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A general framework for probing the dynamic evolution of spatial networks comprised of nodes applying
force amongst each other is presented. Aside from the already reported magnitude of forces and elongation
thresholds, we show that preservation of links in a network is also crucially dependent on how nodes are
connected and how edges are directed. We demonstrate that the time it takes for the networks to reach its
equilibrium network structure follows a robust power law relationship consistent with Basquin’s law with an
exponent that can be tuned by changing only the force directions. Further, we illustrate that networks with
different connection structures, node positions and edge directions have different Basquin’s exponent which
can be used to distinguish spatial directed networks from each other. Using an extensive waiting time
simulation that spans up to over 16 orders of magnitude, we establish that the presence of memory
combined with the scale-free bursty dynamics of edge breaking at the micro level leads to the evident
macroscopic power law distribution of network lifetime.

T
he emergence of complexity in various social, biological and physical systems is hinged upon the structure of
the system and the interaction of its agents. To capture how systems change, it is necessary to understand
how agents are connected and how links are formed and broken. In this study, we concentrate on the factors

that drive the breakage of links in a network. We present a general framework for probing the dynamic evolution
of spatial networks by considering the forces that nodes apply on each other along their links.

Upon reaching a critical amount of accumulated force, there are systems which experience sudden collapse.
Road network links fail when vehicular congestion disrupts the flow of traffic1,2. Protein chains are driven far apart
when large stresses are present between connected molecules3. But there are also some networks which exhibit a
high degree of resilience to forcings. Communication networks can continue to transmit information even during
partial router malfunctions4. Organisms reproduce and propagate even after efforts are made to halt their growth.
Their unexpected tolerance to breaking forces has been attributed to their underlying network structure5.

Several models have been developed to analyze the resilience of such networks to one time deletion of edges
including random failures and targeted removals5–7. However, these models fail to capture the continuous
dynamic breaking that is always at play in many networks. A network can initially demonstrate resilience but
when continuously subjected to force, the accumulated damage can lead to network fragmentation or collapse.
The distribution of forces in the network constantly changes every time an edge breaks and depending on how the
edges are directed and how the nodes are connected, the final topology of the network may vary.

Here, we analyze the resilience of lattice networks with only short-range links, and those with both short and
long-range links such as Erdos-Renyi (ER) and Barabasi-Albert (BA) networks by following their evolution as
they continuously experience a constant amount of force among their nodes. We consider network types that are
distributed in a spatial grid as widely seen in distributed parallel computing4, router and sensor networks4,7,8,
distributed control manufacturing systems4, satellite constellations4, wired circuits4, transport systems1,2,9, elec-
trical power grids7–10 and protein chain networks3. In Supplementary Section S5 we present how any network
spatial configuration can be embedded into a spatial grid and demonstrate this with an actual bus transport
network (Supplementary Section S6).

Some of the factors that influence the disconnection of links in evolving networks are force magnitudes and
duration of time these forces are applied. Here, we show that the robustness and tolerance of a spatial grid network
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to edge failures is also contingent crucially on the direction of edges
along which forces in the system are applied. Choosing the appro-
priate connection and direction patterns of the edges can optimize
the distribution of load in the system and can consequently make a
network more resilient to edge failures7. We consider two different
edge direction patterns for the lattice, ER, and BA networks, (A)
uniform force directions and (B) random force directions.

Results
Much of the work concerning network modelling do not incorporate
the spatial positions of the nodes in the system. But as argued by
Gastner et al., nodes of real-world networks have well-defined posi-
tions that change over time, and incorporating spatial and temporal
information into the analysis of networks give a better insight as to
how a system behaves1. We consider lattice, ER, and BA networks
embedded in Euclidean grid space1 where the edges can either rep-
resent physical constructs or some abstract relationship.

Spatial grid network. Nodes with identical masses m are positioned
in an M 3 N lattice labelled by (i, j) where 1 # i # M and 1 # j # N as
illustrated in Fig. 1. Taking into consideration the ease of
computation, the motion of each (i, j)th node is constrained to two
dimensions xi,j and yi,j. Each edge is an elastic simple Hookean spring
with stiffness k and unstretched length l0. By virtue of being
connected, two nodes experience a Hookean spring force
proportional to the elongation of their edge Dl ; l 2 l0 with k
being the constant of proportionality.

The nodes in the spatial grid can either be connected following the
configuration of a lattice network (Fig. 1(a)–(b)), an ER network
(Fig. 1(c)–(d)), or a BA network (Fig. 2). In the lattice network,
connections are made using the Von Neumann neighborhood, form-
ing [(M 2 1) 3 N] 1 [M 3 (N 2 1)] connections. Moreover, free
boundary conditions (FBC) are imposed. To keep the number of
connections comparable across all networks considered, an approxi-
mately equivalent number of edges is formed for the ER and BA
networks.

The directions of the edges represent the force directions in the
grid network. The force directions in the network can either follow
the uniform connection pattern shown in Fig. 1(a) and Fig. 1(c) or
the random connection pattern shown in Fig. 1(b) and Fig. 1(d). For
BA networks with uniform force directions, almost all edges were
directed outward and all non-zero node in-degrees are only kin 5 2.
On the other hand, for BA networks with random force directions,
the number of edges directed outward is about the same as those
directed inward as shown by their similar node in-degree and out-
degree distributions in Fig. 2.

Force accumulation. Repeated application of force by the source or
influential node to the target node, however small it may be, can
eventually cause the failure of the edge linking them. Following the
work of Carmona et al.11, each edge is given a memory of its
deformation history {e(0), e(dt), e(2dt), …, e(t)}. At each time step,
the elongation of the edge is computed and appended to the
deformation history sequence. The edges have an infinite memory
range which means that the entire deformation history is stored.

In determining whether a spring has broken or an edge has failed,
we evaluate the total damage q(t) of the spring as given by

q tð Þ~e tð Þzf0

Xt’~t

t’~0

e t’ð Þ, ð1Þ

where e(t) is the instantaneous deformation and f0

Xt’~t

t’~0
e t’ð Þ is the

accumulated damage due to repeated application of force12,13. An
edge fails and the connection is broken when the total damage q(t)
of a specific edge exceeds the elongation threshold eth of that edge
(Supplementary Fig. S1). In the absence of memory, e(t) dominates
and a network only fragments for force magnitudes above the limit.
Accounting for memory allows subcritical loading where cyclical
application of force causes progressive edge failures leading to a
substantial fraction of edges to break. The contribution of the imme-
diate deformation and the memory of accumulated damage is con-
trolled by the parameter f0 which we choose to be 0.05 for this study.

Figure 1 | Network architecture and index conventions. (a) represents a lattice network with uniform force directions and (b) random force directions.

In (c) and (d) nodes are arranged spatially in a grid and [(M 2 1) 3 N] 1 [M 3 (N 2 1)] edges are randomly chosen from possible connections.

(c) represents an ER network where forces are directed with the highest level of uniformity and (d) randomly. Edge colors correspond to the elongation

thresholds th while node colors are based on the degree of incoming connections kin. Node sizes correspond to the degree of outgoing connections

kout (largest node has higher kout). Arrows are directed from source to target node. Figures in the last column highlight the edges of the shown selected

nodes.
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At this value of f0, the disorder in the fragmentation process is
controlled and the effects of the interfering elastic waves are elimi-
nated13. Choosing a smaller f0 only lengthens all fragmentation pro-
cesses and does not change any of our results.

Breaking dynamics. At the onset of the simulation, all nodes are at
rest and located at their initial positions. The time evolution of the
grid network is followed by solving the equations of motion of each of
the nodes using an iterative fourth order Runge-Kutta method. As
shown in the work of Esleta et al., a time step of dt 5 2210 produces dj
, 9 3 1024 total accumulated global error which causes no
significant position and velocity errors (see Supplementary Section
S2)12. The equations of motion is a set of second-order coupled
differential equations given by

m€~r i,jð Þ~~F i,jð Þ, ð2Þ

where r i,jð Þ:x i,jð Þêxzy i,jð Þêy is the displacement of mass (i,j) from its

initial position in the grid12. The total force ~F i,jð Þ:Fx
i,jð ÞêxzFy

i,jð Þêy

acting on mass (i,j) is a combination of the applied force ~Fapp and
interpaticle forces

~F i,jð Þ:~Fappz~f i,jz1ð Þ{ i,jð Þz~f i{1,jð Þ{ i,jð Þz~f iz1,jð Þ{ i,jð Þz~f i,j{1ð Þ{ i,jð Þ:ð3Þ

Force is applied between connected nodes and has the same
magnitude for all edges. The directions of the applied forces

Fk
app

n o
were either (A) uniform or (B) random. In method A, the

directions of Fapp were made to have the highest degree of uniformity
(Supplementary Fig. S3, Fig. S5 and Fig. S7). In method B, we scan all

edges of the grid network at the start of the simulation, and for each
edge, we choose a node randomly and assign this node as the target
node (Supplementary Fig. S4, Fig. S6 and Fig. S8). The applied force
is then directed from source to target node. Doing so, allows us to
explore whether the final fragmented structure of the grid network is
affected by the direction of Fapp. Each network simulation was run for
at least three realizations.

The interparticle forces acting on node (i,j) is solved by computing
for the deformation vector ~e i+1,j+1ð Þ{ i,jð Þ of its edges12. From the
geometry of the system as shown in Supplementary Fig. S2, the
horizontal deformations are

ex
i,jz1ð Þ{ i,jð Þ~ 1{

l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi,j{xi,jz1
� �2
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while the vertical deformations are

Figure 2 | Network architecture and degree distribution of Barabasi-Albert networks with uniform and random force directions. Almost all edges

were directed outward for the uniform case while comparable number of edges were directed inward and outward for the random case. In the inset, nodes

are sized according to kout.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6195 | DOI: 10.1038/srep06195 3



e
y
i,jz1ð Þ{ i,jð Þ~ 1{

l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi,j{xi,jz1
� �2

z yi,j{yi,jz1{l0
� �2

q

2
64

3
75 yi,j{yi,jz1{l0
� �

e
y
i{1,jð Þ{ i,jð Þ~ 1{

l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi,j{xi{1,jzl0
� �2

z yi,j{yi{1,j
� �2

q
2
64

3
75 yi,j{yi{1,y
� �

e
y
i,j{1ð Þ{ i,jð Þ~ 1{

l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi,j{xi,j{1
� �2

z yi,j{yi,j{1zl0
� �2

q
2
64

3
75 yi,j{yi,j{1zl0
� �

e
y
iz1,jð Þ{ i,jð Þ~ 1{

l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi,j{xiz1,j{l0
� �2

z yi,j{yiz1,j
� �2

q
2
64

3
75 yi,j{yiz1,j
� �

:

ð5Þ

The edges are assumed to be Hookean springs and as such the inter-
particle force is~f i+1,j+1ð Þ{ i,jð Þ~{k~e i+1,j+1ð Þ{ i,jð Þ. Using the defor-
mations given by equations 4 and 5 to derive the interparticle forces
exerted by the springs and combining them with~Fapp, the horizontal

component of the total force~Fi,j acting on (i,j) is

Fx
i,j~Fx

appzk ex
i,jz1ð Þ{ i,jð Þ{ex

i{1,jð Þ{ i,jð Þzex
iz1,jð Þ{ i,jð Þ{ex

i,j{1ð Þ{ i,jð Þ

h i
, ð6Þ

while the vertical component is

Fy
i,j~Fy

appzk e
y
i,jz1ð Þ{ i,jð Þ{e

y
i{1,jð Þ{ i,jð Þ{e

y
i,j{1ð Þ{ i,jð Þze

y
iz1,jð Þ{ i,jð Þ

h i
, ð7Þ

After solving for the displacement of each node in the grid network,
the condition for breaking is evaluated for all intact edges. Although
the equation of motion considered does not include a velocity-

dependent term, the networks studied still take this into account
by considering the entire history of deformations which together
with the instantaneous force can cause a link to break. If the elonga-
tion of the spring exceeds eth, the edge is removed from further
calculations. The elastic energy of the broken link is released and
redistributed to the edges of its nearest connected nodes12. The break-
age of a particular link causes cascading disconnections and may
eventually lead to network collapse.

Results for lattice network. The spatial arrangement of nodes in a
network affects the distribution of force in the system and dictates the
degree of influence a node has as compared to other nodes. In some
cases, direct interactions among components are only possible
between spatial neighbors. We analyze this configuration using a
50 3 50 lattice network with 4,900 edges.

Uniform force directions. The forces in a system can be directed
uniformly such that all vertical and horizontal Fapp have the same
directions. This results to a net force directed diagonally in the net-
work. Such forcing pattern also allows nodes to be influenced only by
nodes that are to their right and below them (see Supplementary
Section S3.A.1).

As the network evolves, a cascading disconnection of edges is
observed as shown in Fig. 3(a). The first to break are the edges near
the top and left sides since they feel the greatest amount of force. The
edges’ disconnection pattern follows the direction of the net force which
is diagonally towards the most influential node at the bottom right
corner. This node-to-node forcing pattern results to a global accelera-
tion that causes the network to elongate diagonally towards the bottom
right corner as shown in the network movement of Fig. 3(a). Directing
all forces towards the most influential node will globally affect the entire
network to move towards the direction of this node.

Figure 3 | Evolution of a lattice network. (a) For uniform force directions and Fapp 5 0.03, breaking starts near the top and left sides at t 5 6,384.0.

Failure cascades and last to be disconnected are edges near the bottom right corner where the least amount of force is felt. The network totally collapses at

t 5 6,602.4. No connections remain and the network elongates and moves diagonally following the net force. (b) For random force directions and Fapp 5

0.03, breaking starts at t 5 11.0 at random positions. The network reaches its equilibrium structure at t 5 238.6 with only 0.496 6 0.007 of the edges

disconnected.

www.nature.com/scientificreports
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Fig. 4(a) shows the fraction of disconnected edges f as a function of
time for all values of applied forces used when the direction of Fapp in
the network is uniform. The behavior of f follows a threshold func-
tion similar to an inverse bond percolation model. We find that edges
started to fail at different times depending on the Fapp used. The
smaller the magnitude of force applied by the nodes, the longer the
agents stay in the network.

An abrupt change in the network’s state is observed after a small
additional force is applied8. The lattice network failure observed here
does not gradually become more likely but instead there is a trans-
ition point during which disconnections are fastest as shown by the
disconnection derivative f9 in the inset of Fig. 4(a). Around this
critical point, any additonal force causes a sizeable amount of edges

to fail, eventually leading to a complete network collapse. But
decreasing Fapp can help slow down the disconnections.

Random force directions. The directions of the applied forces in a
lattice network are random when the influential nodes of the network
are positioned randomly in grid space. Some nodes are influenced by
only a few nodes while others receive much influence (see Supple-

mentary Section S3.A.2). The directions of Fk
app

n o
are assigned at the

start of each simulation and are maintained constant. Initial break-
ings start at random positions in the lattice as shown in Fig. 3(b). As a
result of assigning this directionality of interactions, the nodes
disperse away from the initial center of the network with more nodes

Figure 4 | Fraction of disconnected edges f in grid networks. (a) Lattice networks with uniform force directions totally collapse while for those with

(b) random force directions, 0.503 6 0.006 of the edges disconnects. (c–d) Regardless of the magnitude and directions of {Fapp}, an ER network

experiences total system collapse. (e–f) BA networks completely fragment regardless of the magnitude and directions of {Fapp}. The insets show the

derivative of f or the disconnection rate of the edges. The rate of disconnection f9 at the transition point decreases with Fapp in all networks. For lattice

networks, randomizing force directions further decreased the rate of disconnections.

www.nature.com/scientificreports
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moving upward and to the left. This bias towards the upward and
right directions is a result of the randomization which positions 68
(2.72%) more influential nodes to the right and 34 (1.36%) more
influential nodes at the top. But this net drift is only 0.11% of the
drift when forcings are uniform. The random placement of the influ-
ential nodes in the network aids in preserving some of the connec-
tions in the network and prevents large magnitude changes in the
global position of the network.

The preservation of links is reflected in Fig. 4(b) which shows the
fraction of disconnected edges f as a function of time for all values of
applied forces. Similar to lattice networks with uniform force direc-
tions, the failure of the edges has a characteristic phase transition. But
we find that randomizing the force directions in a lattice network
results to a more resilient network. For all Fapp, lattice networks of
this type preserve more than half of its edges with only 0.496 6 0.007
disconnected edges.

Results for Erdos-Renyi network. Examining the evolution of a
random network or an ER network remains significant even after
real-world networks were found to be otherwise. Systems like the
power grid or the neural network of C.elegans are best described as
evolving networks14. The development of such evolving networks are
characterized by not only a power-law but also by exponential degree
distributions14. Preferential attachment, aging effects and constraints
in the growth of a network can in the long run lead to a transition to
an exponentially decaying degree distribution. It is in this regime of
the dynamic evolution of a network that findings regarding the
resilience of an ER network may be of importance.

Uniform force directions. Though connections among nodes in an ER
network are random, forcing directions can be made as uniform as
possible by preferring specific positions in placing influential nodes
(i.e. bias in vertical interactions such that nodes are influenced only
by those below them) as discussed in Supplementary Section S3.B.1.

The first disconnections are the result of nodes breaking away
from the more influential nodes at the bottom as illustrated in
Fig. 5(a). Being influential allows an agent to affect more nodes but
this can also mean that their connections are more likely to be short-
lived. A cascade of disconnections from the more influential nodes is
observed at just a short period of time. But there are some connec-
tions that persist far longer than others. As the network evolves, the
individual node-to-node force interactions lead to a more dispersed
network with the nodes moving outward with a slight drift down-
wards towards the influential nodes.

Random force directions. In randomizing the force directions in an
ER network, we are distributing the influentials in grid space. For
such case, nodes are influenced by other nodes regardless of their
position (see Supplementary Section S3.B.2). Since influence is dis-
tributed, there is no bias in the global movement of the network and
breaking also starts in random positions as shown in Fig. 5(b).
Similar to the uniform force directions case, a large amount of edges
fail initially (79.6% of edges). In a span of 100 iterations, 97.0% of the
edges have already failed. The remaining 3.0% of the edges persists
longer and disconnections slow down until the network totally col-
lapses. Randomizing force directions also leads to a one order of
magnitude decrease in the global dispersion of the nodes from the
center of the network.

Results for Barabasi-Albert network. Most real world networks
from cellular and genetic networks to social, citation, infrastruc-
ture and transport networks exhibit scale-free degree distributions
that is well represented by BA networks14,16–18. We investigate here
how the direction of forces affect the fragmentation of networks
having scale-free degree distributions.

Uniform force directions. One of the key attributes of BA networks is
the presence of a hub responsible for most of the connections in the
network. In the uniform force directions case shown here, most of the

Figure 5 | Evolution of an Erdos-Renyi network. (a) For uniform force directions and Fapp 5 0.8, breaking starts with nodes disconnecting from the

influential nodes at the bottom resulting to 77.6% of the edges to break instantly. By t 5 100, 95.7% of the edges have disconnected. The remaining edges

take far longer to disconnect. (b) For random force directions, breaking starts at random positions. Initial disconnections account for 79.6% of the edges.

By t 5 100.0, 97.0% of edges have disconnected. The remaining 3.0% breaks slower until the network completely collapses at t 5 7,273.2.

www.nature.com/scientificreports
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edges are directed away from the hub while all others are connected
by preferring a certain direction as further illustrated in Supple-
mentary Section S3.C.1. Another uniform directions case where
edges are directed towards the hub (Supplementary Section S4)
was also considered and found to have similar results.

Since the hub contains most of the connections and controls the
movement of most nodes, the network eventually becomes comple-
tely fragmented but 3.3% of the edges take far longer to disconnect as
shown in Fig. 6(a). The hub, being connected to a large number of
nodes scattered throughout the spatial grid network, is pulled in all
directions triggering a cascade of disconnections until no connection
remains in the network regardless of Fapp as shown in Fig. 4(e).
Connections to nodes farthest to the hub are the first ones to break
and are left far in space from the cluster of nodes as depicted in the
network movement in Fig. 6(a).

Random force directions. Randomizing force directions meant keep-
ing the number of hub edges that are directed inward and outward
comparable. This allowed nodes other than the hubs to have paths to
almost all nodes as discussed in Supplementary Section S3.C.2.
However, the presence of a hub still led to complete network frag-
mentation as shown in Fig. 4(f).

Redistribution of forces and addition of paths among the network
nodes were not enough to overcome the influence of the hubs. This
holds regardless of the position of the hubs in grid space (Supple-
mentary Section S4). Although preservation of connections was not
achieved by randomizing force directions, nodes in this case are
spatially closer. Random force directions kept the nodes closer by
34.1% in terms of area.

In Supplementary Section S6 we discussed in detail how the frame-
work here can be applied to an actual bus transport network.

Dependence of the preservation of links on the randomness of the
force directions. We have so far explored networks with force direc-
tions that are either completely uniform or completely random. We
further examine the effect of the force pattern by combining uniform
and random force directions in the lattice network. A fraction p of the
edges had force directions that were randomized while the remaining
edges experienced forces that had the same vertical and horizontal
directions.

From Fig. 7, the fraction of disconnected edges in the final network
is seen to follow a linear relationship with a slope of 20.51. The
lattice network contains more disconnected edges as the force direc-
tions become more random. With the introduction of increased
randomization, forces in the network become less concentrated caus-
ing edge failures to be more spatially distributed. This suggests that a
force pattern that is most dissimilar to the connectivity pattern of the
network may be the most ideal in constructing a resilient network. In
the lattice network, nodes are connected uniformly such that only
nearest neighbor connections are allowed. Subsequently, completely
random force directions prove to be the best choice in preventing
significant network fragmentation.

This provides an explanation as to why the final number of edges
in the ER and BA networks were not found to depend on force
directions. Since both long-range and short-range links are allowed
and edges can be of varying spatial angle, the uniform force direc-
tions case is not of totally uniform edge directions. This results to the
presence of some degree of randomization even in the uniform force
directions pattern case.

Lifetime of Grid Network. Fig. 8(a) shows the lifetime of the
networks as a function of Fapp. The evolution of all the networks
considered with deformation memory follows Basquin’s Law at the
regime below the force limit, Flimit, with lifetimes having a power law

Figure 6 | Evolution of a Barabasi-Albert network. (a) For uniform force directions and Fapp 5 0.8, 75.9% of the edges fail instantly and by t 5 128.0,

96.7% of the edges has disconnected. The remaining edges have all disconnected by t 5 28, 692.8. (b) For random force directions and Fapp 5 0.8,

75.9% of the edges fail instantly with only 1.9% of the edges remaining by t 5 128.0. The network completely fragments at t 5 22, 773.6.

Figure 7 | The final fraction of disconnected edges in a lattice network
with varying degree of force directions randomness. The relationship is

found to be linear with a slope of 20.51.

www.nature.com/scientificreports
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behavior with respect to Fapp. When Fapp . Flimit, instantaneous
breakings dominate causing tf to deviate from a power law
behavior11. Flimit is approximated by setting f0 5 0 and looking for
the force magnitude for which (1) no fragmentation occurs for 5, 000,
000 iterations (at least one order of magnitude above the lifetimes of
the networks considered), and (2) tf decays rapidly with increasing
Fapp

13. For lattice networks with uniform force directions, Flimit 5

1.21 while for the case with a fraction of random force directions,
Flimit is smaller at 0.09 6 0.03. The ER networks followed Basquin’s
Law at forces below 103 for both cases. Flimit of the BA networks, on
the other hand, is 111 for the uniform force directions case and 55 for
the random force directions case.

In the work of Carmona et al.11, they showed that it’s possible to
change the Basquin’s exponent, c, up to a magnitude of 0.40 by using
different breaking thresholds. Using the same method they employed
in calculating for Basquin’s exponent, we demonstrate that c, even for
the same breaking rules, can be tuned by either altering (1) the
network structure or (2) the force directions pattern.

For the same lattice network, a change in c of magnitude 0.31
was achieved by randomizing the force directions of even only 0.1
of the links. For the ER networks, a minimal change of 0.05 in c
was found, providing added evidence that the uniform force direc-
tions method was not successful in ‘‘regularizing’’ the structure of
the random network. A small change of 0.07 in c was also found
for BA networks. The presence of both long-range and short-
range links in the ER and BA networks causes a minimal change
in the characteristic exponent of their lifetimes when force direc-
tions are changed. In both networks, however, the random force
directions case had a smaller c magnitude which implies that on
average, network fragmentation can be delayed by randomizing
force directions.

The fragmentation process proceeds in bursts with a universal
scale-free distribution. The bursty dynamics of edge breaking in
the micro-level when memory is incorporated leads to the macro-
scale power law distribution of network lifetime11,15. We illustrate this
in Fig. 8(b) where the waiting time T between breakings has a power-
law distribution P(T) and ,T. , (Fapp)2(11c). Having networks of
very different degree distributions all demonstrating the same feature
hints to the universality of this evolutionary dynamics and scale-free
network lifetime.

Discussion
Modelling the evolution of a network through time as a result of the
interplay of forces within the network and embedding the network in
Eucledian space can provide a more realistic view of how network
topology and structure change. Here, we investigate the eventual
network structure of a directed spatial grid network with lattice,
ER, or BA connections as a result of the forces that the nodes apply
on each other along the edges linking them. The method presented
here is general and can be used to probe other kinds of spatial net-
works as illustrated in Supplementary Section S5.

For a lattice network, uniform edge directions which result to force
influence of nodes to systematically increase in spatial grid lead to an
inevitable network collapse for all values of Fapp in a network having a
memory factor of 0.05. Such edge directions pattern results to the
maximum amount of force to be applied to nodes of lesser force
influence (i.e. nodes with no outgoing edges and hence do not apply
force on any node) leading to a network of completely non-
interacting components. But randomly positioning the influential
nodes (i.e. nodes with more outgoing edges than incoming edges)
results to a more distributed force which helps in preserving network
relationships and keeps the giant cluster intact as shown in
Supplementary Fig. S18 and Fig. S19. A lattice network is hence more
resilient when the force sources are distributed randomly in the
network instead of uniformly arranging them.

However in the same lattice network, when forces are uniformly
directed, the start of breaking happens at a later time (Supplementary
Fig. S18), at which point, nodes have already moved far from their
initial positions. But as seen in the rate of disconnections, once break-
ing has begun, transitions are slower for networks with random force
directions. This is true for all values of applied force which shows that
the final topological and connection configuration of a lattice net-
work is dependent on the force directions, but not on the magnitude
of applied forces.

For an ER network, the transition to its fragmented state is seen to
be faster than in a lattice network (Supplementary Fig. S18). The
magnitude of Fapp also fails to extend the start of network collapse
unlike in lattice networks wherein lowering the magnitude of the
applied force makes the network intact for longer periods of time.
Here, a significant amount of the edges (0.79 6 0.12) disconnects and
the size of the largest cluster suddenly drops at the early part of the

Figure 8 | Lifetime of grid networks. Dashed lines in (a) are to illustrate the Basquin’s exponent of the networks. (b) shows that the macro-scale network

lifetime results from microscopic scale-free waiting times between bursts. The lines shown are the range of exponents of the power-law distribution.
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simulation (Supplementary Fig. S20) for all the force magnitudes
considered. On the other hand, for edges with higher thresholds,
decreasing Fapp can help extend their lifetime.

The final composition of an ER network is also found to be inde-
pendent of the force directions. For both the uniform and random
forcing direction cases, no edge or link between any node is pre-
served. If we base the resilience of an ER network on its final topo-
logical state, no improvement in the network’s resilience can be
achieved by changing the interconnection pattern of the network
unlike that observed in the lattice network.

Similar to the ER network, a BA network also completely frag-
ments regardless of force directions. This results from the presence of
hubs responsible for most of the connections in the network and
thereby causing forces to be more concentrated. When looking at
the fraction of disconnected edges (Fig. 4) and the number of clusters
(Supplementary Fig. S18), the BA network exhibits the same beha-
vior as an ER network primarily because both contain a combination
of long-range and short-range links. However, examining the size of
the largest component reveals that the presence of hubs as in a BA
network (Supplementary Fig. S21) slows down the fragmentation of
the largest cluster in the early stages of fast breakings as compared to
an ER network (Supplementary Fig. S20).

Decreasing the magnitude of forces slows down fragmentation
regardless of network structure, but is only successful in delaying
the onset of fragmentation in lattice networks. For lattice networks,
an increase in the randomization of force directions can further lead
to a decrease in the rate of fragmentation. Changing the direction of
forces has no effect in the rate of fragmentation for both ER and BA
networks providing an indication as to why their final state were the
same regardless of force directions.

The lifetimes of the networks defined as the amount of time it takes
for the network to reach its equilibrium f are also found to have a
power law behavior following Basquin’s Law. We further extend the
work of Carmona et al.11 by demonstrating that Basquin’s exponent,
c, can be altered by changing only the force directions in the network
without altering the network breaking thresholds. By looking at the
waiting time between successive edge failures, we found that in the
presence of deformation memory, the failure process proceeds in
bursts with a universal scale-free distribution. This micro-scale
bursty breaking of edges leads to the macro-scale power law distri-
bution of network lifetime. This holds true for networks of very
different degree distributions hinting to the universality of this mech-
anism.
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