to
equation (1), the average shortest path length of the network is a
hard constraint, so the constant ¢ can alter the forms of the resultant

networks. When ¢ does not constrain the forms of the networks, we
say that c is proper.

A proper ¢ depends on the constant xmin. From equation (8),
which is the continuous version of the power law distribution, when
y is determined, the probability of X depends on the constant xmin,
so the proper ¢ would decrease as xmin increases.

=1/ X\
PX)= xmin <xmin> ®)

According to the definition of F,, when some hub nodes link to
other hub nodes, F, is maximised. When F, is maximised, if ¢ is
proper, and the hub nodes tend to link together, the obtained
networks would have a single center. Because hub nodes are the
similar nodes to link together, the obtained network is hierarch-
ical: ie., the obtained network is onion-structure’?* alike or
compact. In such networks, the hub nodes tend to form an inter-
connected core, and the non-hub nodes with similar degree
link together and encircle the core hierarchically. Moreover, the
lower the degree of the node, the farther the node stay from the
center.

When ¢ decreases to force the degree distribution away from that
of a scale-free network, the hub nodes collect more edges until the
network finally becomes a star-like or Delta-distribution network.

Fractal network. Scale-free networks have a degree distribution of the
form p(k) ~ k7. According to the definition of self-similarity (i.e.,
when an entire object is exactly or approximately similar to a part of
itself), scale-free networks can be regarded as self-similar with
respect to the probability of the degree or can exhibit a probabilistic
similarity when we treat p(k) as a function.

Alternatively, Song et al. proposed a definition on fractality of
complex networks over the length. In the box covering method, if
the box number Nj has a power law relationship with the maximum
box diameter I, as shown in Equation (9), then the networks present
fractality or similarity over different length scales. Here, the fractality
actually is a type of structural similarity.

Ny~ 9)

Obviously, structural similarity over the length, which is expected in
a fractal network, is different to the definition of probabilistic sim-
ilarity over node degrees.

Additionally, the diameter of the whole network is often positively
relative to average shortest path length, hence a fractal network is
often expected to exhibit a power relationship between the node
number and average shortest path length, and this relationship is
expressed in Equation (10).

c~ NV (w>1) (10)
Equation (10) implies that the average shortest path length should be
quite large. In fact, because ¢ depends on xmin, the average shortest
path length of the network should change with xmin. When xmin
increases, c of the fractal network can be smaller than [n(N). Here, the
qualitative relationships of N, xmin, ¢ and w require further
investigation.

In the proposed model, because ¢ ranges from 1 to N — 1, the
average shortest path length of the fractal network must be included.
When c is in the ranges of the fractal networks, the scale-free net-
works should be stretched. That is, a larger value of ¢ forces some
marginal nodes away from the center of network. When applying the
box covering method, the larger ¢, i.e., often the larger diameter, may
result in a power law relation between the box number and the
maximum box diameter possible, thereby result in structural
similarity.

More detailed information and the simulation results on fractal
networks are discussed in the SI.
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Figure 2 | Typical networks and their degree distributions. The upper box in each subfigure shows the degree distribution of the network in the
lower box. The degree distributions are plotted in a log-log coordinate system. (a) This resultant network is a compact network, whose cis smaller than
In(N). (b) This resultant network demonstrates a network with two equivalent communities. (c) This beautiful network is a fractal network. (d) This
resultant network is also a compact network but with denser edges. (e) This resultant network is a community-structure network. Each community has
denser edges. (f) This resultant network is a fractal network. The community-structure networks (b) and (e) are generated by the revised model in the SI,
and the networks with multiple communities are shown in the SI; the fractality of (c) and (f) are also shown in the SI.

Small-world network and ultra small-world network. The small-
world network exhibits a clear feature in which the average shortest
path length is approximately In(N), in addition to a larger clustering
coefficient’. The latter feature is easily satisfied. Hence, we discuss the
previous feature only.

According to the definition of the small-world property, when the
average shortest path length of the obtained network is given by
c~In(N), the network is considered a small-world network.

Moreover, when c~ In(In(N)), the network is an ultra small-world
network. For any given network, the number of nodes determined
the maximum of degree values, i.e., the maximum of random variable
X. According to equation (8), when xmin increases, if we also
increase the maximum of degree values, then we can keep the y fixed.
The increase of xmin and maximum of degree values means more
edges in a network, and more edges means smaller average shortest
path length, that is, the ultra small-world property could emerge
under some circumstances.

Random network. When a = b = 0, F, reduces to F;. Because F,
should be minimised and F, should be maximised, the minimisation
of F; will completely violate the maximisation of F,, such that every
solution would belong to the Pareto front. Therefore, the resulting
networks are random if ¢ does not constraint the distribution of X.
When c is small and closes to 1, the network approximates a Delta-
distribution network. When ¢ is large, some nodes are forced to
depart away from the denser center such that the degree distribution
resembles the power law distribution, with the amplitude ranging
across several magnitude. These results may imply a desirable study
on the randomness and Zipf’s-law-like distribution®’.

The Simulation. Having theoretically analysed the produced types of
networks, we now discuss the simulation results.

To solve this bi-objective optimisation problem by computer
simulations, we use multi-objective optimisation algorithms.
Because F, is discrete, the histogram method (see the SI) is a suitable
approach for transferring this problem to a single-objective optimi-
sation problem, that is, first fix F;, and only optimise F,.
Furthermore, to solve F,, we employ a greedy strategy. That is, we
randomly generate a network and then continue to randomly change
an edge and update the network to a better solution. That is, if the
change leads to a better F, and more closely approximates the average
shortest path, then we accept the change; otherwise, we refuse the
change. Besides, the proposed algorithm can be used to generate
complex networks with arbitrary traits or the combinations of traits.
For more information, see the SI.

Based on the method described above, we obtained various net-
works using different parameters. Because this optimisation algo-
rithm is a random algorithm, we performed this algorithm ten
times to verify its robustness. All of the runs that used the same
parameters generated similar results; thus, only the results obtained
from the first run are shown (Fig. 2). Because we only used the greedy
strategy, the resultant networks are local optimal solutions, not glo-
bal optimal solutions. Although heuristic algorithms such as the
simulated annealing algorithm® can obtain the global optimal solu-
tions, the computation time would be longer. Therefore we used the
greedy strategy to obtain satisfactory results.

According to the theoretical analysis, the exponents of the degree
distributions of the obtained networks depend on a and b; therefore,
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‘ Table 1 | The parameters and results of selected networks.E is the
fixed value of Fy, 7" is the exponent of the obtained network, y is
the actual average shortest path of the obtained network

’

No. E c xmin y y
(a) 762 3.9 2 2.10 3.9
(b) 762 5.5 2 2.1 5.5
(c) 762 7 2 2.13 7

(d) 1157 3.1 3 2.16 3.1
(e) 1157 4.5 3 2.19 4.5
(f) 1157 5.0 3 2.28 5.0

we designed 3 classes of experiments, with witha =0and b = 0,a =
Oand b =1,a = 1and b = 1, respectively. Because xmin is related to
¢, we designed 3 sub-classes of experiments, with xmin = 1, 2, 3 for
each of the classes. For each subclass, we investigated various values
of c. To show the generated networks clearly, the number of nodes N
in the simulations is set as 300. Also the simulations with larger size,
the number of nodes with 1500, 3483 and 18000, are reported in SI.

From the experimental results, we chose some typical results to
report in the SI. Here, we selected 6 typical networks with y = 2(a =
0, b = 1); the parameters and results are reported in Table 1, and the
resultant topology is shown in Fig. 2.

Fig. 2 shows the compact, community-structure and fractal net-
works. The rows of the sub-figures show the effect of c. When ¢
increases, the network type changes from compact to fractal. The
columns of the sub-figures show the effect of xmin. When xmin
increases, the network average shortest path length for the same type
decreases. Besides, we can see that the fractal networks here demon-
strated the hub aggregation behaviors.

The results in Table 1 and Fig. 2 indicate that the obtained net-
works fit the power law distributions™. Besides, statistical evaluations
on the fitness of the distribution of resultant networks are also
reported in SI. As shown in Table 1, the exponents of the networks
are approximately equal to the expected values, and the expected
average shortest path length were also obtained.

Moreover, we observed that the community-structure networks
exhibit a wide range of values of ¢ because they can change the link(s)
between the communities to adapt to the topological distance. When
c is smaller, the link can connect the central nodes of the communit-
ies; when c is larger, the link can connect two marginal nodes in
different communities. For fractal networks, when c reaches a certain
value, the network is stretched. As ¢ increases, the network first
exhibits many circles and then becomes linear with a head that exhi-
bits dense nodes and edges.

In general, this model can generate various types of networks,
including small-world, ultra small-world, scale-free, community-
structure, and compact networks. Some types of the obtained net-
works are strongly dependent on the average shortest path length c.
However, because there are no accurate definitions for the various
types of networks, we cannot determine an accurate c for each type
from the experiments; we can only determine the relative relation-
ships between the types and the parameters. For more details on the
results, please refer to the SI.

Discussion

According to the simulation and theoretical results, the relationships
of complex networks can be illustrated under the framework of the
proposed model.

Here, we assume that N = 300, y = 2 and show a schematic map of
the relationships in Fig. 3. When N or y changes, the schematic map
also changes.

From Fig. 3, we can see that the average shortest path length can be
regarded as a spectral line to discern the types of networks. With the
increase of ¢, the order of the types is complete network, delta-

complete network  small world network

A

I . Community-structured network
W77 Delta distribution network
[[ﬂm]]]] Compact network

Fractal network

Maximum of average shortest path

=(N+1)3

c=1 c=In(N)
average shortest path ¢

Figure 3 | The schematic map on the relationships among various
complex networks. This figure assumes y = 2. When v varies, this figure
would also vary slightly. When ¢ = 1, the network is the complete network.
When ¢ = 1, the generated network will be a complete network. With xmin
= 1, when cincreases starting from 1, firstly the resultant network is a
delta-distribution network; when ¢ increases continuously, the resultant
network is a compact network; when c increases continuously, the
resultant network can be community-structure scale-free network if
considering the similarity distance; when ¢ increases continuously, the
resultant network is fractal network; when c achieves the maximum, the
resultant network is a linear regular network; when ¢ = In(N), the resultant
network is a small-world scale-free network. When xmin = 2 and the other
parameters keep the same, the order of the types of networks remains the
same, but the spectral line(the positions of ¢) shift left and the ranges on ¢
decrease. For example, the generated network is small-world network
when xmin = 1 and ¢ = In(N), but when xmin = 3 and ¢ = In(N), the
network changes to be fractal network, and the result is shown as Fig. 2(f).
So when xmin changes, the types also change.

distribution network, compact network, community-structure, frac-
tal network. The other parameters, xmin and y also affect the types of
networks. When xmin increase yet the other parameters keep the
same, the sequence for the types of networks remains the same, but
the spectral line shift left and the ranges of network types on ¢
decrease. The schematic map on y = 3 is shown in SIL

Based on the proposed model, the scale-free network plays a key
and central role, and scale-free networks can be categorized into
several classes. First, the scale-free networks can be divided into
two types, optimal and non-optimal. Optimal scale-free networks
include the ultra small-world, small-world, compact, and fractal net-
works, which are controlled by the average shortest path length
constraint. Outside of the optimal scale-free networks but in the
Pareto front, there are the Delta-distribution and regular net-
works. Regarding the non-optimal scale-free networks, there are
community-structure networks and transitional forms between
optimal scale-free networks and community-structure networks.
Moreover, scale-free networks can be classified by an exponent. When
the exponent is larger than 1, the resulting networks are scale-free.
However, when the exponent equals 1, the networks can be random.

In general, we demonstrated that a simple model can produce
many common types of complex networks, including scale-free,
small-world, ultra small-world, community-structure, compact,
fractal, Delta-distribution, regular and random networks in this
paper. Our results indicate that three key measures can determine
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many types of complex networks. Moreover, because these types
originate from the same model, their relationships can be illustrated
under the framework of the proposed model.

The proposed model brings a new perspective for understanding
the complex networks and a new paradigm for distinguishing the
explanations of origins and mechanisms. When the proposed model
is used to describe a certain complex network, it provides only one
explanation on the origin and leaves the explanations of the mechan-
isms to the optimisation algorithms. For instance, if we use a genetic
algorithm to solve the proposed model, then the genetic mechanism
(or evolutionary mechanism) can be regarded as the mechanism of
the modeled complex network. That is, the mechanisms of complex
networks can be diverse while still representing similar phenomena.

Besides, physicists have used the optimisation to explain the world
for centuries, for examples, the Fermat principle and the principle of
minimum free energy etc.. Here our model is another example. By
the optimisation method, we can characterize all the traits and their
combinations, so the optimisation provides a universal method to
model the real-world networks such as the Internet, WWW and
protein-interaction networks. The ideal modeling networks gener-
ated by this universal method are useful of exploring the dynamics on
complex networks, such as the synchronization, epidemic spreading
and gaming.

Methods

This paper first proposed an optimisation model based on three commonly used
measures, i.e., the node degree, the edge degree and the average shortest path length.
To solve this optimisation model, an algorithm with the greedy strategy was pro-
posed. To obtain complex networks with larger sizes, a fast but specific algorithm was
proposed. When solved this optimisation model, complex networks with different
traits were obtained. According to the parameter settings of the proposed model, the
relationships of traits of complex networks were illustrated. The details please refer to
the SL.
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