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Universal quantum logic gates are important elements for a quantum computer. In contrast to previous
constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel
quantum computations dependent on two DOFs of photon systems. We construct deterministic
hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of
two-photon or one-photon systems by exploring the giant optical circular birefringence induced by
quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum
states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This
result can reduce the quantum resources by half for quantum applications with large qubit systems, such as
the quantum Shor algorithm.

Q
uantum information processing is very powerful for managing or transmitting information, as the
quantum computation1–4 and quantum communication5–7. Quantum logic gates or quantum controlled
gates8,9 are key elements for quantum applications based on the quantum circuit model10. These gates,

especially the controlled-not (CNOT) gate or the controlled phase-flip (CPF) gate, may be implemented using
various quantum systems, such as the ion trap11, free electron12, cavity quantum electrodynamics (QED) sys-
tem13,14, nuclear magnetic resonance15,16, and quantum dot17. In 2001, Knill, Laflamme, and Milburn18 showed
that the CNOT gate can be realized with the maximal success probability of 3/4 using linear optical elements and
the polarization states of single photons. This scheme has been improved for a near-deterministic CNOT gate
using the weak cross-Kerr nonlinearity and the quantum nondemolition measurement19, which is also used for
the unambiguous experimental demonstration of the CNOT operation20. However, a giant Kerr nonlinearity is
still a challenge21,22 because the initial phase shift achieved at the single-photon level is very small. QED may be a
candidate for large nonlinear phase shifts23–26.

Recently, the solid-state quantum system based on an electron spin in a quantum dot (QD) inside a microcavity
has attracted much attention because of its optical property and scalability. Hu et al.27,28 construct the quantum
nondemolition measurement using the giant optical circular birefringence of the one-sided QD-cavity system.
The double-sided QD-cavity system can be used to construct an entanglement beam splitter(EBS)29. These
systems are also useful for entanglement generation and Bell-state analysis27–30, quantum gates implementa-
tion31–37, and hyper-entangled Bell-state analysis38,39. These implementations of the CNOT gate are focused on the
same DOF of photon states and have not shown the independence of different DOFs.

In this paper, we consider the CNOT gate on two DOFs of photon states using the optical circular birefringence
of a one-sided QD-cavity system. Most previous results are related to the CNOT gate on one DOF of quantum
systems, such as the polarization DOF of photon systems or the spin DOF of electron systems. Generally, one
DOF [spatial-mode DOF] is used to assist the quantum logic gates on another DOF [polarization DOF]18–20. We
investigate the possibility of parallel quantum computation based on two DOFs of photon systems, without using
auxiliary spatial modes or polarization modes. We construct six deterministic hyper-controlled-not (hyper-
CNOT) gates operating on the spatial-mode and the polarization DOFs of a two-photon or one-photon system,
which are beyond the hyper-CNOT gates on the same DOF of two-photon state33–35, hybrid hyper-CNOT gates
on the photon and stationary electron spins in quantum dots32,36, or hyper-CNOT gates on two photons37. Our
theoretical results show that two DOFs of photon systems can be used as independent qubits in quantum
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information processing. With these realizations, one half of the
quantum resources may be saved. This saving is very important for
quantum applications with large qubit systems, such as the quantum
Shor algorithm and quantum communications.

Results
The spatial-mode and the polarization DOFs of a photon can be
manipulated easily using linear optical elements19,20,31–33. Thus, it is
convenient to use these DOFs as independent qubits in quantum
applications. To show the independence of two DOFs of the polar-
ization DOF and spatial DOF of each photon for any quantum
schemes, it is necessary to show that all quantum transformations
in SU(2n) may be realized on the two DOFs. Note that the CNOT gate
on two qubit states and rotation operations on one qubit are univer-
sal quantum logic gates8–10 to simulate any quantum transformation
in SU(2n). We only need to realize the CNOT gate on two DOFs of the
photon system, while rotation operations on one DOF are easily
implemented. Because of the different roles played by each DOF of
the photon in a CNOT gate, there are six different forms of one
CNOT gate on two DOFs of the photon system, i.e., four CNOT
gates on a two-photon system (each DOF of one photon is used)
and two CNOT gates on a one photon system. None of these gates
require changing these DOFs during the transformations, nor do
they require any auxiliary DOFs. Thus one DOF of one photon
may be regarded as the controlling qubit while the other is the goal
qubit. Note that the CNOT gate on a two-qubit system and the
rotation operations on one-qubit system are universal logic gates
for general quantum computation. From our six CNOT gates, all
quantum global transformations on the same DOF of multiple
photon systems can be realized on different DOFs of these photon
systems. In this case, each DOF of the photon systems can be viewed
as an independent qubit in quantum applications, which means that
one half of quantum resources may be saved.

Quantum-dot-cavity system. To complete our CNOT operations,
the following optical property40–46 and QD-cavity system are used for
our schemes. The QD-cavity system used in our proposal is
constructed by a singly charged QD [a self-assembled In(Ga)As
QD or a GaAs interface QD] located in the center of a one-sided
optical resonant cavity to achieve the maximal light-matter coupling,
as shown in Figure 1. According to the Pauli exclusion principle45, a
negatively charged exciton X21 consisting of two electrons bound to
one hole can be optically excited when an excess electron is injected
into QD. For the excess electron-spin state j"æ or j#æ, a negatively
charged exciton :;Xj i or ;:Yj i with two electron spins antiparallel46

is created by resonantly absorbing jLæ [left circularly polarized
photon] or jRæ [right circularly polarized photon], respectively.

Here, Xj i and Yj i describe the heavy-hole spin states z
3
2

����
�

and

{
3
2

����
�

, respectively.

The input-output relation of this single-sided QD-cavity system
can be calculated from the Heisenberg equations46 of motions for the
cavity field operator â and dipole operator s2,

dâ
dt ~{ iDvczgzksð Þâ{gŝ{{

ffiffiffi
g
p

âin,

dŝ{

dt ~{ iDvezzð Þŝ{{gŝzâ,

(
ð1Þ

where Dvc 5 vc 2 v, Dve 5 ve 2 v. vc, ve and v are the frequen-
cies of the cavity mode, the input probe light, and the X2 transition,
respectively. g is the coupling strength between the cavity and X2. z,
g, and ks are the decay rates of the X2, the cavity field, and the cavity
side leakage mode, respectively. âin and âout satisfy âout~âinz

ffiffiffi
k
p

â.
If X2 stays in the ground state most of the time27 [ÆsZæ 5 21], the
reflection coefficient of the QD-cavity system is

r vð Þ~ iDvc{kszkzĝ
iDvczkszkzĝ

, ð2Þ

where ĝ~g2
�

iDvezzð Þ. Considering the coupling strength g 5 0,
the QD is uncoupled from the cavity (the cold cavity), and the
reflection coefficient in equation (2) becomes

r0 vð Þ~ iDvc{kszk

iDvczkszk
: ð3Þ

Thus, the optical process based on the X2 spin-dependent transitions
is obtained27,34. For a light in the state jLæ, a phase shift hh is followed
for the hot cavity (the QD is coupled from the cavity) with the excess
electron spin j"æ, or a phase shift h0 is followed for the cold cavity with
the excess electron spin j#æ. For a light in the state jRæ, the phase shift
h0 is followed for the cold cavity with the excess electron spin j"æ, and
the phase shift hh is gotten for the hot cavity with the excess electron
spin j#æ. By adjusting the frequencies of the light (v) and the cavity
mode (vc), the reflection coefficients can reach jr0(v)j < 1 and
jrh(v)j < 1 when the cavity side leakage is negligible. If the linearly
polarized probe beam in the state ajRæ 1 bjLæ is put into a one-sided

QD-cavity system in the superposition spin state :j iz ;j ið Þ
. ffiffiffi

2
p

, the

state of the system consisting of the light and the electron spin after
reflection is

:j i aeih0 Rj izbeihh Lj i
� �

z ;j i aeihh Rj izbeih0 Lj i
� �

, ð4Þ

where h0 5 arg[r0(v)] and hh 5 arg[rh(v)]. By adjusting the fre-
quencies v and vc, one can gets the phase shifts of the left and the
right circularly polarized photons as h0 5 p and hh 5 0. From
equation (4), the interaction of a single photon with a QD-cavity
system can be described as27

Rj i :j i.{ Rj i :j i, Rj i ;j i. Rj i ;j i,

Lj i :j i. Lj i :j i, Lj i ;j i.{ Lj i ;j i:
ð5Þ

Spatial-CNOT gate on a two-photon system. The schematic
deterministic CNOT gates on the same DOF of a two-photon
system are shown in Figure 2. Here, the circuit shown in
Figure 2(a) is designed for the deterministic CNOT gate on the
spatial modes of two photons using a one-sided QD-cavity system.
The spatial-mode state of the photon a is the control qubit, while the
spatial-mode state of the photon b is the target qubit. The initial state

of the excess electron spin e in QD is zj ie~1
. ffiffiffi

2
p

:j iz ;j ið Þe. The

initial state of the photon a is jwæa 5 (a1jRæ 1 a2jLæ)a fl (c1ja1æ 1

c2ja2æ), where ja1æ and ja2æ represent two spatial modes of the photon
a. The detailed circuit is described as follows.

First, the photon a from the spatial mode a2 passes through the
subcircuit S1 [CPBS, X, QD, X, CPBS, sequentially]. From the equa-
tion (4), the joint system of the excess electron spin e and the photon

Figure 1 | Schematic X2 spin-dependent transitions with circularly
polarized photons. (a) A charged QD inside a one-side micropillar

microcavity interacting with circularly polarized photons. âin and âout are

the input and output field operators of the waveguide, respectively. (b) X2

spin-dependent optical transition rules due to the Pauli exclusion

principle. | Læ and | Ræ represent the left and right circularly polarized

photon, respectively. |"æ and |#æ represent the spins of the excess electron.
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a is changed from jW0æae 5 jwæa fl j1æe to

W1j iae~
1ffiffiffi
2
p :j ie c1 a1j izc2 a2j ið Þ
�

z ;j ie c1 a1j i{c2 a2j ið Þ
	

6 a1 Rj iza2 Lj ið Þ:
ð6Þ

This is the controlled-Z gate(C Zes) on the electron spin e and the
spatial-mode state of the photon a [with the electron spin e as the
control qubit and the photon a as the target qubit], i.e.,

C Zes : ~ :j ie :h j a1j i a1h jz a2j i a2h jð Þ

z ;j ie ;h j a2j i a1h jz a1j i a2h jð Þ:
ð7Þ

Then, the photon b with the form jyæb 5 (b1jRæ 1 b2jLæ) fl (d1jb1æ 1

d2jb2æ) passes a BS (the spatial Hadamard transformation) in
the subcircuit S2 and is changed into y’j ib~ b1 Rj izb2 Lj ið Þ
6 d’1 b1j izd’2 b2j ið Þ with d’1~ d1zd2ð Þ

. ffiffiffi
2
p

and d’2~

d1{d2ð Þ
� ffiffiffi

2
p

. At the same time, the joint system of the electron spin
e and the photon a is changed from jW1æae to

W’1j iae~ c1 :j ie a1j izc2 ;j ie a2j i
� �

6 a1 Rj iza2 Lj ið Þ ð8Þ

after one W operation being performed on the electron spin e.
Third, the photon b passes the CPBS, X, QD, X, CPBS, sequentially

[subcircuit S2], i.e., another controlled-Z gate shown in equation (7)
is performed on the electron spin e and the spatial-mode state of the
photon b. The joint system of the electron spin e and the photons a
and b is changed from W’1j iae6 y’1j ib to

W001j ieab~ c1 :j ie a1j i d01 b1j izd02 b2j i
� ��

zc2 ;j ie a2j i d01 b1j i{d02 b2j i
� �	

6 a1 Rj iza2 Lj ið Þ6 b1 Rj izb2 Lj ið Þ:

ð9Þ

Now, by performing the second Hadamard operation W on the
electron spin e and the second Hadamard operation (BS) on the
spatial-mode DOF of the photon b, W’’1j ieab is changed into

W2j iabe~ a1 Rj iza2 Lj ið Þa6 b1 Rj izb2 Lj ið Þb
6 :j ie c1 a1j i d1 b1j izd2 b2j ið Þ½



zc2 a2j i d2 b1j izd1 b2j ið Þ�

z ;j ie c1 a1j i d1 b1j izd2 b2j ið Þ½

{c2 a2j i d2 b1j izd1 b2j ið Þ�g:

ð10Þ

Finally, after measuring the excess electron spin e under the basis
{j"æ, j#æ}, the joint system of the photons a and b collapses into

Y1j iab~ a1 Rj iza2 Lj ið Þa6 b1 Rj izb2 Lj ið Þb
6 c1 a1j i d1 b1j izd2 b2j ið Þ½

zc2 a2j i d2 b1j izd1 b2j ið Þ�:

ð11Þ

by performing the phase-flip operation Z 5 ja1æÆa1j2 ja2æÆa2j on the
spatial mode of the photon a for the measurement outcome j#æ of the
excess electron spin e. Thus, the deterministic spatial-CNOT gate is
completed.

Polarization-CNOT gate on a two-photon system. The schematic
deterministic CNOT gate on the polarization DOFs of a two-photon
system is shown in Figure 2(b). Here, the polarization state of the
photon a is the control qubit, while the polarization state of the
photon b is the target qubit. The initial states of the excess electron
spin e and the photons a and b are j1æe, jwæa and jyæb, respectively,
shown in Figure 2(a). In contrast to the step one of the spatial-CNOT
gate shown in Figure 2(a), photon a first passes through the
subcircuit S3 [CPBS, QD, CPBS, sequentially]. The joint system of
the photon a and the electron spin e is changed from jW0æae 5

jwæaj1æe to

W3j iae~
1ffiffiffi
2
p :j ie a1 Rj iza2 Lj ið Þ
�

z ;j ie a1 Rj i{a2 Lj ið Þ
	

6 c1 a1j izc2 a2j ið Þ:

ð12Þ

This is the controlled-Z gate (CZep) on the electron spin e and the
polarization DOF of the photon a [with the electron spin e as the
control qubit and the photon a as the target qubit], i.e.,

CZes : ~ :j ie :h j Rj i Rh jz Lj i Lh jð Þ

z ;j ie ;h j Lj i Rh jz Rj i Lh jð Þ:
ð13Þ

Then, by passing two polarization Hadamard operations H in the
subcircuit S4, photon b is changed into y’’j ib~ b’1 Rj izb’2 Lj ið Þ
6 d1 b1j izd2 b2j ið Þ with b’1~ b1zb2ð Þ

. ffiffiffi
2
p

and b’2~

Figure 2 | Schematic hyper-CNOT gate on a two-photon system.
(a) Schematic spatial-CNOT gate operating on the spatial-mode degrees of

freedom of a two photon system simultaneously. CPBS represents a

polarizing beam splitter in the circular basis, which transmits | Ræ and

reflects | Læ. BS represents a 50%50 beam splitter to perform the Hadamard

operation on the spatial-mode DOF of a photon. X represents the bit-flip

operation X 5 | RæÆL | 1 | LæÆR | . W represents the Hadamard operation on

the excess electron spin e in QD. (b) Schematic polarization-CNOT gate

operating on the polarization degrees of freedom of a two photon system

simultaneously. H represents a half-wave plate (HWP) to perform the

Hadamard operation on the polarization DOF of a photon. S1, S2, S3, S4

denote four subcircuits.
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b1{b2ð Þ
� ffiffiffi

2
p

. The joint system of the photon a and the excess
electron spin e may be changed into

W’3j iae~ a1 :j ie Rj iza2 ;j ie Lj i
� �

6 c1 a1j izc2 a2j ið Þ ð14Þ

by performing one Hadamard operation on the excess electron spin
e.

Now, photon b passes through the subcircuit S4 [CPBS, QD,
CPBS, sequentially, i.e., another CZep operation on the electron spin
e and photon b]. The joint system of the excess electron spin e and the
photons a and b is changed from jW3æae fl jy0æb to

W4j iabe~ a1 :j ie Rj ia b’1 Rj izb’2 Lj ið Þb
�

za2 ;j ie Lj ia b’1 Rj i{b’2 Lj ið Þb
	

6 c1 a1j izc2 a2j ið Þ6 d1 b1j izd2 b2j ið Þ:

ð15Þ

This state may be changed to the following joint system

W5j iabe~ :j ie a1 Rj ia b Rj izb2 Lj ið Þb
�


za2 Lj ia b2 Rj izb1 Lj ið Þb
	

z ;j ie a1 Rj ia b1 Rj izb2 Lj ið Þb
�

{a2 Lj ia b2 Rj izb1 Lj ið Þb
	�

6 c1 a1j izc2 a2j ið Þ6 d1 b1j izd2 b2j ið Þ

ð16Þ

by performing a Hadamard transformation W on the excess electron
spin e and performing two Hadamard transformations H on photon
b.

Thus, after measuring the electron spin e under the orthogonal
basis {j"æ, j#æ}, photons a and b may be changed into

Y2j iab~ a1 Rj ia b1 Rj izb2 Lj ið Þb
�
za2 Lj ia b2 Rj izb1 Lj ið Þb

	
6 c1 a1j izc2 a2j ið Þ6 d1 b1j izd2 b2j ið Þ

ð17Þ

by performing the phase-flip transformation R 5 jRæÆRj2 jLæÆLj on
the polarization of the photon a for the measurement outcome j#æ of

the excess electron spin e. Thus the deterministic polarization-
CNOT gate on two photons is completed.

Hybrid spatial-polarization CNOT gate on a two-photon system.
The schematic deterministic hybrid spatial-polarization CNOT gate
on the two-photon system is shown in Figure 3(a). Here, the spatial
state of photon a is the control qubit, while the polarization state of
the photon b is the target qubit. All initial states are identical to ones
for the spatial-CNOT gate on the two-photon system shown in
Figure 2. The new circuit is derived from both subcircuits in
Figure 2. Firstly, the subcircuit S1 shown in Figure 2(a) is used to
complete the controlled-phase-flip gate described in equation (7) on
the electron spin e and photon a, following the joint system jW3æae

shown in equation (12). Then, using the subcircuit S4 shown in
Figure 2(b) for the excess electron spin e and photon b, the total
system is changed from jW1æaejyæb to

W5j iabe~ :j ie c1 a1j i b1 Rj izb2 Lj ið Þb
�


zc2 a2j i b2 Rj izb1 Lj ið Þb
	

z ;j ie c1 a1j i b1 Rj izb2 Lj ið Þb
�

{c2 a2j i b2 Rj izb1 Lj ið Þb
	�

6 a1 Rj iza2 Lj ið Þa6 d1 b1j izd2 b2j ið Þb:

ð18Þ

Thus, after measuring the excess electron spin e under the orthogonal
basis {j"æ, j#æ}, the photons a and b may be transformed as follows:

Y3j iab~ c1 a1j i b1 Rj izb2 Lj ið Þb
�

zc2 a2j i b2 Rj izb1 Lj ið Þb
	

6 a1 Rj iza2 Lj ið Þa6 d1 b1j izd2 b2j ið Þ

ð19Þ

by performing the phase-flip operation Z on the spatial DOFs of the
photon a for the measurement outcome j#æ of the excess electron
spin e. Thus, the deterministic hybrid spatial-polarization CNOT
gate on a two-photon system is completed.

Hybrid polarization-spatial CNOT gate on a two-photon system.
The schematic deterministic hybrid polarization-spatial CNOT gate
on a two-photon system is shown in Figure 3(b). Here, the
polarization state of photon a is the control qubit while the spatial
state of photon b is the target qubit. The new circuit is derived from
both subcircuits in Figure 2. First, the subcircuit S3 shown in
Figure 2(b) is used to complete the controlled-phase-flip gate
shown in equation (13) on the excess electron spin e and photon a,
following the joint system jW3æae shown in equation (12). Then, using
the subcircuit S2 shown in Figure 2(a) for the excess electron spin e
and photon b, the total system is changed from jW3æaejyæb to

W6j iabe~ :j ie a1 Rj ia d1 b1j izd2 b2j ið Þ
�


za2 Lj ia d2 b1j izd1 b2j ið Þ
	

z ;j ie a1 Rj ia d1 b1j izd2 b2j ið Þ
�

{a2 Lj ia d2 b1j izd1 b2j ið Þ
	�

6 b1 Rj izb2 Lj ið Þb6 c1 a1j izc2 a2j ið Þ:

ð20Þ

Thus, after measuring the electron spin e under the orthogonal basis
{j"æ, j#æ}, photons a and b may be changed into

Y4j iab~ a1 Rj ia d1 b1j izd2 b2j ið Þ
�

za2 Lj ia d2 b1j izd1 b2j ið Þ
	

6 b1 Rj izb2 Lj ið Þb6 c1 a1j izc2 a2j ið Þ

ð21Þ

by performing the phase-flip operation R on the polarization of
photon a for the measurement outcome j#æ of the excess electron

Figure 3 | Schematic hybrid hyper-CNOT gate. (a) Schematic hybrid

spatial-polarization CNOT gate on a two-photon system, where ai and bi

are spatial modes of the photons a and b, respectively. e denotes the excess

electron spin in QD. (b) Schematic hybrid polarization-spatial CNOT gate

on a two-photon system. (c) Schematic hybrid polarization-spatial CNOT

gate on a one-photon system. (d) Schematic hybrid spatial-polarization

CNOT gate on a one-photon system. The initial states of photons a and b

are | wæa and | yæb, respectively. The initial state of the excess electron spin e

is | 1æe. S1 and S3 are the two controlled-phase-flip gates described in

equations (7) and (13), respectively, shown in Figure 2. S2 and S4 are two

controlled-phase-flip gates combined with certain Hadamard operations,

shown in Figure 2.
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spin e. So, the deterministic hybrid polarization-spatial CNOT gate
on two photons is completed.

Hybrid spatial-polarization CNOT gate on a one-photon system.
The schematic deterministic hybrid spatial-polarization CNOT gate
on a one-photon system is shown in Figure 3(c). Here, the spatial
state of photon a is the control qubit while the polarization state of
photon a is the target qubit. The circuit is similar to the one on a two-
photon system, shown in Figure 3(a). The difference is that the two
subcircuits S1 and S4 are implemented on only one photon. In detail,
after passing the subcircuit S1 shown in Figure 2(a), the joint system
of the electron spin e and photon a is jW1æae, as shown in equation (6).
Then, using the subcircuit S4 shown in Figure 2(b), the joint system
jW1æae of the excess electron spin e and photon a is changed into

W7j iae~ :j ie c1 a1j i a1 Rj iza2 Lj ið Þ½

zc2 a2j i a2 Rj iza1 Lj ið Þ�

z ;j ie c1 a1j i a1 Rj iza2 Lj ið Þ½

{c2 a2j i a2 Rj iza1 Lj ið Þ�:

ð22Þ

Thus, after measuring the excess electron spin e under the basis {j"æ,
j#æ}, photon a may be changed into

Y5j ia~c1 a1j i a1 Rj iza2 Lj ið Þ

zc2 a2j i a2 Rj iza1 Lj ið Þ
ð23Þ

by performing the phase-flip operation Z on the spatial modes of
photon a for the measurement outcome j#æ of the excess electron
spin e. So, the deterministic hybrid spatial-polarization CNOT gate is
completed on a one-photon system.

Hybrid polarization-spatial CNOT gate on a one-photon system.
The schematic deterministic hybrid polarization-spatial CNOT gate
on a one-photon system is shown in Figure 3(d). Here, the
polarization state of photon a is the control qubit while the spatial
state of photon a is the target qubit. The circuit is similar to the one
on a two-photon system, shown in Figure 3(b). The difference is that
the two subcircuits S3 and S2 are implemented on only one photon.
In detail, after passing the subcircuit S3 shown in Figure 2(b), the
joint system of the electron spin e and photon a is jW3æae shown in
equation (12). Then, using the subcircuit S2 shown in Figure 2(a),
jW3æae is changed into

W8j iae~ :j ie a1 Rj i c1 a1j izc2 a2j ið Þ½

za2 Lj i c2 a1j izc1 a2j ið Þ�

z ;j ie a1 Rj i c1 a1j izc2 a2j ið Þ½

za2 Lj i c2 a1j izc1 a2j ið Þ�:

ð24Þ

Thus, after measuring the electron spin e under the basis {j"æ, j#æ},
photon a may be changed into

Y6j ia~a1 Rj i c1 a1j izc2 a2j ið Þ

za2 Lj i c2 a1j izc1 a2j ið Þ
ð25Þ

by performing the phase-flip operation R on the polarization modes
of photon a for the measurement outcome j#æ of the excess electron
spin e. So, the deterministic hybrid polarization-spatial CNOT gate is
completed on one photon.

Discussion
Experimentally, the transition rules in equation (5) may fail due to
decoherence and dephasing. The fidelities of our hyper-CNOT gates
are reduced. The spin-dependent transition rule is imperfect and
decreases the fidelities by a few percent if heavy-light hole mixing

is considered. Fortunately, the hole mixing can be reduced by
improving the shape, size, and type of QDs30. Although electron spin
decoherence can also decrease the fidelities of the hyper-CNOT
gates, however, this effect may be reduced by extending the electron
coherence time to ms using spin echo techniques30. The spin super-
position states j1æ and j2æ are generated using nanosecond electron
spin resonance microwave pulses or picosecond optical pulses47, of
which the preparation time (ps) is significantly shorter than the spin
coherence time28. Then, the Hadamard operation for transforming
electron spin states j"æ and j#æ to j1æ and j2æ can be achieved.

In ideal conditions, one may neglect the cavity side leakage, and
the reflection coefficients are jr0(v)j < 1 and jrh(v)j < 1. The cor-
responding fidelities of our six hyper-CNOT gates are nearly 100%.
Unfortunately, it is impossible to neglect side leakage from the cavity
in the experiment27–31,44–51. The general fidelity is defined by F 5

jÆwjwfæj, where jwæ and jwfæ are the final states of an ideal condition
and a real situation with side leakage, respectively. In the resonant
condition with vc 5 ve 5 v, if the cavity side leakage is considered,
the optical selection rules for a QD-cavity system given by the equa-
tion (4) become

Rj i :j i.r0 Rj i :j i, Rj i ;j i.r Rj i ;j i, Lj i :j i

.r Lj i :j i, Lj i ;j i.r0 Lj i ;j i:
ð26Þ

Due to the exchangeability of the polarization DOF and the spatial
DOF of one photon with respect to random initial photon, the fide-
lities of the hybrid spatial-polarization CNOT and the hybrid polar-
ization-spatial CNOT on a two-photon are same to these of the
spatial-CNOT and the polarization CNOT on a two-photon, respect-
ively. However, for the spatial-CNOT and the polarization CNOT,
we cannot directly get the same fidelities from the exchangeability of
polarization DOF and spatial DOF because the exchanging of two
DOFs at one time may cause confusing implementation due to the
different circuits of these hyper CNOT gates, shown in Figure 2.
Moreover, from Figure 3 for the one-photon system, one cannot
change the DOFs during the implementation process because the
hyper-CNOT is not realized in a one-shot manner. Thus, we need
to compute the fidelities of the spatial-CNOT and polarization-
CNOT on a two-photon system and the hybrid spatial-polarization
CNOT and the hybrid polarization-spatial CNOT on a one-photon
system.

In detail, by replacing the optical selection rules in equation (5)
with the ones in equation (26), using the same procedures as in the
Results section, one can obtain the final states after the spatial CNOT
gate on a two-photon system, polarization-CNOT gate on a two-
photon system, hybrid spatial-polarization CNOT on a one-photon
system, or hybrid spatial-polarization CNOT on a one-photon sys-
tem. Therefore, the fidelities F of these four hyper-CNOT gates are

F2
SSD~

d’21 c2
1z0:5c2

2 rzr0ð Þ
� �

zd’22 rc2
1z0:5r0c2

2 rzr0ð Þ
� �� �2

d’21 c2
1z0:5c2

2 r2zr2
0ð Þð Þzd’22 r2c2

1z0:25c2
2 r2zr2

0ð Þ2
�  , ð27Þ

F2
SPD~

b’21 c2
1z0:5c2

2 rzr0ð Þ
� �

zb’22 rc2
1z0:5r0c2

2 rzr0ð Þ
� �� �2

b’21 c2
1z0:5c2

2 r2zr2
0ð Þð Þzb’22 r2c2

1z0:25c2
2 r2zr2

0ð Þ2
�  , ð28Þ

F2
SPS~

c2
1 a’21z0:5ra’22
� �

z0:5c2
2 rzr0ð Þ a’21zr0a’22

� �� �2

c2
1z0:25c2

2 r{r0ð Þ2
� �

a’21zr2a’22
� �

z0:25c2
2 rzr0ð Þ2 a’21zr2

0a’22
� � , ð29Þ

F2
PSS~

c’21 a2
1rz0:5r0 rzr0ð Þa2

2

� �
zc’22 a2

1z0:5 rzr0ð Þa2
2

� �� �2

c’21 r2a2
1z0:25a2

2 r2 r{r0ð Þ2zr2
0 rzr0ð Þ2

� �� �
zc’22 a2

1z0:5a2
2 r2zr2

0ð Þð Þ
, ð30Þ

ð29Þ

ð30Þ
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where ai, bi, ci, di are the coefficients of the initial photons and satisfy

a2
1za2

2~b2
1zb2

2~c2
1zc2

2~d2
1zd2

2~1, and a’1~a1za2, a’1~a1{a2,
b’1~b1zb2, b’1~b1{b2, c’1~c1zc2, c’1~c1{c2, d’1~d1zd2,
d’1~d1{d2. We only consider the real r, r0 and real coefficients ai,
bi, ci, di. Because these fidelities depend on the coefficients of the
initial photons, we present them in Figure 4 as the expectations of the
initial states by evaluating the average fidelity of 106 random initial

photons. Here, r0~
k’{1
k’z1

[from the equation (3)] and

r~
k’{1ð Þ

�
1zk’ð Þ2z10g’2

1
�

1zk’ð Þ2z10g’2
[from the equation (2) and z 5

0.1ks] under the resonant condition vc 5 v 5 ve, and k9 5 k/ks

and g9 5 g/(ks 1 k). Generally, strong coupling strength and the low
side leakage and cavity loss rate (k/ks) are all required for high
fidelity. Experimentally, the strong coupling strength g/(ks 1 k)
can be raised to 2.4 by improving the sample designs, growth, and
fabrication48,49. For our hyper-CNOT gates, if g/(ks 1 k) < 0.5 and
k/ks < 0, their fidelities are greater than 90%. When the coupling
strength g/(ks 1 k) < 2.4 with k/ks < 0, the fidelities are approxi-
mately 100%. If the side leakage and cavity loss rate are k/ks < 0.3 for
g/(ks 1 k) < 2.4, the fidelities are greater than 95%. The side leakage
and cavity loss rate have been reduced to k/ks < 0.7 with g/(ks 1 k) <
130,43,44,50. Recently, a quantum gate between the spin state of a single
trapped atom and the polarization state of an optical photon con-
tained in a faint laser pulse has been experimentally achieved51. We
believe that their hybrid gate may soon be extended to our general
hyper-CNOT gates on the two-photon system or the one-photon
system because the main primitive gate of our CNOT gates is the
controlled-phase-flip gate shown in equations (7) and (13).

In conclusion, we have investigated the possibility of parallel
quantum computation based on two DOFs of photon systems, with-
out using auxiliary spatial modes or polarization modes. We have
constructed six deterministic hyper-controlled-not (hyper-CNOT)
gates operating on the spatial-mode and the polarization DOFs of a
two-photon system or a one-photon system. Compared with the
hyper-CNOT gates on the same DOF of a two-photon system24,33–35,

our gates may be performed on different DOFs of two photons or one
photon. Our schemes have also used fewer CPBS, which may be
difficult in experiment. In contrast to the hybrid hyper-CNOT gates
on the photon and stationary electron spins in quantum dots32,36, our
CNOT gates are ultimately realized on the photon system, and the
excess electron spin is an auxiliary resource. Because the side leakage
and cavity loss may be difficult to control or reduce for the electron-
spin qubit and photonic qubits in the double-sided QD-cavity sys-
tem, our gates are easier to implement experimentally than the
hyper-parallel photonic quantum computation gates37 using a dou-
ble-sided QD-cavity system. Furthermore, their hyper-CNOT gates
are only performed on a two-photon system, while our gates have
also been implemented on a one-photon system. Even if the different
DOFs may be easily changed, the operation of exchanging different
DOFs is not convenient for a one-photon system because the hyper-
CNOT is not realized in a one-shot manner. In detail, from the
schematic circuits shown in Figure 3(c) and (d), one controlled-
phase-flip gate is firstly performed on the auxiliary electron spin
and one DOF, and then another controlled-phase-flip gate is per-
formed on the auxiliary electron spin and the other DOF. Thus, one
cannot exchange the DOFs after the controlled-phase-flip gate, and
can only exchange the DOFs before the CNOT gate. This fact is
important for the parallel quantum realization of large-scale
quantum schemes such as the quantum Shor algorithm or the
quantum search algorithm. Therefore, our results are distinct from
all previous quantum logic gates on different photons32–37. Our theor-
etical results show that two DOFs of photon systems can be used as
independent qubits in quantum information processing. With these
realizations, one half of the quantum resources may be saved. Of
course, the hyper-CNOT gates may be affected by the cavity leakage,
and spin coherence in quantum dots or the exciton coherence in
experiment. With the recent experiments of QD-cavity system28–30

and the quantum gate between a flying optical photon and a single
trapped atom51, our results are expected to be applicable for creating
photon-photon entangled states from separable input states, large-
scale quantum computation, or quantum communication.

Figure 4 | Average fidelities of the present hyper-CNOT gates. (a) The average fidelity of the spatial-CNOT gate on a two-photon system. (b) The

average fidelity of the polarization-CNOT gate on a two-photon system. (c) The average fidelity of the hybrid spatial-polarization CNOT gate on a one-

photon system. (d) The average fidelity of the hybrid polarization-spatial CNOT gate on a one-photon system. The coupling strength is defined by z 5

0.1ks. The average fidelity is computed as the expectation of random input photons.
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Methods
Measurement of the excess electron spin e in QD. The excess electron spin e is

measured using an auxiliary photon yj ic~
1ffiffiffi
2
p Rj iz Lj ið Þc c1j i. Let the right-circular

polarization jRæ of photon c interact with the QD-cavity system [photon c passes a
CPBS to splitter the circular polarizations jRæ and jLæ, and then the jRæ passes through
the QD and combines with jLæ of photon c using another CPBS]. Then, the final state
of the complicated system becomes

1ffiffiffi
2
p Rj iz Lj ið Þc c1j i :j ie.{

1ffiffiffi
2
p Rj i{ Lj ið Þc c1j i :j ie,

1ffiffiffi
2
p Rj iz Lj ið Þc c1j i ;j ie.

1ffiffiffi
2
p Rj iz Lj ið Þc c1j i ;j ie:

ð31Þ

Thus, the electron spin e can be determined by measuring the photon in the

orthogonal basis
1ffiffiffi
2
p Rj i+ Lj ið Þ
� �

. The electron spin is j"æ or j#æ for the

measurement outcome
1ffiffiffi
2
p Rj iz Lj ið Þ or

1ffiffiffi
2
p Rj i{ Lj ið Þ, respectively.

Single-sided QD-cavity system in quantum information processing based on two
DOFs. The spatial-mode and the polarization DOFs may convert into each other if
only one DOF is used for encoding information. There are many schemes on the
polarization logic gates using the spatial-mode DOF as the assistant19,20,24,31–33. Our
hyper-CNOT gates show that the spatial-mode and the polarization DOFs of
photonic states can be used independent qubits without auxiliary spatial modes. This
is simpler than the one using double-side QD-cavity system37. If two DOFs are
independently used for encoding different information, their conversions may cause
confusions for quantum information processing. For example, two DOFs of the
photon system are used as the encoding qubit and the register qubit respectively, one
cannot convert them during the Shor decomposition. Moreover, if the spatial-mode
DOFs of some photon systems and the polarization DOFs of other photon systems are
used as the same type of qubits in application, such as the register qubits in the Shor
algorithm, great attentions should be paid because the circuits of six hyper-CNOT
gates are different and cannot exchanged in experiment. Of course, the two DOFs of a
photon may be used as a four-dimensional state, and the single-sided QD-cavity
system can also be used to implement the quantum information process with this
normalization of two DOFs.
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