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How effective are governmental incentives to achieve widespread vaccination coverage so as to prevent
epidemic outbreak? The answer largely depends on the complex interplay among the type of incentive,
individual behavioral responses, and the intrinsic epidemic dynamics. By incorporating evolutionary games
into epidemic dynamics, we investigate the effects of two types of incentives strategies: partial-subsidy policy
in which certain fraction of the cost of vaccination is offset, and free-subsidy policy in which donees are
randomly selected and vaccinated at no cost. Through mean-field analysis and computations, we find that,
under the partial-subsidy policy, the vaccination coverage depends monotonically on the sensitivity of
individuals to payoff difference, but the dependence is non-monotonous for the free-subsidy policy. Due to
the role models of the donees for relatively irrational individuals and the unchanged strategies of the donees
for rational individuals, the free-subsidy policy can in general lead to higher vaccination coverage. Our
findings indicate that any disease-control policy should be exercised with extreme care: its success depends
on the complex interplay among the intrinsic mathematical rules of epidemic spreading, governmental
policies, and behavioral responses of individuals.

V
accination is one of the most effective tools for reducing morbidity and mortality associated with infectious
diseases. In spite of the fact that voluntary vaccination may be infeasible to prevent pandemics1, global
vaccination programs for measles, pertussis, and polio have reduced the prevalence of these diseases

dramatically over the last decades2,3. However, vaccination represents a long-standing social dilemma for public
health administration, because voluntary vaccination often cannot result in sufficiently strong herd immunity for
disease eradication4 but compulsory vaccination may result in infringement of civil rights. In general, vaccination
protects not only those who are vaccinated but also their neighbors. As a result, many others in the community
can also be benefited, including those who have less incentive to be vaccinated. This scenario naturally leads to the
‘‘free-riding’’ problem commonly observed in public goods studies5. However, in voluntary vaccination, an
individual’s decision-making with respect to vaccination may depend on many factors such as the perceived risk
of infection, cost of infection, cost of vaccination, and the reactions of other vaccinated individuals. Generally, it
has been demonstrated that a voluntary vaccination policy without incentives can hardly be effective to eradicate
vaccine-preventable diseases6–17. A possible resolution of the social dilemma with respect to vaccination is for the
government or health organizations to implement some incentive programs, e.g., subsidy and insurance policies.
In this regard, many quantitative studies addressed the effects of the incentive programs on disease eradication,
and some optimal strategies were proposed18–20.

There has been a great deal of recent interest in understanding the effects of incentives through mathematical
modeling and computations. One general finding is that external incentives may alter the vaccination decisions of
the broader public, thereby reducing the effectiveness of such programs or even making them detrimental. For
example, by constructing an individual-level adaptive decision-making model based on the minority game
theory, Vardavas et al.14 found that severe epidemics cannot be prevented unless vaccination programs offer
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incentives. While incentive policies such as offering several years of
free vaccines to individuals who pay for one year of vaccination can
substantially reduce the frequency of severe epidemics, incentive
programs that provide free vaccination to families could increase
the frequency of severe epidemics21. In Ref. 22, Wells et al. showed
that the effects of the so-called immunization strategies to vaccinate
superspreader can be weakened or counteracted when other indivi-
duals make vaccination decisions about influenza based on the self-
interested principle. In Ref. 23, authors assumed that farmers make
decisions on whether or not to vaccinate their own herd based on
self-interested rules such as the payoff maximization rule10,24 and
showed that voluntary vaccination cannot eradicate disease among
herd. Two incentive programs were then considered, namely subsid-
izing vaccination and compensating losses. It was found that the
former can lead to a marked suppression of the disease, but cannot
completely eradicate it. On the contrary, the compensating losses
strategy has little impacts on the reduction of diseases. Recently,
the effects of two types of subsidy policies, free- and partial-subsidy
policies, were studied25 based on the self-interested rule. The finding
is that, due to the ‘‘herd immunity’’ effect, the free-subsidy policy on
promoting the vaccination coverage is not as effective as the partial-
subsidy policy.

This work is motivated by the intuition that human behavioral
responses, naturally, would have some significant impact on the
complex dynamical interplay among epidemic spreading, vaccina-
tion, and incentives. When facing the outbreak of an epidemic, it is
often difficult or even impossible for individuals to act with perfect
information to assess their chances of becoming infected. In this case,
individuals may adopt new strategies through learning. The imita-
tion (learning) rule has been fully studied in evolutionary game
theory26–28, and also been incorporated in many vaccination
decision-making models, with the general finding that the rule can
yield results different from those based on the self-interested
principle3,6,12.

In this paper, we investigate how the imitation rule affects two
previously studied subsidy policies: (1) the partial-subsidy policy,
where a certain proportion of subsidy is distributed to all vaccinated
individuals and (2) the free-subsidy scenario in which, given the
limited amount of subsidy, a certain number of individuals are ran-
domly vaccinated without any personal cost. We focus on a flu-like
vaccination and develop an epidemiological game-theoretic model
by integrating a classical epidemic-spreading process and the subsidy
policy into a simple agent-based model. Our analysis and computa-
tions indicate that the cost of vaccination and strength selection in
the imitation rule play a vital role in the effectiveness of the subsidy
policies. More specifically, for small cost of vaccination, the vaccina-
tion coverages for the two policies increase with the selection
strength b characterizing the rational/cautious behaviors in the
imitation rule. On the contrary, for large cost of vaccination, increas-
ing the value of b gives rise to different results for the two subsidy
policies: for the partial policy, the vaccination coverage increases
with b when the proportion of subsidy is small and the opposite case
occurs when the proportion of subsidy is considerable. For the free-
subsidy policy, the vaccination coverage is non-monotonically
dependent on the value of b. Owing to the role models of donees,
the vaccination coverage for the free-subsidy case is generally higher
than that of the partial-subsidy case. These results provide insights
into the role of subsidy policies associated with vaccination in pre-
venting large-scale epidemic outbreak.

Results
Model description and analysis are described in Methods. The para-
meter b in Eq. (1) is the strength of selection (0 , b , ‘), which
characterizes the sensitivity of individuals in response to payoff dif-
ferences, where a larger value of b means the individuals are more
rational (less random) with respect to making decisions about vac-

cination. We first present results with homogeneous small-world
networks (HSWN)29,30, where we study the effects of different values
of b on the two subsidy policies, as shown in Figs. 1 and 2 for c 5 0.5
and c 5 0.9 (we have checked the smaller values of c and found that
the phenomenon persists. For example, the case of c 5 0.2 is given in
Fig. S1.), respectively, where c is the cost of vaccination [Eq. (1)]. We
observe distinct effects on the vaccination coverage (V) and the epi-
demic size (R) for different costs of vaccination.

For small vaccination cost (c 5 0.5, Fig. 1), as b is increased, the
vaccination coverages (V) for the partial- and free-subsidy policies
decrease monotonically and then reach a constant, leading to an
increase in the epidemic size. For small values of b, the blind imita-
tion behaviors of individuals in combination with small vaccination
cost give rise to a relatively high level of vaccination coverage, result-
ing in a quite low level of the epidemic size. When b becomes larger,
individuals are more sensitive to the payoff difference. In this case, on
average those taking risk can get higher payoff than those taking
vaccination since the epidemic size is small. As a result, more indi-
viduals tend to imitate the strategy of free riders. Eventually, the
vaccination coverage is reduced, leading to an increase in the epi-
demic size. If the vaccination coverage keeps decreasing, then the
epidemic size would increase continuously, generating greater risk
for the non-vaccinators. Driven by rational thinking, certain indivi-
duals would choose to be vaccinated, leading to a turn-around in the
number of vaccinated individuals. The two competing factors,
namely higher payoff and risk, eventually make the vaccination cov-
erage to converge to a stable level for large values of b. The stable,
equilibrium value of the vaccination coverage can be theoretically
predicted based on the mean-field approximation [Eq. (18) and Eq.
(20) in Methods]. The insets of Fig. 1 give the differences in the
vaccination coverage and epidemic size between the partial- and
free-subsidy policies, VP 2 VF and RP 2 RF, respectively, obtained
from direct numerical simulation and theory. We observe reasonable
agreement between numerics and theory.

Results for relatively large vaccination cost (c 5 0.9) are more
complicated than those for c 5 0.5, as shown in Fig. 2. In particular,
for the partial-subsidy policy, the vaccination coverage increases with
b when the subsidy is not substantial [e.g., d 5 0.1 in Fig. 2(a1) and
d 5 0.4 in Fig. 2(a2)], where d is the fraction of total vaccination cost
contributed by subsidy. For small values of b, individuals are not
quite rational, so they are not willing to take vaccination due to the
high cost, generating a relatively low level of vaccination coverage
and, consequently, larger epidemic size. For sufficiently large values
of b, individuals become more rational and are able to reason that the
benefits of taking vaccination can significantly overweigh its cost. In
this case, many nodes (including some hub nodes) choose to be
vaccinated. The vaccination coverage reaches a stable level for very
large values of b. However, for larger values of d, the vaccination
coverage decreases with b, as shown in Fig. 2(a3) for d 5 0.7. Note
that a large value of d means small cost of vaccination (c(1 2 d) 5

0.27), so the behaviors are similar to those for c 5 0.5.
For the free-subsidy policy, the vaccination coverage depends

upon the value of b in a non-monotonic fashion. For small values
of b, due to the existence of donees (vaccinated without personal
cost), there is probability that certain individuals imitate these
donees’ strategy even though the vaccination cost is large. As these
individuals become more rational (larger value of b), they tend to
switch their vaccination strategy due to the large cost, leading to a
sharp decline in the vaccination coverage and a rapid increase in the
epidemic size correspondingly. As the vaccination coverage is
increased, the risk of infection is reduced, and eventually the cov-
erage is maintained at a fixed level for large values of b. The insets in
Fig. 2 show the values of VP 2 VF and of RP 2 RF from numerical
simulation and theory with reasonable agreement.

From Figs. 1 and 2, we can observe an interesting phenomenon.
Specifically, the vaccination coverage for the free-subsidy case is
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larger than that for the partial-subsidy case in most cases, indicating
that the former policy is more effective at controlling epidemic out-
breaks. Qualitatively, this phenomenon can understood, as follows.
In the small b regime, although a blind imitation behavior exists in

both cases, the donees in the free-subsidy case never switch their
strategies, leading to a larger probability for them to allure their
neighbors into taking vaccination. This can be verified more expli-
citly by comparing the average fractions of imitated vaccinators

Figure 1 | Quantitative characterization of impacts of the selection strength b on epidemic spreading for partial- and free-subsidy policies for small
vaccination cost. For homogeneous small-world networks (HSWN) and cost of vaccination c 5 0.5, vaccination coverage (V, top panels) and epidemic

size (R, bottom panels) for the two subsidy policies for d 5 0.1, 0.4 and 0.7 (corresponding to the left, central, and right panels, respectively). Insets in the

top panels show the difference in the vaccination coverage, VP 2 VF, between the partial- and free-subsidy policies. Insets in the bottom panels display the

difference in epidemic size, RP 2 RF, between the two subsidy policies. Blue squares in the insets are simulation results, and the red circles are the

theoretical predictions based on the mean-field method (see analysis in Methods). Other parameters are: network size N 5 1000, transmission rate

l 5 0.072, and average degree �k~10.

Figure 2 | Impacts of the selection strength b on partial- and free-subsidy policies for large vaccination cost. For HSWN and c 5 0.9, vaccination

coverage V (top panels) and epidemic size R (bottom panels) for the two subsidy policies for different values of d (d 5 0.1, 0.4 and 0.7, corresponding to

left, central, and right panels, respectively). Other parameters are the same as for Fig. 1.
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(excluding donees) among donees’ and non-subsidized vaccinators’
neighbors, denoted by �Vd and �Vnd , respectively, for the free-subsidy
case, as shown in Fig. 3. We observe that, for different values of c, the
value of �Vd is no less than that of �Vnd , suggesting that the donees act
as the ‘‘role models’’ and are more appealing than other vaccinators
in attracting their neighbors to take vaccination. To gain further
insights, we show in Fig. 4 snapshots of the states of individuals in
a square lattice with periodic boundary conditions for the two pol-
icies for c 5 0.5, b 5 1.0 and d 5 0.4, where the vaccination coverage
(green) in the partial-subsidy case is lower than the free-subsidy case,
leading to larger epidemic size (yellow) in the former case. As specu-
lated, for the free-subsidy case [Fig. 4(b)], the freely vaccinated
donees (red) are randomly distributed in the square lattice and they
have many surrounding imitated vaccinators, forming vaccination
clusters, and leading to relatively large vaccination coverage as com-
pared with the partial-subsidy case [Fig. 4(a)].

For intermediate values of b, individuals possess some degree of
rationality, so their imitation behaviors are affected by the value of c
to certain extent. For example, for c 5 0.5 (top panels of Fig. 1), as b is
increased, while there is a sharp decrease in the vaccination coverage
for the free-subsidy case, the coverage is still larger than that for the
partial-subsidy case due to the relatively small value of c. However,
for c 5 0.9 (top panels of Fig. 2), the behaviors are different.
Especially, when the values of d are not too large [Figs. 2(a1–a2)],
the vaccination coverage for the free-subsidy case is lower than that
for the partial-subsidy case. There are two reasons for this. First, the
fraction of donees in the population is small, as shown in Fig. 5(a)
(red and black lines with d 5 0.1 and d 5 0.4, respectively). Second,
large cost discourages other individuals from getting vaccinated. For
example, from Fig. 5(b), it can be seen that the fractions of the
imitated vaccinators are about 0.1 for d 5 0.1 and 0.17 for d 5 0.4

for b < 3.0. For large values of d, the fraction of donees in the
population is large, as shown in Fig. 5(a) (blue line). In this case,
the vaccination coverage for the free-subsidy case is still larger than
that for the partial-subsidy case even though the fraction of imitated
vaccinators is very small [blue line in Fig. 5(b)]. These results heur-
istically explain why, under the free-subsidy policy, the vaccination
coverages for d 5 0.1 [Fig. 2(a1)] and d 5 0.4 [Fig. 2(a2)] are smaller
than that under the partial-subsidy policy but this phenomenon does
not occur for d 5 0.7 [Fig. 2(a3)].

In the large b regime (e.g., b $ 40 in Figs. 1 and 2), the vaccination
coverage for the free-subsidy case is again larger than that for the
partial case, regardless of the values of d and c. In this regime, indi-
viduals are extremely sensitive to the payoff difference. From Eq. (1),
the probabilities for an individual to switch from a vaccinator to a

Figure 3 | The role of donees in epidemic dynamics under free-subsidy policy. Average fractions of imitated vaccinators among neighbors of donees ( �Vd)

and among non-subsidized vaccinators (�Vnd) for c 5 0.5 (top panels) and c 5 0.9 (bottom panels). Other parameters are the same as for Fig. 1.

Figure 4 | Typical snapshots of stationary state configuration in a square
lattice. Panels (a) and (b) are for partial- and free-subsidy policies,

respectively. Other parameters: network size N 5 100 3 100, c 5 0.5,

b 5 1.0 and d 5 0.4. Blue, green, yellow, and red points represent free-

riders (not vaccinated and healthy), imitated vaccinators, infected

individuals, and freely vaccinated donees, respectively.
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free rider and from being infected to a vaccinator are unity, and the
other probabilities in the equation are zero insofar as 0 , c , 1. As a
result, the vaccination coverages for the two subsidy cases are not
dependent upon the value of c any more. Consequently, the coverage
for the partial-subsidy case no longer changes with the value of d
either, because of the condition 0 , c(1 2 d) , 1. (Numerical
support for this can be found in Figs. 1 and 2, where the vaccination
coverage for the partial-subsidy case is about 0.37.) Under the free-
subsidy policy, if there are no donees in the population (i.e., p 5 0),
the vaccination coverage should be approximately the same as that
for the partial-subsidy case. Furthermore, for the free-subsidy case,
since some donees never switch their strategies and thus are capable
of attracting some of their neighbors to take vaccination, a higher
level of vaccination coverage would arise. This reasoning can also be
verified theoretically (see Methods).

For even larger values of b, the equilibrium solution �x in Eqs. (18)
and x̂ in Eq. (20) can be obtained by using Eqs. (12) [or Eq. (17)] and
(19). In particular, Eq. (18) shows that the vaccination coverage for
the partial-subsidy case is not dependent upon the value of c or d.
That is, when individuals become completely rational, the partial-
subsidy policy has little effect on the epidemic dynamics.
Nevertheless, for the free-subsidy case, Eq. (20) stipulates that the
vaccination coverage is larger and in fact increases with the fraction
of donees, p, where p ; d ? VP, with VP being the vaccination cov-
erage for the partial-subsidy case. This gives theoretical support for
the observation that the donees under free-subsidy policy can
enhance the level of vaccination when individuals are completely
rational. Figure 6 shows the simulation results for b 5 50, together
with the theoretical prediction from Eqs. (18) and (20). It can be seen
that the vaccination coverage for the partial-subsidy case is nearly
constant but the coverage for the free-subsidy case increases with the
value of d.

Figures 7 and 8 show the results from mean-field theory
(Methods) for a systematic comparison of the effects on epidemic
dynamics of the two distinct subsidy policies. In particular, Fig. 7
compares the effects of the two subsidy policies with respect to var-
iations in the parameter plane (b-d) for c 5 0.5 and c 5 0.9. From
Fig. 7(a1), one can observe that, for c 5 0.5, the vaccination coverage
for the partial-subsidy policy is no larger than that for the free-sub-
sidy case, rendering inefficient control of outbreak of epidemics
using the partial-subsidy policy [Fig. 7(b1)]. For c 5 0.9, the vaccina-
tion coverage for the partial-subsidy case can exceed that for the free-
subsidy case but only for the small d regime, as shown in Figs. 7(a2)
and 7(b2). In Fig. 8, the comparison is carried out in the b-c para-
meter plane for d 5 0.1 and d 5 0.7, where it can be seen that the
vaccination coverage for the partial-subsidy case can exceed that for
the free-subsidy case only for c close to unity. However, the difference
diminishes when d becomes large, as shown in Fig. 8(b). Taken
together, these results suggest that the free-subsidy policy can in

general control epidemic outbreak more effectively than the par-
tial-subsidy policy, except for large values of c and intermediate
values of b.

Real complex networked systems often possess certain degree of
skewness in their degree distributions, typically represented by some
scale-free topology. We thus implement our model of human-beha-
vior based epidemic dynamics on the Barabási-Albert (BA) scale-
free31 networks to assess the generality of the phenomena uncovered
for regular and homogeneous networks. Figures 9 and 10 illustrate
the effects of selection strength b under the two subsidy policies for
c 5 0.5 and c 5 0.9 (c 5 0.2 is given in Fig. S2.), respectively. (Results
from the configuration network32 are also given in Figs. S3–S5.) We
observe essentially similar results to those for HSWN networks
(Fig. 1 and Fig. 2). Theoretical results under the two subsidy policies
based on Eqs. (3)–(9) are given in the insets of Figs. 9 and 10. We
observe a reasonable agreement between theory and numerics.

Discussion
The spontaneous behavioral responses of individuals to epidemic
spreading have a significant impact on its dynamics. In the past
decade, there was a great deal of interest in the development of
mathematical models attempting to close the epidemic spreading
R behavioral changes R epidemic-spreading feed-back loop33–44.
In the real world, various subsidy policies are often devised to
encourage the individuals to actively participate in disease-preven-
tion programs. However, governmental incentive programs can alter
the behavioral responses of individuals, reducing the effectiveness of
these programs and even leading to detrimental consequences.
Studies of epidemic models should then take into account the inter-
play among spreading dynamics, individual behaviors, and public
policies to yield insights into the complex dynamical process with
useful and predictive results.

We propose a vaccination-decision model based on evolutionary
game theory to assess the effectiveness of two realistic subsidy pol-
icies, the free- and partial-subsidy policies, in a quantitative manner.
In particular, using a physically reasonable parameter, the selection
strength, we uncover the complex and distinct roles played by the two
policies in controlling epidemic spreading. When the partial-subsidy
policy is imposed, for small cost of vaccination, individuals’ being
more rational can lead to smaller vaccination coverage. For high
vaccination cost, as the individuals become more rational the vac-
cination coverage tends to increase. Under the free-subsidy policy, at
small vaccination cost the eventual extent of vaccination exhibits

Figure 5 | Fractions of imitated vaccinators and donees under free-
subsidy policy. For c 5 0.9, fractions of donees (a) and imitated

vaccinators (b) versus b for different values of d. Other parameters are the

same as for Fig. 1.

Figure 6 | Stable vaccination coverages under free- and partial-subsidy
policy for very large value of b. For b 5 50, numerically obtained

difference in the vaccination coverages between the two cases, VF 2 VP,

and the corresponding theoretical prediction from Eqs. (16)–(18). Other

parameters are the same as for Fig. 1.
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similar behavior with respect to variations in the individual ration-
ality to that under the partial-subsidy policy. However, for high
vaccination cost, a complex chain of relationships emerges.
Specifically, for a population with relatively less rational individuals,
high vaccination coverage can arise. Having a more rational popu-
lation of individuals can result in a sharp decline in the vaccination

coverage. For a population of extremely rational individuals, vaccina-
tion can be substantially favored again. This counterintuitive phe-
nomenon, namely, under the free-subsidy polity relatively high
vaccination coverages can occur in a population of either very irra-
tional or very rational individuals, can be explained by focusing on a
natural type of behavioral responses observed commonly in human

Figure 9 | Impacts of the selection strength b on epidemic dynamics for scale-free networks for small vaccination cost. Vaccination coverage V (top

panels) and epidemic size R (bottom panels) under the two subsidy policies for scale-free networks for c 5 0.5 and d 5 0.1, 0.4 and 0.7 (corresponding to

the left, central, and right panels, respectively). Insets in top and bottom panels show the difference in the vaccination coverage, VP 2 VF, and the

difference in the final epidemic size, RP 2 RF, respectively, between the two subsidy policies, where the blue squares and red circles are simulation results

and mean-field based theoretical prediction (Methods), respectively. Other parameters are: N 5 1000, l 5 0.18, and average degree Ækæ 5 6.

Figure 10 | Impacts of the selection strength b on epidemic dynamics under the partial- and free-subsidy policies for scale-free networks for large
vaccination cost. Vaccination coverage V (top panels) and epidemic size R (bottom panels) for the two subsidy policies for c 5 0.9 and d 5 0.1, 0.4 and 0.7

(corresponding to left, central, and right panels, respectively). Other parameters are the same as those for Fig. 9.
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societies: imitation. For irrational individuals, blind imitation beha-
viors promote the role models of the donees under the free-subsidy
policy, leading to a higher vaccination coverage. For very rational
individuals, the existence of the donees leads to a higher stable equi-
librium in the vaccination coverage under the free-subsidy than
under the partial-subsidy policy. All these results have been estab-
lished by theoretical analysis and extensive computation for both
homogeneous and heterogeneous complex networks, with good
agreement between the respective results. Taken together, a free-
subsidy strategy to control disease can be more effective than a par-
tial-subsidy strategy, but the opposite holds if the level of rationality
in the society is neither too low nor too high.

Our efforts may help push one step forward the field of quantitat-
ive analysis and mathematical modeling of epidemic spreading and
disease control, an problem of paramount importance and broad
interest in the modern time where rapid epidemic spreading on a
global scale represents one of the most dangerous threats to the
human race. Our findings reveal that counterintuitive phenomena
can arise due to the complex interplay among epidemic dynamics,
human behaviors, and governmental policies. Especially, the making
and execution of any disease-control policy should be exercised with
extreme caution: its success depends not only on a number of rel-
evant factors but, more importantly, on their dynamical interplay.
Our work provides considerable insights into the possible conse-
quences of such interplay, calling for further efforts in this interdis-
ciplinary field.

Methods
Model. Taking into account periodic outbreaks of flu-like diseases and the limited
effectiveness of vaccines, we study models with two dynamical ingredients: seasonal
updating and pre-emptive vaccination, in which individuals decide whether or not to
get vaccinated before each epidemic season. Based on a previously studied model6,45,
we integrate the two dynamical ingredients by generating an iterative system of a two-
stage process. Firstly, individuals make decisions during a yearly vaccination
campaign - the vaccination stage. A vaccinated individual pays a cost CV that depends
on issues such as the time needed to get vaccinated (e.g., via public health services)
and potential side effects46–48. For simplicity, we assume that the vaccine provides full
protection against the infection in the next epidemic season. The second stage is the
epidemic season, during which each susceptible and non-vaccinated individual has
certain probability to become infected sometime during the season. In this stage, the
epidemic strain infects an initial number I0 of individuals, and the disease spreads
according to susceptible-infected-resistant/vaccinated (SIR) dynamics, with daily
transmission rate l and recovery rate m. The epidemic continues until there are no
more newly infected individuals. An individual who gets infected during the epidemic
season pays a cost CI. Without loss of generality, we rescale the payoff by defining the
relative cost of vaccination as c 5 CV/CI. Generally, the vaccination cost should be
smaller than the cost of infection so that 0 , c , 1; otherwise, there is no incentive to
be vaccinated. Those individuals who are neither vaccinated nor infected pay no cost,
so they are the free riders.

Once the epidemic ends, individuals update their vaccination decisions for the next
season by imitating the strategy of neighbors who have gained higher payoff. A
commonly used updating strategy in evolutionary-game theory is one given by the
Fermi rule. By this rule, an individual, say i, updates his/her vaccination strategy by
randomly choosing one of the immediate neighbors, say j, compares their costs (or
payoff), and adopts the strategy of j with the following probability as determined by
the payoff difference49:

W si/sj
� �

~
1

1zexp {b Pj{Pi
� �� � , ð1Þ

where si 5 1 or 0 denotes the vaccination choice for individual i: either vaccinated or
not, and Pi is the current payoff of individual i at season t. Without any subsidy,
according to the costs of vaccination and infection, we have

Pi~

{c, vaccination;

{1, infected;

0, f ree-rider,

8><
>: ð2Þ

where b is a parameter characterizing the rationality of the individuals. In particular,
irrational and very rational individuals correspond to b=1 and b?1, respectively.

We implement the above epidemiological/game-theoretic model on HSWNs,
constructed by random link rewiring from a regular network such that the degree of
each node remains unchanged. In particular, a pair of edges, A 2 B and C 2 D, are
randomly selected. They are then rewired to generate new link pairs A 2 D and B 2 C.
Multiple edges connecting the same pair of nodes are prohibited. The process

continues for PE steps, where E is the number of edges in the network and P char-
acterizes the randomness of the network. For P . 1 the network topology is essentially
random30. (To be concrete, we set P 5 5.0.). We also use the BA scale-free networks31.
In our simulations, the initial state is composed of equal fractions of vaccinated and
non-vaccinated individuals, who are randomly distributed throughout the entire
population. The number of initially infected individuals is I0 5 5. We calibrate the
value of disease transmission probability to ensure that the infection risk in an non-
vaccinated population is equal across all possible contact configuration. The trans-
mission rate is chosen to be l 5 0.072 per day per person for HSWN with average
degree 10, and l 5 0.18 per day per person for BA scale-free network with average
degree 6. The value of m is chosen to be m 5 0.25 per day for all contact pairs to ensure
that the final infection size is about 0.96,25. We carry our 100 independent statistical
realizations and, for each realization, the simulation is run for 3000 iterations, where
the last 1000 iterations are used to calculate the statistical quantities about the epidemic.

Steps are also taken to ensure fair comparison between the two types of subsidy
policies. In particular, for partial-subsidy policy, each vaccinated individual has his/
her vaccination cost reduced by the relative amount d, so the actual cost paid by the

individual is c(1 2 d). The total amount of subsidy is cd
XT

t~1
NV tð Þ, where T is the

total number of iterations and NV (t) is the total number of vaccinated individuals at
season t. Under the free-subsidy policy, the total amount of subsidy is equally allo-
cated to each vaccination stage, so the number of freely vaccinated donees at each

stage is cd
XT

t~1
NV tð Þ

.
Tcð Þ~d

XT

t~1
NV tð Þ=T . Since, in this case, the number of

donees at each vaccination stage is unchanged, we do not choose donees randomly at
the following vaccination stages. That is, if one individual is selected as a donee for the
initial season t 5 1, then the individual will be a donee for subsequent seasons.

Analysis of epidemic dynamics in networks. For a complex network with degree
distribution P(k), we let Sk(t), Ik(t), Rk(t) be the densities of susceptible, infected and
recovery nodes of degree k at time t, respectively, where Sk(t) 1 Ik(t) 1 Rk(t) ; 1.
Under the mean-field approximation, the time evolutions of the densities are given by
the following set of coupled differential equations50:

dSk tð Þ
dt

~{lkSk tð ÞH tð Þ,

dIk tð Þ
dt

~lkSk tð ÞH tð Þ{mIk tð Þ,

dRk tð Þ
dt

~mIk tð Þ,

ð3Þ

where the factor H tð Þ~
X

k’P k’jkð ÞIk’ tð Þ represents the probability that any given
link points to an infected node. In absence of any degree correlations, H(t) is given
by51

H tð Þ~
X

k

kP kð ÞIk tð Þ= kh i:

Let xk be the density of vaccinated nodes with degree k before the epidemic season.
We have

dIk tð Þ
dt

~lk 1{xk{Ik tð Þ{Rk tð Þð ÞH tð Þ{mIk tð Þ,

dRk tð Þ
dt

~mIk tð Þ,
ð4Þ

After each epidemic season, one can obtain the degree-dependent fraction of epi-
demic size Rk(‘).

Without any subsidy policy, the payoff of each individual after each SIR epidemic
season is given by Eq. (2). Specifically, for a vaccinated individual (V), the payoff is PV

5 2c. For an non-vaccinated and healthy individual (H), we have PH 5 0. For an
non-vaccinated and infected individual (I), the payoff is PI 5 21. Individuals are
allowed to switch their vaccination strategies with probability given by Eq. (1).

Under the partial-subsidy policy, a vaccinated individual’s payoff is modified as
PSV 5 (1 2 d)c, where SV stands for subsidized vaccinators. In this case, whenever an
SV changes to H or I state, the variable xk is decreased according to

x{
k ~

xk

kh i
X

k

kP kð ÞRk ?ð ÞWSV?I

z
xk

kh i
X

k

kP kð Þ 1{Rk ?ð Þ{xkð ÞWSV?H ,

ð5Þ

where the first and second terms on the right-hand side of Eq. (5) denote the tran-
sitions from vaccinators to infected individuals and from vaccinators to free-riders,
respectively. In the opposite case where an individual in H or I state is changed to
being an SV individual, xk is increased according to

xz
k ~

Rk ?ð Þ
kh i

X
k

kP kð ÞxkWI?SV

z
1{Rk ?ð Þ{xkð Þ

kh i
X

k

kP kð ÞxkWH?SV :

ð6Þ
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Combining Eqs. (5) and (6), we can write the time evolution of the vaccination
coverage xk as

dxk tð Þ
dt

~xz
k {x{

k : ð7Þ

Here, to avoid confusion, we use t to specify the epidemic season and t as the time
variable for epidemic seasons. The equilibrium vaccination coverage and the final
epidemic size can be calculated by numerically solving Eqs. (4) and (7) iteratively.

On average, the total amount of subsidy at each vaccination stage is Nxcd for the
partial-subsidy case with x~

X
k

P kð Þxk , so the fraction of freely vaccinated donees

under the free-subsidy policy is p 5 Nxcd/(Nc) 5 xd. Similar to Eq. (5), the reduction
in x{

k , with freely vaccinated donees included, can be written as:

x{
k ~

xk{p
kh i

X
k

kP kð ÞRk ?ð ÞWV?Iz
X

k

kP kð Þ 1{Rk ?ð Þ{xkð ÞWV?H

( )
, ð8Þ

where xk 2 p is the fraction of the individuals with degree k that can change their
vaccination strategy. Meanwhile, it is not necessary to replace p by pk since the donees
are randomly selected. The gain of xz

k for the free-subsidy case is given by

xz
k ~

Rk ?ð Þ
kh i

X
k

kP kð ÞxkWI?V

z
1{Rk ?ð Þ{xkð Þ

kh i
X

k

kP kð ÞxkWH?V :

ð9Þ

For HSWNs under the partial-subsidy policy, Rk(‘) and xk in Eqs. (5) and (6) can be
replaced by R(‘) and x, respectively. By using Eq. (13) below [R(‘) 5 (1 2 x)f(x)], we
can simplify Eqs. (5) and (6) as

x{~x 1{xð Þ f xð ÞWSV?Iz 1{f xð Þð ÞWSV?H½ �, ð10Þ

and

xz~x 1{xð Þ f xð ÞWI?SV z 1{f xð Þð ÞWH?SV½ �: ð11Þ

After some straightforward algebra, we have

dx tð Þ
dt

~x 1{xð Þ 1{f xð Þ½ � tanh
b

2
PSV {PHð Þ

� �
zf xð Þ tanh

b

2
PSV {PIð Þ

� �� 	

~x 1{xð Þ 1{f xð Þ½ � tanh
b

2
{c 1{dð Þð Þ

� �
zf xð Þ tanh

b

2
{c 1{dð Þz1ð Þ

� �� 	
,

ð12Þ

where f(x) is the probability that a susceptible individual finally gets infected in a
population with vaccine coverage x, which is given by

f xð Þ~ R ?ð Þ
1{x

: ð13Þ

The final epidemic size, R(‘), can then be determined by

dI tð Þ
dt

~l�k 1{x{I tð Þ{R tð Þð ÞI tð Þ{mI tð Þ,

dR tð Þ
dt

~mI tð Þ,
ð14Þ

with �k being the degree of each node. Using a similar method of analysis for well-
mixed network4,6, we obtain the following self-consistent equation from Eq. (14):

R ?ð Þ~ 1{xð Þ 1{e{R0 R ?ð Þ
h i

, ð15Þ

where R0~�kl



m is the basic reproduction ratio of the epidemic. Combining Eqs. (13)
and (15), we have

x~1z
ln 1{f xð Þð Þ

R0f xð Þ : ð16Þ

Setting the right-hand side of Eq. (12) to be 0, we get

f xð Þ~
tanh {b

2 c 1{dð Þ
� �

tanh {b
2 c 1{dð Þ

� �
{ tanh { b

2 c 1{dð Þ{1ð Þ
� � : ð17Þ

Substituting Eq. (17) into Eq. (16), we can obtain the steady vaccination coverage.
For large values of b, most values of c lie in the interval 1/b , (1 2 d)c , 1 2 1/b

since 1/b R 0. In this case, we have

f xð Þ~1=2 tanh
{b

2
c 1{dð Þ

 �
?{1 and tanh {

b

2
c 1{dð Þ{1ð Þ

 �
?1

� �
. Then,

by substituting f(x) 5 1/2 into Eq. (16) we have the following equilibrium solution
under the partial-subsidy policy:

�x~1{
2 ln 2

R0
: ð18Þ

For HSWNs under the free-subsidy policy, by simplifying Eqs. (8) and (9) and writing
them as Eq. (12), we have

dx tð Þ
dt

~x 1{xð Þ 1{f xð Þð ÞWH?V zf xð ÞWI?V½ �

{ x{pð Þ 1{xð Þ 1{f xð Þð ÞWV?Hzf xð ÞWV?I½ �:
ð19Þ

We can obtain the formula of f(x) by letting the right-hand side of Eq. (19) be 0, and
then substituting it into Eq. (16).

The steady-state vaccination coverage for the free-subsidy case can be numerically
solved too. Especially, for large values of b, and c satisfying 1/b , c , 1 2 1/b, the
switch probabilities in Eq. (19) can be approximated as: WHRV 5 0, WIRV 5 1,
WVRH 5 1 and WVRI 5 0, so we have f(x) 5 (x 2 p)/(2x 2 p). Substituting it into Eq.
(16), we obtain the following self-consistent equation for the equilibrium value x̂ for
the free-subsidy case as

x̂~1z
2x̂{pð Þ ln x̂

2x̂{p

R0 x̂{pð Þ : ð20Þ
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