SCIENTIFIC REPORTS

OPEN

SUBJECT AREAS: ENTOMOLOGY TAXONOMY SYSTEMATICS PHYLOGENETICS

Received 28 November 2013

> Accepted 13 June 2014 Published 3 July 2014

Correspondence and requests for materials should be addressed to P.-E.L. (phaikeem@um. edu.my)

Molecular phylogeny of *Orthetrum* dragonflies reveals cryptic species of *Orthetrum pruinosum*

Hoi Sen Yong¹, Phaik-Eem Lim^{1,2}, Ji Tan^{1,2}, Yong Foo Ng³, Praphathip Eamsobhana⁴ & I. Wayan Suana⁵

¹Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia, ²Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia, ³Centre for Insect Systematics, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43000 Bangi, Selangor D.E., Malaysia, ⁴Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, ⁵Faculty of Science and Mathematics, Mataram University, Mataram, Indonesia.

Dragonflies of the genus *Orthetrum* are members of the suborder Anisoptera, family Libellulidae. There are species pairs whose members are not easily separated from each other by morphological characters. In the present study, the DNA nucleotide sequences of mitochondrial and nuclear genes were employed to elucidate the phylogeny and systematics of *Orthetrum* dragonflies. Phylogenetic analyses could not resolve the various subfamilies of the family Libellulidae unequivocally. The nuclear 28S rRNA gene is highly conserved and could not resolve congeneric species of *Orthetrum*. Individual mitochondrial genes (COI, COII, and 16S rRNA) and combination of these genes as well as the nuclear ITS1&2 genes clearly differentiate morphologically similar species, such as the reddish species pairs *O. chrysis* and *O. testaceum*, and the bluish-coloured species *O. glaucum* and *O. luzonicum*. This study also reveals distinct genetic lineages between *O. pruinosum schneideri* (occurring in Malaysia) and *O. pruinosum neglectum* (occurring north of Peninsular Malaysia from India to Japan), indicating these taxa are cryptic species.

Ragonflies of the genus Orthetrum Newman, 1833 are members of the suborder Anisoptera, family Libellulidae. The genus contains some 61 species spread across the Old World¹. Among these Orthetrum dragonflies, there are species pairs whose members are not easily separated from each other by morphological characters, e.g. the reddish-coloured species O. chrysis and O. testaceum, and the bluish-coloured species O. glaucum and O. luzonicum.

The Crimson-tailed Marsh Hawk Orthetrum pruinosum (Burmeister, 1839) is a widespread species occurring from west India to Japan and south to Malaysia and the Sunda Islands. The subspecies in Malaysia is O. p. schneideri Förster, 1903 and that north of Peninsular Malaysia (India to Japan) is O. p. neglectum (Rambur, 1842).

The DNA nucleotide sequences of mitochondrial and nuclear genes have been employed to elucidate the phylogeny and systematics of *Orthetrum* dragonflies^{2,3}. To-date the most comprehensive phylogenetic study of *Orthetrum* dragonflies involves all the nine Japanese species². In the present study, the DNA nucleotide sequences of mitochondrial and nuclear genes were employed to elucidate the phylogeny and systematics of *Orthetrum* dragonflies. This study, covering a more extensive taxon sampling, provides a new insight to the evolutionary relationships of *Orthetrum* dragonflies. The molecular phylogeny based on ITS1&2, COI, COII and 16S nucleotide sequences, reveals the occurrence of cryptic species in *O. pruinosum*.

Results

Aligned sequences and genetic divergence. The total length for each aligned sequences for various molecular markers and their parsimony information are sumarised in Supplementary Table 1. The uncorrected 'p'-distance between *Orthetrum* species based on 16S rDNA, COI, combined COI + 16S rDNA, combined COI + COII + 16S rDNA, ITS1&2, and combined COI + COII + 16S rDNA + 28S rDNA + ITS1&2 nucleotide sequences are summarized in supplementary Tables 2–6 respectively. The interspecific 'p' distance was many folds larger than intraspecific 'p' distance. For COI, the intraspecific p-distance ranged from 0.00–3.99% (highest in *O. melania*), while interspecific p-distance ranged from 3.33% (*O. melania* and *O. triangulare*) to 17.29% (*O. chrysis* and *O. sabina*) (Supplementary Table 2). For 16S rDNA, the intraspecific p-distance ranged from 0.00–2.10% (highest in

O. glaucum); the interspecific p-distance ranged from 0.60% (*O. melania* and *O. triangulare*) to 9.92% (*O. abbotti* and *O. poecilops*) (Supplementary Table 2).

The intraspecific p-distance for ITS1&2 sequences ranged from 0.00–5.05% (highest in *O. luzonicum*); the interspecific p-distance ranged from 1.14% (*O. pruinosum neglectum* and *O. testaceum*) to 21.12% (*O. sabina* and *O. chrysostigma*) (Supplementary Table 3).

The intraspecific p-distance for the combined COI + 16S rDNA sequences ranged from 0.00-1.78% (highest in *O. sabina*); the interspecific p-distance ranged from 1.15% (*O. pruinosum neglectum* and *O. testaceum*) to 12.23% (*O. chrysis* and *O. Sabina*; *O. japonicum* and *O. Sabina*) (Supplementary Table 4). For the combined mitochondrial markers (COI + COII + 16S rDNA) the intraspecific p-distance ranged from 0.00-1.94% (highest in *O. pruinosum schneideri*); the interspecific p-distance ranged from 7.32% (*O. chrysis* and *O. sabina*) (Supplementary Table 5).

For the combined five markers (COI + COII + 16S rDNA + 28S rDNA + ITS1&2) the intraspecific p-distance ranged from 0.00–1.55% (highest in *O. pruinosum schneideri*); the interspecific p-distance ranged from 4.20% (*O. chrysis* and *O. sabina*) to 9.51% (*O. chrysis* and *O. sabina*) (Supplementary Table 6).

Phylogenetic relationships based on 28S rDNA nucleotide sequences. There were no distinct nucleotide sequence divergence among the congeners of *Orthetrum* (supplementary Fig. 1). The various subfamilies of the family Libellulidae were not resolved unequivocally.

Phylogenetic relationships based on 16S rDNA nucleotide sequences. Orthetrum pruinosum schneideri clustered with O. chrysis and both were distinctly separated from O. testaceum and O. pruinosum neglectum (Fig. 1). O. sabina from Peninsular Malaysia was not grouped together with O. sabina of India, Japan and Fiji. Additionally, O. luzonicum from Peninsular Malaysia was distinct from O. luzonicum of China and Japan.

Phylogenetic relationships based on COI nucleotide sequences. Orthetrum pruinosum schneideri clustered with O. chrysis and both were distinctly separated from O. testaceum and O. pruinosum neglectum (Fig. 2). The peninsular Malaysian taxon of O. luzonicum clustered with those of China and Japan. Likewise, O. sabina from Peninsular Malaysia clustered with O. sabina of India, Japan and Fiji.

Phylogenetic relationships based on COII nucleotide sequences. There were two major clusters of *Orthetrum* species (supplementary Fig. 2): (I) [*O. pruinosum schneideri*, *O. chrysis*], *O. testaceum*, *O. melania*, *O. luzonicum*, *O. glaucum*, *O. albistylum* with weak support posterior probability (PP = 0.51) values and no support from maximum likelihood (ML); and (II) *O. sabina*.

Phylogenetic relationships based on ITS1 and ITS2 nucleotide sequences. The ITS nuDNA nucleotide sequences clearly separated *O. pruinosum schneideri* and *O. pruinosum neglectum* (Fig. 3) indicating distinct genetic lineages. *O. pruinosum schneideri* nested with *O. chrysis* while *O. pruinosum neglectum* nested with *O. testaceum*. The component taxa of *Orthetrum* were grouped in two distinct clades separated by a clade of other Libellulid genera. *O. sabina* was not nested with other *Orthetrum* taxa. The genus *Orthetrum* and the Libellulid subfamilies were not monophyletic.

Phylogenetic relationships based on combined nucleotide sequences. The combined COI and COII sequences yielded three major clusters (Fig. 4): (I) [O. pruinosum schneideri, O. chrysis], O. testaceum, O. triangulare, O. luzonicum with PP supoprt of 0.92 and no support from ML; (II) O. glaucum; and (III) O. sabina. Similar topology resulted from the combined COI + COII + 16S rDNA nucleotide sequences (supplementary Fig. 3). The combined 5 markers (supplementary Fig. 4) showed three clades: (I) *O. chrysis*, *O. pruinosum schneideri*, *O. testaceum*; (II) *O. glaucum*, *O. sabina*; and (III) *O. luzonicum*.

The combined COI + 16S rDNA sequences of Orthetrum taxa formed five major clusters (Fig 5): (I) [*O. pruinosum schneideri*, *O. chrysis*], *O. testaceum*, *O. pruinosum neglectum*, *O. melania*; (II) [*O. internum*, *O. japonicum*], *O. poecilops*, *O. albistylum*; (III) *O. luzonicum*; (IV) *O. glaucum*; and (V) *O. sabina*. The first four clusters (I–IV) had full PP and high ML support except cluster V with moderate support of PP = 0.79 and ML = 79%.

Discussion

The phylogeny of the dragonflies (suborder Anisoptera) has been extensively studied⁴⁻¹⁰. Nine genera of Libellulidae have been reported to be monophyletic¹¹. In the present study with more extensive taxon sampling, the various subfamilies of the family Libellulidae as well as the component taxa of the genus *Orthetrum* were not resolved unequivocally as monophyletic by the 28S rDNA (supplementary Fig. 1), 16S rDNA (Fig. 1), COI (Fig. 2), and ITS1&2 (Fig. 3) nucleotide sequences.

Species complexes in the genus *Orthetrum* have been uncovered by DNA sequence analyses. Based on molecular phylogeny and morphological characteristics, *Orthetrum internum* McLachlan, 1894 (previously regarded as *O. japonicum internum* McLachlan, 1894) is resolved as a genuine/distinct species from *O. japonicum japonicum* (Uhler, 1858)^{2,12}. Likewise, *O. triangulare* and the allied taxon *O. melania* are well separated by the nuclear (ITS1 and ITS2) and mitochondrial (COI and 16S rRNA) genes³. Additionally, *O. melania* is separated into four subgroups: *O. m. melania* (mainland Japan), *O. m. continentale* (China, Korea and Taiwan), *O. m. yaeyamense* (Yaeyama Island, Japan), and *O. m. ryukyuense* (Amami, Kerama, Okinawa and Tokara, Japan).

In the present study, the nuclear 28S rDNA nucleotide sequences were highly conserved and could not resolve congeneric species of *Orthetrum* (supplementary Fig. 1). The 28S rRNA gene has been found to be better for resolving deep branching in the Odonata¹³. However, the mitochondrial genes (COI, COII and 16S) and the nuclear ITS1&2 genes unequivocally separated morphologically similar species, such as the reddish-coloured *O. chrysis* and *O. testaceum* and the bluish-coloued species *O. glaucum* and *O. luzonicum* (Figs. 1–4, Supplementary Fig. 2). Additionally, the 16S rDNA sequences revealed distinct genetic lineages of (1) *O. luzonicum* from Peninsular Malaysia and China-Japan, and (2) *O. sabina* of Peninsular Malaysia and India-Japan-Fiji (Fig. 1).

In the phylogeny based on nine Japanese Orthetrum species, O. pruinosum neglectum clusters with O. melania². The present study based on the ITS1&2 (Fig. 3), COI (Fig. 2), 16S rDNA (Fig. 1) and combined COI + 16S rDNA (Fig. 5) nucleotide sequences and with more extensive taxon sampling indicates that O. pruinosum neglectum clusters nearer to O. testaceum than O. melania. The allied/sibling taxon O. pruinosum schneideri is grouped with O. chrysis (Figs. 1–5, Supplementary Figs. 2–4). It is distinctly separated from O. pruinosum neglectum. The two taxa are, without reasonable doubt, cryptic species of a species complex. In the African dragonfly genus Trithemis, COI and ND1 genes reveal three distinct genetic clusters of T. stricta but these taxa could not be identified by using classical taxonomic characters¹⁴.

In summary, phylogenetic analyses of a more extensive taxon sampling based on nucleotide sequences of mitochondrial and nuclear genes indicate that the various subfamilies of the family Libellulidae and the genus *Orthetrum* are not resolved unequivocally as monophyletic. The nuclear 28S rRNA gene is highly conserved and could not resolve congeneric species of *Orthetrum*. Individual mitochondrial genes (COI, COII, and 16S rRNA) and combination

Figure 1 | BI tree based on 16S rDNA nucleotide sequences. Numeric values at the nodes are Bayesian posterior probabilities/ML bootstrap.

0.1

Figure 2 | BI tree based on COI nucleotide sequences. Numeric values at the nodes are Bayesian posterior probabilities/ML bootstrap.

Figure 3 | BI tree based on ITS1&2 nucleotide sequences. Numeric values at the nodes are Bayesian posterior probabilities/ML bootstrap.

of these genes as well as the nuclear ITS1&2 genes clearly differentiate morphologically similar species, such as the reddish species pairs *O. chrysis* and *O. testaceum*, and the bluish-coloured species *O. glaucum* and *O. luzonicum*. This study also reveals distinct genetic lineages

between *O. pruinosum schneideri* (occurring in Malaysia) and *O. pruinosum neglectum* (occurring north of Peninsular Malaysia from India to Japan), indicating these taxa are cryptic species. The finding of *O. pruinosum* occurring as a species complex paves the way for an

0.1

0.1

Figure 4 | BI tree based on COI + COII nucleotide sequences. Numeric values at the nodes are Bayesian posterior probabilities/ML bootstrap.

in-depth phylogeographical study to determine the systematic status of the component taxa. Likewise, phylogeographical studies are needed for *O. luzonicum* and *O. sabina*.

Methods

Ethics statement. No specific permits were required for the described field studies. The dragonflies were collected in disturbed habitats such as open ditches and ponds. No specific permissions were required and the dragonflies are not endangered or protected species.

Specimens. Specimens of the *Orthetrum* dragonflies for the present study were collected using sweep net or plastic bag. They were identified with established literature^{15,16}. In addition, *Ictinogomphus decoratus* (Anisoptera, Gomphidae) was included for comparison. Two species of *Ceriagrion* (Zygoptera, Coenagrionidae) were used as outgroup. Details of the species studied are listed in Table 1.

DNA extraction, PCR amplifications and DNA sequencing. The genomic DNA was extracted and PCR amplification was performed as described in Lim et al.¹⁷ except with variations in annealing temperature for different primers. The primers and annealing temperature for PCR were: COI –F: 5' - ATAATTGGRGGGRTTYGGRAAY TG-3' and R: 5' - CCAAARAATCAAAATAARTGT TG-3'¹⁸, at 50°C; COII: C2-J-3102: 5'-AAATGGCAACATGAGCACAAYT-3' and TK-N-3773: 5'-GAGA-CCAGTACTTGGCTTTCAGTCATC-3'¹⁹ at 50°C; 16S rDNA: 5'-TTGACTGTACA-AAGGTAGC-3' and 5'-GATATTACGCTGTTATCCC-3'²⁰ at 50°C; 28S rDNA: 28sf; 5'-AAGGTAGCCAAATGCCTCATC-3' and 28sr, 5'-AGTAGGGTAAA-ACTAACCT-3' at 52°C¹³; ITS1: CAS18sF,5'- TACACACCGCCGTGCGCTACTA-3' and CAS5p8sBid, 5'-TTGAACATCGACATTYGAACGCACAT-3' and CAS28sBid, 5'-TTCTTTTCCTCCSCTTAYTRATATGCTTAA-3'²¹ at 55°C.

The PCR products were assayed by electrophoresis on 1.0% agarose mini gels stained with SYBR® Safe DNA gel stain (Invitrogen, USA) and visualised under UV light. The amplicons were isolated and purified using the LaboPassTM PCR puri-

Figure 5 | BI tree based on COI + 16S rDNA nucleotide sequences. Numeric values at the nodes are Bayesian posterior probabilities/ML bootstrap.

fication kit (Cosmo Genetech, South Korea). The purified PCR products were sent to a commercial company for sequencing. The same set of PCR primers were used for DNA sequencing. Samples were sequenced using BigDyeH Terminator v3.1 Sequencing Kit and analysed on an ABI PRISMH 377 Genetic Analyser.

measure the uncorrected (p) pairwise genetic distances using PAUP* 4.0b10 software²². All individual markers and combined mitochondrial markers (COI + 16S rDNA; COI + COII + 16S rDNA; and COI + COII + 16S rDNA + 28S rDNA) were used to estimate uncorrected (p) pairwise genetic distances.

Genetic divergence. To assess the parsimony information of the sequences of the data sets and species level variation of *Orthetrum* species, selected specimens were used to

Phylogenetic analysis. To elucidate the phylogenetic relationship among the different species of *Orthetrum* species, sequences generated from this study were

Table 1 | Nucleotide sequences of COI, COII, 16S rRNA, 28S rRNA, ITS1 and/or ITS2 sequences for the taxa of Orthetrum of the family Libellulidae used in the present study. Ictinogomphus decoratus (family Gomphidae), Ceriagrion chaoi and C. cerinorubellum (suborder Zygoptera) were used as outgroups. NA, not available

			Collection	GenBank/DDBJ Accession Number					
No.	Sample Name	Sampling Location	Code	COI	COII	16S	28S	ITS1	ITS2
Samples derived from this study									
Odd	onata								
Libe	llulidae			400/0015	400/00/0	400/00/0	400/0007	1/1000050	1/100000/
	Orthetrum chrysis	University Malaya	OCHRI	AB860015	AB860042	AB860069	AB86009/	KJ802958	KJ802986
2	Orthetrum chrysis	University Malaya	OCHR3	AB860016	AB860043	AB8600/0	AB860098	KJ802959	KJ80298/
3	Orthetrum chrysis	University Malaya	OCHR5	AB86001/	AB860044	AB8600/1	AB860099	KJ802960	KJ802988
4	Orthetrum chrysis	Lanchang, Pahang		AB860018	AB860045	AB8600/2	AB860100	KJ802961	KJ802989
5	Orthetrum glaucum	University Malaya	OGLAT	AB860019	AB860046	AB8600/3	AB860101	KJ802962	KJ802990
0	Orthefrum glaucum	University Malaya	OGLA2	AB860020	AB86004/	AB8600/4	AB860102	KJ802963	KJ802991
/	Orthefrum glaucum	University Malaya	OGLA3	AB860021	AB860048	AB8600/5	AB860103	KJ802964	KJ802992
8	Orthetrum glaucum	University Malaya	OGLA4	AB860022	AB860049	AB8600/6	AB860104	KJ802965	KJ802993
9	Orthefrum glaucum	University Malaya	OGLAS	AB860308	KFZ48113	KF248140	KF381180	KJ802966	KJ802994
10	Orthefrum glaucum	University Malaya	OGLA6	AB860023	AB860050	AB8600//	AB860106	KJ80296/	KJ802995
11	Orthetrum glaucum	Lentang, Pahang	OLGA/	AB860024	AB860051	AB8600/8	AB86010/	KJ802968	KJ802996
12	Orthefrum testaceum	University Malaya	OTEST	AB860025	AB860052	AB8600/9	AB860108	K1802969	KJ802997
13	Orthefrum testaceum	University Malaya	OTESZ	AB860026	AB860053	AB860080	AB860109	KJ802970	KJ802998
14	Orthetrum testaceum	University Malaya	OIES3	AB860027	AB860054	AB860081	AB860110	KJ802971	KJ802999
15	Orthefrum testaceum	University Malaya	OTES4	AB800028	KF248112	KFZ48139	KF381183	K1802972	KJ803000
10	Orthetrum testaceum	University Malaya	OTESS	-	-	-	-	KJ802973	KJ803001
1/	Orthetrum testaceum	University Malaya	OIESO	AB860029	AB860056	AB860083	AB860112	KJ802974	KJ803002
18		Pahang	OLUZI	AB860037	AB860064	AB860091	AB860118	K1802980	KJ803008
19		Pahang	OLUZZ	AB860038	AB860065	AB860092	AB860119	K1802981	KJ803009
20	orthetrum pruinosum schneideri	Lentang, Pahang	OPRUT	AB800032	A880003A	AB800080	ABSOULTS	KJ802977	KJ803005
21	Orthetrum pruinosum schneideri	Rengit, Pahang	OPRU2	AB860033	AB860060	AB860087	AB860116	KJ802978	KJ803006
22	Orthetrum pruinosum schneideri	Lentang, Pahang	OPRU3	AB860034	AB860061	AB860088	AB860117	KJ802979	KJ803007
23	Orthetrum pruinosum schneideri	Maliau, Sabah	OPRU4	AB860035	AB860062	AB860089	-	-	-
24	Orthetrum pruinosum schneideri	Maliau, Sabah	OPRU5	AB860036	AB860063	AB860090	-	-	-
25	Orthetrum sabina	Kampar, Perak	OSAB1	AB860030	AB860057	AB860084	AB860113	KI802975	KI803003
26	Orthetrum sabina	Lanchana Pahana	OSAB2	AB860031	AB860058	AB860085	AB860114	KI802976	KI803004
Odd	onata								
Gon	nphidae								
27	Ictinogomphus decoratus	Lanchang, Pahang	IDEC1	AB860039	AB860066	AB860093	AB860120	KJ802982	KJ803010
28	Ictinogomphus decoratus	Lanchang, Pahang	IDEC2	AB860040	AB860067	AB860094	AB860121	KJ802983	KJ803011
Odonata									
Coe	nagrionidae								
29	Ceriagrion chaoi	University Malaya	CCHA20	AB860041	AB860068	AB860095	AB860122	KJ802984	KJ803012
30	Ceriagrion cerinorubellum	University Malaya	CCER1	AB860310	AB860307	AB860096	AB860123	KJ802985	KJ803013

combined with GenBank sequences (Table 1 and Supplementary Table 7) to construct phylogenetic trees. The generated forward and reverse sequences were manually edited and assembled using ChromasPro v1.5 (Technelysium Pty Ltd., Australia) software. The datasets for all genetic markers were aligned using ClustalX²³. In the preliminary alignment for ITS1 and ITS2, the flanking sequences of 18S rDNA and 5.8S rDNA were included as the guide and were only being trimmed off after final alignment before subjected for phylogenetic analysis. For 28S and 16S, the sequences were aligned using MAFFT 624, with Q-INS-i strategy in order to take into account the secondary structure of the RNA. The generated aligned sequences were subjected for the search of the best model to be used for maximum likelihood (ML) and Bayesian Inference (BI) analyses using Kakusan v. 325. Best fit models were evaluated using the corrected Akaike Information Criterion for ML and the Bayesian Information Criterion (BIC) for BI with nonpartitioned on the whole sequence. The selected models for ML and BI of each data set are summarised in Supplementary Table 1. ML analysis was performed via Treefinder version October²⁶ and BI analysis was performed using MrBayes 3.1.2²⁷. Bayesian analyses were initiated with a random starting tree and two parallel runs, each of which consisted of running four chains of Markov chain Monte Carlo (MCMC) iterations for 6x106 generations. The trees in each chain were sampled every 200th generation. Likelihood values for all postanalysis trees and parameters were evaluated for convergence and burn-in using the "sump" command in MrBayes and the computer program Tracer ver. 1.5 (http://tree. bio.ed.ac.uk/software/tracer/). The first 30,000 trees were discarded as burn-in

(where the likelihood values were stabilized prior before the burn in), and the remaining trees after burn-in were used to calculate posterior probabilities using the "sumt" command.

- 1. Silsby, J. Dragonflies of the world (CSIRO Publishing, Collingwood, 2001).
- Karube, H., Futahashi, R., Sasamoto, A. & Kawashima, I. Taxonomic revision of Japanese odonate species, based on nuclear and mitochondrial gene genealogies and morphological comparison with allied species. Part I. *Tombo, Fukui* 54, 75–106 (2012).
- Sasamoto, A. & Futahashi, R. Taxonomic revision of the status of Orthetrum triangulare and melania group (Anisoptera: Libellulidae) based on molecular phylogenetic analyses and morphological comparisons, with a description of three new subspecies of melania. Tombo, Fukui 55, 57–82 (2013).
- Artiss, T., Schultz, T. R., Polhemus, D. A. & Simon, C. Molecular phylogenetic analysis of the dragonfly genera *Libellula, Ladona*, and *Plathemis* (Odonata: Libellulidae) based on mitochondrial cytochrome oxidase I and 16S rRNA sequence data. *Mol. Phylogenet. Evol.* 18, 348–361 (2001).
- Ware, J., May, M. & Kjer, K. Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): an exploration of the most speciose superfamily of dragonflies. *Mol. Phylogenet. Evol.* 45, 289–310 (2007).

- Fleck, G., Brenk, M. & Misof, B. Larval and molecular characters help to solve phylogenetic puzzles in the highly diverse dragonfly family Libellulidae (Insecta: Odonata: Anisoptera): The Tetrathemistinae are a polyphyletic group. Org. Divers. Evol. 8, 1–16 (2008).
- Fleck, G. *et al.* A phylogeny of anisopterous dragonflies (Insecta, Odonata) using mtRNA genes and mixed nucleotide/doublet models. *J. Zool. Syst. Evol. Res.* (2008) 46, 310–322 (2008).
- Dijkstra, K.-D. B. & Vick, G. S. Inflation by venation and the bankruptcy of traditional genera: the case of *Neodythemis* and *Micromacromia*, with keys to the continental African species and the description of two new *Neodythemis* species from the Albertine Rift (Odonata: Libellulidae). *Int. J. Odonatol.* 9, 51–70 (2006).
- Pilgrim, E. M. & von Dohlen, C. D. Phylogeny of the Sympetrinae (Odonata: Libellulidae): further evidence of the homoplasious nature of wing venation. *Syst. Ent.* 33, 159–174 (2008).
- Blanke, A., Greve, C., Mokso, R., Beckman, F. & Misof, B. An updated phylogeny of Anisoptera including formal convergence analysis of morphological characters. *Syst. Ent.* 38, 474–490 (2013).
- 11. Bybee, S. M., Ogdenb, T. H., Branhama, M. A. & Whiting, M. F. Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing. *Cladistics* **24**, 477–514 (2008).
- 12. Futahashi, R. A revisional study of Japanese dragonflies based on DNA analyses. *Tombo, Fukui* **53**, 67–74 (2011). (in Japanese).
- 13. Hasegawa, E. & Kasuya, E. Phylogenetic analysis of the insect order Odonata using 28S and 16S rDNA sequences: a comparison between data sets with different evolutionary rates. *Entomol. Sci.* **9**, 55–66 (2006).
- Damm, S., Schierwater, B. & Hadrys, H. An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. *Mol. Ecol.* 19, 3881–3893 (2010).
- 15. Orr, A. G. *Dragonflies of Peninsular Malaysia and Singapore* (Natural History Publications (Borneo), Kota Kinabalu, 2005).
- Tang, H. B., Wang, L. K. & Hämäläinen, M. A photographic guide to the dragonflies of Singapore (The Raffles Museum of Biodiversity Research, Singapore, 2010).
- Lim, P. E., Tan, J., Suana, I. W., Eamsobhana, P. & Yong, H. S. Distinct genetic lineages of *Bactrocera caudata* (Insecta: Tephritidae) revealed by COI and 16S DNA sequences. *PLoS ONE* 7, e37276 (2012).
- Hayashi, F., Dobata, S. & Futahashi, R. Disturbed population genetics: suspected introgressive hybridization between two *Mnais* damselfly species (Odonata). *Zool. Sci.* 22, 869–881 (2005).
- Jordan, S., Simon, C. & Polhemus, D. Molecular systematics and adaptive radiation of Hawaii's endemic damselfly genus *Megalagrion* (Odonata:Coenagrionidae). *Syst. Biol.* 52, 89–109 (2003).
- Schmitz, J. & Moritz, R. F. A. Molecular phylogeny of Vespidae (Hymenoptera) and the evolution of sociality in wasps. *Mol. Phylogenet. Evol.* 9, 183–191 (1998).
- Ji, Y.-J., Zhang, D.-X. & He, L.-J. Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. *Mol. Ecol. Notes* 3, 581–585 (2003).
- 22. Swofford, D. L. PAUP: Phylogenetic analysis using parsimony (and other methods) (Sinauer Associates, Sunderland, Massachusetts, 2002).

- Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucl. Acids Res.* 24, 4876–4882 (1997).
- Katoh, K., Asimenos, G. & Toh, H. Multiple alignment of DNA sequences with MAFFT. *Bioinformatics for DNA Sequence Analysis*. Posada, D. (ed.) 39–54 (Humana Press, New York, 2009).
- 25. Tanabe, A. S. Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. *Mol. Ecol. Notes* 7, 962–964 (2007).
- Jobb, G., von Haeseler, A. & Strimmer, K. Treefinder: a powerful graphical analysis environment for molecular phylogenetics. *BMC Evol. Biol.* 4, 18 (2004).
- Huelsenbeck, J. P. & Ronquist, F. MrBayes: Bayesian Inference of phylogenetic trees. *Bioinformatics* 17, 754–755 (2001).

Acknowledgments

This study was funded in part by MoHE-HIR Grant (H-50001-00-A000025) and the University of Malaya (H-5620009). We thank our institutions for providing various research facilities and other support.

Author contributions

H.S.Y. and P.E.L. conceived the research in collaboration with J.T., Y.F.N., P.E. and I.W.S. H.S.Y., Y.F.N. and I.W.S. collected the specimens. H.S.Y. identified the specimens. J.T. conducted the PCR and P.E.L., J.T. and P.E. performed the phylogenetic analyses. H.S.Y. and P.E.L. wrote the paper in collaboration with the co-authors. H.S.Y. and P.E.L. were responsible for the final manuscript version.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/ scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Yong, H.S. *et al*. Molecular phylogeny of *Orthetrum* dragonflies reveals cryptic species of *Orthetrum pruinosum*. *Sci. Rep.* **4**, 5553; DOI:10.1038/srep05553 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http:// creativecommons.org/licenses/by-nc-nd/4.0/