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Cooperation is ubiquitous ranging from multicellular organisms to human societies. Population structures
indicating individuals’ limited interaction ranges are crucial to understand this issue. But it remains
unknown to what extend multiple interactions involving nonlinearity in payoff influence the cooperation in
structured populations. Here we show a rule, which determines the emergence and stabilization of
cooperation, under multiple discounted, linear, and synergistic interactions. The rule is validated by
simulations in homogenous and heterogenous structured populations. We find that the more neighbours
there are the harder for cooperation to evolve for multiple interactions with linearity and discounting. For
synergistic scenario, however, distinct from its pairwise counterpart, moderate number of neighbours can
be the worst, indicating that synergistic interactions work with strangers but not with neighbours. Our
results suggest that the combination of different factors which promotes cooperation alone can be worse
than that with every single factor.

T
he particulars of why and how cooperation evolves have perplexed evolutionary biologists and sociologists
enduringly1–4. A cooperator takes an altruistic action which supplies a benefit, b, for another individual at a
cost, c, while a defector does nothing. One of the main tasks of evolutionary theory is to explain why and how

cooperation is present. Evolutionary game theory provides a powerful platform to understand the evolution of
cooperation in unstructured populations, with the replicator equation in infinite populations3 and stochastic
dynamics in finite populations5–7. Recently the assumption of a well mixed population is removed, and the
population allows individuals to interact locally8,9. Typically networks are adopted to depict such population
structure, since it is simple in definition, while complex in property8,10. The nodes of the network represent
individuals, while the edges denote connections in between11,12. In this way, a network paves the way to capture the
intrinsic idea of local interaction13,14: Individuals interact with their neighbours only. In particular, the degree of a
node represents the number of neighbours of the focal individual, which indicates the interaction range. These
network structures are widespread in human organizations15,16, scientific collaboration among researchers17, and
even somatic evolution within multicellular organisms18. However, for structured populations, in contrast with
that in the well mixed case5,6, it becomes challenging to analyze the evolutionary dynamics theoretically. This is
because enormous possible topological configurations arise during the process of evolution19–21. In spite of being
challenging, there are advances in the analytical methods12,22–26. The main result is that local interactions can pave
the way for the emergence of cooperation.

The conflict between cooperation and defection is captured by the prisoner’s dilemma in the beginning2,27, a
pairwise game. Though the ‘‘Tragedy of Commons’’, a multi-player game, was introduced to depict this dilemma
long before28, it has not been popular until recently owing to its complexity29–38. This is also true in structured
populations: For pairwise interactions, conditions for cooperators to be selected over defectors have been the-
oretically investigated in general structured populations12,22,24. For multiple interactions, however, only two
extreme types of network structure with cycle39 and well mixed populations32,34,35,40 have been addressed. For
the network degree in between the minimum (the cycle) and the maximum (well-mixed population), it is unclear
under what conditions cooperation outperforms defection. Besides, we introduce nonlinearity in the public
goods, which is intrinsic to the fitness of multi-player games. For simplicity, the synergistic and discountable
effects of the public goods are adopted: These effects are wide spread in microbes41–43. As a cluster of microbes
secretes enzymes to digest the extracellular resource, the benefit of the secreted enzyme (public goods) provided
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by the first cooperative cell may play a vital role for survival, while the
enzymes will eventually be saturated for the resource with the
increase of cooperators, thus the cooperator cells joining the group
later only contribute diminishing small benefits to the group44. This
is the discounting effect of the public goods. While for synergy,
enzyme-mediated reactions will be launched by enzyme-producing
cooperators. With the concentration of enzyme production, this may
exhibit a faster efficiency than linear increase45. In addition, the
framework of synergy and discounting effects provides a unifying
framework reconciling different social dilemmas41, thus it does not
lose generality in spite of its simplicity. The main result in the well
mixed population is that synergy is beneficial for the emergence of
cooperation while the discounting effect is detrimental.

Considering the importance of both the population structure and
the multiple interactions on the evolution of cooperation, we the-
oretically explore how the combination of these two effects affects the
emergence and stabilization of cooperation. To this end, we are
addressing the stochastic dynamics of the public goods game with
synergy and discounting in a generally random regular graph with
arbitrary degree. We find a rule theoretically elucidating the critical
value of benefit-to-cost ratio b/c up to which cooperation emerges
and is stabilized. In addition numerical simulations verify the validity
of the rule as well as its feasibility for random graph. For linear public
goods game on any regular graph and any public goods game with
synergy and discounting on a cycle, we find an equivalent proposi-
tion that the rule determines not only the emergence, but also the
stabilization of cooperation. What’s more, in public goods with syn-
ergy, we present that it can be the worst for the emergence of coop-
eration, as the number of neighbours is moderate. We find that
synergistic interactions work with strangers but not with neighbours,
and cooperation with both synergistic and local interactions can be
worse than that with each alone. Our work suggests that there can be
a big shadow in the effects of combinational mechanisms on the
evolution of cooperation.

Results
Description of the model. We consider a finite population located
on a graph of size N. Individuals are assigned to the nodes of the
graph, whereas social ties between them are represented by the
edges11,12. Every individual has k neighbours. As illustrated in
Fig. 1, players participate in the public goods game organized by
themselves and their neighbours46, that is to say, each player
participates in k 1 1 public goods games of size n 5 k 1 1.

For the public goods game, the first cooperator contributes a
benefit b while the jth (1 # j # n) cooperator contributes bdj21 to
the common pool41. Every cooperator pays the same cost c. Defectors
exploit the group by reaping benefits without paying anything. The
accumulated benefits are distributed equally to all the n players in the
group irrespective of their behaviors. Thus, defectors and coopera-
tors receive the following payoffs41

PD ið Þ~ b
n

1zdzd2z � � �zdi{1� �
~

b
n

1{di

1{d
ð1Þ

PC ið Þ~PD ið Þ{c ð2Þ

where i is the number of cooperators within the group. Here d . 0 is
regarded as the discounting (0 , d , 1) or synergy (d . 1) factor. As
d 5 1, it degenerates to the linear public goods game with PD(i) 5 rci/
n, where r 5 b/c is the multiplication factor.

After playing the public goods game, the payoff P of every player is
transformed into fitness f by fitness mapping5,47. Here we adopt the
linear fitness which consists of baseline fitness and the payoffs arising
from games5,12, i.e., f 5 1 2 w 1 wP where w varying from 0 to 1 is the
intensity of selection. For w R 0, the selection is weak. It means that
the game is merely one of many factors which contribute to the entire
fitness of an individual5,12.

As to the updating rule, the ‘‘death-birth’’ (DB) process4 is
employed. Within the process, a player in a population is randomly
selected to die at each time step, and then all neighbours of the
focused player, with probability proportional to their individual fit-
ness, compete for the vacant site.

A rule for the evolution of cooperation. We study the emergence of
cooperation by comparing the fixation probability5,12,37,48 of a single
cooperator (rC) invading a wild population of defective type under
weak selection with that under neutrality 1/N4. If rC . 1/N then
natural selection favors cooperator replacing defector4, so we see
that natural selection favors the emergence of cooperation. We see
that natural selection favors the stabilization of cooperation if rD ,

1/N, that is, natural selection opposes the fixation of defectors. And if
rC . rD, we see that natural selection favors cooperator over defector4.

We obtain the fixation probability of both cooperation and defec-
tion by the pair approximation (Supplementary Notes 1 and 2). For

large population size and weak selection, we have a rule: rCw

1
N

if

and only if

b=cw

kz1ð Þ2
kz3 for d~1

18
3d2z4dz3

for k~2,

N{1ð Þ kz1ð ÞQ1

2Nf dð Þ otherwise

8>><
>>:

ð3Þ

and rDv

1
N

if and only if

Figure 1 | Illustration of updating on a network. We show a network with

size N 5 22 and every player has k 5 3 neighbours here. Cooperator C11

and defector D12 (D13) are neighbours of the selected cooperator C1 with

updating. Both of C11 and D12 (D13) have neighbours with strategy of

cooperation or defection except C1, which are called C111 and D112, C121

(C131) and D122 (D132), respectively. C1a1 and D1b2 also have neighbours

C1a11, C1b21 adopting strategy of cooperation and D1a12, D1b22 with

defection, where both of a and b mean 1, 2, or 3. Each player organizes a

public goods game with all of its k neighbours. Thus each individual

participates in k 1 1 public goods games of size k 1 146. As an example, for

the payoff of C11, all players marked within the dashed curve are relevant.

The payoff comes from all games C11 participates in, where one game

(shaded in blue) held by C11, that is, part (a), and the other three (shaded in

red) held by C1, C111, and D112, that is, part (b), (c), and (d).
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where the notations Q1, f(d), and g(d) can be found in Methods.
For the linear public goods game (d 5 1), natural selection favors

not only the emergence of cooperation but also its stabilization if and
only if

b=cw kz1ð Þ2
�

kz3ð Þ: ð5Þ

On this occasion, the rule is equivalent to r . n2/(n 1 2) where r is the
multiplication factor of the common pool. Since n2/(n 1 2) , n, it
implies theoretically that cooperative dilemma can be relaxed in
structured populations compared with that in the well mixed case,
without invoking any other additional mechanisms. For the linear
public goods game on the cycle (d 5 1 and k 5 2), rC . rD is
equivalent to b/c . 9/5, which coincides with39 (Supplementary
Note 2.4).

What’s more is that the general rule to determine the emergence of
cooperation is found to be in good agreement with computer numer-
ical simulations (the first row of Supplementary Fig. S1). And it also
approximately applies to heterogeneous structured populations (the
second row of Supplementary Fig. S1).

Based on equation (5), we find that rC . rD is also equivalent with
the emergence rC . 1/N and stabilization rD , 1/N of cooperation.
Furthermore, the following equivalence holds

rCw

1
N
urCwrDurDv

1
N

ð6Þ

for the public goods game which is either linear d 5 1 or on a cycle
k 5 2. That is to say, for large structured population under linear
public goods game or public goods game with nonlinearity in indi-
vidual payoff on cycle, we have that natural selection favors emer-
gence of cooperation if and only if it favors stabilization of
cooperation. Further, we show that the critical value, both for the
emergence and the stabilization of cooperation, is continuous with

the discounting or synergy factor d (Supplementary Note 3.1). Hence
the equivalent proposition (6) applies for infinitesimal nonlinearity
(Supplementary Note 3.2).

Nonlinearity on the evolution of cooperation. From the rule
(inequalities (3) and (4) in Methods), we theoretically get the
critical benefit-to-cost ratio b/c for the emergence and stabilization
of cooperation (defection) with the two factors combined, saying the
spatial reciprocity and nonlinearity in payoff induced by multiple
interactions. Fig. 2 shows that weak discounting significantly inhibits
both the emergence and stabilization of cooperation, whereas the
weak synergy favors them greatly. In contrast with the linear
public goods game, the critical ratios b/c for rC 5 1/N and rD 5

1/N are no longer overlapping for nonlinear payoff effects (Fig. 2). In
other words, taking into account either discounting or synergy, a
particular form of nonlinearity in payoff, the emergence and the
stabilization of cooperation are no longer equivalent as in the
linear public goods case (equivalent proposition (6)).

For multiple interactions such as linear public goods, similar to
pairwise interactions12, cooperation will also be impeded with an
increase of the number of neighbours (light gray up triangle in
Fig. 2). Discounting in payoff significantly inhibits cooperation
(Fig. 2a). In particular, in this case, with the increase in the size of
neighbourhood, it will become even harder for the emergence and
stabilization of cooperation. The critical benefit-to-cost ratio is
increasing much rapidly than its linear public goods game
counterpart.

For weak synergy, the critical benefit-to-cost ratio b/c for emer-
gence or stabilization of cooperation still first increases as the growth
of every player’s number of neighbours (Fig. 2b). But it decreases as
neighbour size is big enough and tends towards zero. This illustrates
that for small size of neighbour, increasing interaction range, i.e. k, is
detrimental for cooperation, which is consistent with linear public
goods game; yet the interesting story comes along when the inter-
action range is relatively large, in this case, increasing the interaction
range is beneficial for cooperation, which is seldom observed in
cooperative dilemmas. An intuitive understanding can be: for small
neighbour size, the local competition plays a key role. Even though

Figure 2 | The critical value of the benefit-to-cost ratio for natural selection favoring emergence and stabilization of cooperation (defection). We set

d 5 0.95 (a) and 1.05 (b) to represent respectively the weak discounting and synergy in structured populations with N 5 5 3 103 numerically. For

discounting effect d , 1, both the critical values for rC 5 1/N and rD 5 1/N increase rapidly with average degree k. Yet the critical value for rD 5 1/N is

greater than that of rC 5 1/N, and it also increases much faster. This shows that in the discounting public goods game, with the increase in the number of

neighbours, it is easier for a cooperator to be invasive (rC . 1/N) than to be stabilized (rD , 1/N). For synergy effect d . 1, the critical value for rC 5 1/N

is greater than that of rD 5 1/N for any neighbour size. This shows that it is easier for cooperation to be stabilized (rD , 1/N) than to be invasive (rC .

1/N). Interestingly, both the critical values for rC 5 1/N and rD 5 1/N are non-monotonic and is a one-hump function of k for weak synergy. This shows

for both the emergence and the stabilization of cooperation in the public goods game with weak synergy, a moderate number of neighbours is the worst.

Further, for the strong synergy case, we will see that the one-hump degenerates to a decreasing function of k.

www.nature.com/scientificreports
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the public goods are exponentially increasing with additional coop-
erator in a group, the group is small in size generally, thus the
defector would reproduce more efficiently with the increase of size.
This leads to the increase of the critical benefit-to-cost ratio. For large
size of neighbours, however, the exponential increase in the accu-
mulation of public goods with an additional cooperator outperforms
the reproduction of defectors. For example, with the jth (0 # j # k 1

1) cooperator’s benefit bdj21 to common pool, big j induces large
payoff bdj21/(k 1 1) to every player in the same group with weak
synergistically enhanced effect d as well as the baseline benefit b. This
rather large payoff paves the way for emergence and stabilization of
cooperation for large neighbour size. Therefore, it is the worst for
emergence of cooperation when the number of neighbours is mod-
erate. Another intuitive explanation is that for weak synergy effect,
the replicator dynamics allows the coexistence of cooperators and
defectors41, which is quite similar to the snowdrift game. For the
snowdrift game, however, local interaction can inhibit cooperation49

in contrast with the prisoner’s dilemma50. Here, we explicitly show
up to how many numbers would be the worst for cooperation in such
scenario. It shows that synergistic interactions work with strangers in
well mixed populations41. Furthermore, we also find that the syn-
ergistic interactions do not work with neighbours in structured
populations.

For stronger synergy, the critical benefit-to-cost ratio always
decreases with the neighbour size (Fig. 3). Thus in this case coopera-
tion could be promoted significantly with the increase of every
player’s number of neighbours under strong synergy, which intrins-
ically differs from effect of linearity, discounting, or weak synergy.
This is because the synergy effect is so great that it effectively is a

coexistence game where best relies should be of the population
minority. In this case, enlarging the interaction range paves the
way for cooperator mutants to be more like an minority yielding
an enhancement of cooperation level.

Our results show that the intrinsic multiple interactions, where
payoffs are nonlinear in general, can lead to a one-hump function of
the critical benefit-to-cost ratio to facilitate cooperation, which never
happens in pairwise interactions, or even linear multiple interactions.
This echoes partly Hamilton’s metaphor of novelty of multiple inter-
actions, though he also pointed out that the investigation will be
challenging, which is mirrored as sea-sickness51.

Discussion
Over the past two decades, structured populations depicted by net-
works have been taken into consideration to study the evolution of
cooperation by virtue of evolutionary graph theory11,20,24,52. It has
been shown that cooperation can flourish in both static network
and dynamic network8,12,20,25,52,53 (for an exception, please see49).
The main reason is that these population structures can lead to a
clustering of cooperative individuals8,12,21,24, within which coopera-
tors can survive by enjoying the benefits from mutual cooperation
even though some cooperators are exploited by defectors along clus-
ter boundaries. We indicate that in a non-additive public goods
game, where nonlinearity in payoff arises, this clustering (equations
(S20) and (S21) in Supplementary Note 1.2) is not always beneficial
when the neighbours are few in number: in a synergy public goods
scenario, where the latter cooperators in the group contribute sig-
nificantly much more than the previous cooperators, the worst case
for cooperation emerges when the number of neighbours is mod-

Figure 3 | Critical value of benefit-to-cost ratio degenerates to a monotonic function of average degree k from one-hump function with the
enhancement of synergy. We set different synergy factors to investigate its effects on the critical value of b/c with population size N 5 5 3 103. Specific

values of d are marked on each panel. Orange star and cyan square are used to indicate rC 5 1/N and rD 5 1/N respectively. The critical value decreases

with the increase of d. And it is a parabolic function of k when synergy is weak ((a), (b), (c), (d), and (e)), whereas monotonic when synergy is strong (f).

Under the synergistic effect, big k or d can drive the critical value to approach 0. The intuitive understanding behind this is the competition between the

two factors. For large k, the population is approximately well mixed, thus the local interaction diminishes by the replicator equation41, and cooperation

with synergy thrives, leading to a decrease of the critical value with increasing k. For small k, the local interaction plays an important role if the synergy

effect is not strong. That is to say for d slightly more than the unit, increasing k does inhibit the fixation for both strategies as in the pairwise prisoner’s

dilemma12. To sum up, for small d . 1, there is a hump for the critical value with the increase of neighbours. For large d, however, even for small k, the

synergy effect is strong enough to outperform the locality of the population structure. By the same argument, the critical value is monotonically decreasing

with the neighbours.
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erate, not too big nor too small. This means that synergistic interac-
tions work with strangers but not with neighbours. The technical part
is challenging for a general multi-player game54. Here we adopt syn-
ergistic and discounted effects as an example to indicate the nonli-
nearity in public goods for mathematically convenience. Synergy and
discounting can be used to unify typical social dilemmas such as the
prisoner’s dilemma and snowdrift game41, thus it also does not lose
much of the generality. Our results show that the interaction between
different mechanisms55 might trigger novel unexpected results. The
combination of different factors with each promoting cooperation
alone can be worse than every factor alone in promoting cooperation.
Thus, it may be promising to investigate the combination of previous
mechanisms promoting cooperation.

We find that the rules governing the emergence and stabilization
of cooperation are equivalent for linear public goods games, which is
validated by numerical simulations on homogenous as well as het-
erogenous structured populations. The rule simply asks the benefit to
cost ratio b/c to exceed a critical value (k 1 1)2/(k 1 3), where k is the
average number of neighbours in the population.

In fact, for any number of neighbours k, the numerator of the
critical value is (k 1 1)2, which suggests the number of individuals
relevant to the payoff of the focal individual with recounting (Fig. 1),
i.e., the product of the group size k 1 1 and the average number of the
public goods game every player involved in, k 1 1. Therefore, in this
case, as in a well mixed population, multiple interactions significantly
inhibit the cooperation than its pairwise counterpart. For public
goods games on a cycle, with either linearity, discounting, or synergy,
the equivalence still holds between the rules facilitating the emer-
gence of cooperation and that governing the stabilization. Therefore
the same criterion applies to determine under what condition the
average abundance of cooperation exceeds that of defection in the
mutation-selection equilibrium under small mutation56,57.

The equivalence falls down for general population structures and
nonlinear public goods game. For the synergy effect, the emergence
and the stabilization of cooperation are facilitated significantly for
any number of neighbours compared with the linear public goods
game. Being stabilized, in this case, is much easier than the emer-
gence. For the discounting effect, both the emergence and the stabil-
ization of cooperation are inhibited significantly for any number of
neighbours compared with the linear public goods game. Being sta-
bilized, in this case, is much harder than the emergence. Therefore,
both synergy and discounting has a more significant role in the
stabilization compared with the emergence.

We find that our theoretical results can be approximated well by
simulations as the synergy or discounting effect is weak, i.e., when d is
close 1 (Supplementary Fig. S1). However, for d deviating from 1, the
pair approximation leads to a large deviation from simulations
(Supplementary Fig. S1). The reason for such deviation is mainly
in two folds52,58: The first is that pair approximation is formulated
for the regular graph without any loops. For our graphs, however,
they are not always in this case (Fig. 1); The second is that the
approximation is precise for large population size and weak selection,
whereas the simulations bear finite population size, which generates
the prediction error. In fact, triplet correlations are a more natural
and more precise choice for calculating payoffs from group interac-
tions, since one’s payoff is not merely related with his or her neigh-
bors but also with the neighbors’ neighbors in our model. But the
triplet approximation introduces more independent variables, lead-
ing to a tedious analysis. Another limitation of our work is the weak
selection assumption. In general, results obtained under the weak
selection can not be extrapolated to the strong selection directly for
multi-player games even in well mixed populations59. Thus we do not
expect that our theoretical results stay robust for the strong selection.

As applications, for microbes with either synergy and discounting
public goods, in particular, if the public goods are diffusive60, the
average degree of the network suggests the diffusion rate of the public

goods. Our result suggests that for the discounting public goods
game, only a low diffusion rate of public goods can make the coop-
erator cells thrive; For the synergy public goods game, however, it is
always better than the discounting case. The interesting result lies in
the fact that cooperation is better off for both very low and very high
diffusion, whereas is worst off for moderate diffusion rate.
Experimental validation along this line might be interesting.

Methods
Notations in inequalities (3) and (4) are

f dð Þ~ NQ2zQ3ð Þdk{2
N { Q2zQ3ð Þdk{2{ N{1ð ÞQ2, ð7Þ

g dð Þ~ NQ2z N{1ð ÞQ3½ �d
k{2ð Þ N{1ð Þ

N

{ N{1ð Þ Q2zQ3ð Þdk{2{Q2,
ð8Þ

and

Q1~k kz1ð Þ k{2ð Þ3ln3 d, ð9Þ

Q2~2 d2{1
� �

k{2ð Þ kz1ð Þ

{ k{2ð Þ kz1ð Þd2z2k k{2ð Þdz k{2ð Þ k2{1
� �� �

ln d,
ð10Þ

Q3~ 1{d2� �
kz1ð Þ k{2ð Þ2ln d: ð11Þ

The precise process of the calculation can be found in Supplementary Notes 1 and 2.
Expanding f(d) and g(d) in Taylor series around d 5 1 leads to

f dð Þ~ k kz3ð Þ k{2ð Þ3 N{1ð Þ
2N

d{1ð Þ3

z
4{3k2ð Þ N2{3Nz2ð Þ{k 19N2{3N{16ð Þz2k3 N2{1ð Þ

12N2
k{2ð Þ3 d{1ð Þ4

zo d{1ð Þ4
� � ð12Þ

g dð Þ~ k kz3ð Þ k{2ð Þ3 N{1ð Þ
2N

d{1ð Þ3

z
3k2{4ð Þ N2{3Nz2ð Þ{k 35N2{51Nz16ð Þzk3 4N2{6Nz2ð Þ

12N2
k{2ð Þ3 d{1ð Þ4

zo d{1ð Þ4
� � ð13Þ

where o((d 2 1)4) shows the error is the high order infinitesimal of (d 2 1)4. Further
analysis can be found in Supplementary Notes 2.4 and 3.
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