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The vulnerability to real-life networks against small initial attacks has been one of outstanding challenges in
the study of interrelated networks. We study cascading failures in two interrelated networks S and B
composed from dependency chains and connectivity links respectively. This work proposes a realistic model
for cascading failures based on the redistribution of traffic flow. We study the Barabási-Albert networks
(BA) and Erdős-Rényi graphs (ER) with such structure, and found that the efficiency sharply decreases with
increasing percentages of the dependency nodes for removing a node randomly. Furthermore, we study the
robustness of interrelated traffic networks, especially the subway and bus network in Beijing. By analyzing
different attacking strategies, we uncover that the efficiency of the city traffic system has a non-equilibrium
phase transition at low capacity of the networks. This explains why the pressure of the traffic overload is
relaxed by singly increasing the number of small buses during rush hours. We also found that the increment
of some buses may release traffic jam caused by removing a node of the bus network randomly if the damage
is limited. However, the efficiencies to transfer people flow will sharper increase when the capacity of the
subway network aS . a0.

M
any real-world networks interact with and depend upon other networks1. In the past few years, inter-
connected networks2–4 that featured in the interaction among the constituents of a variety of complex
systems referred to biological, technological and social systems. The researchers shifted their attention to

the multi-layered5–8 character of real-world systems that were coupled and especially interdependent with many
networks. Real systems are studied to be composed by rather small sub-groups in which the nodes belong to a
chain strongly depended on each other9. In our daily life, we experience social behaviors by distinguishing various
roles within each single layer we belong to. A network was proposed for two interdependent networks and two
types of link containing: connectivity and dependency links10,11. Take the city traffic system for example, the
subway network and the bus network constitute the daily traffic network, all nodes in different subway lines
constitute the subway network, and the nodes of the same subway line depend on each other. Recent studies have
shown that the topology of each interdependent layer can affect dramatically the properties of percolation12 and
cascade failures13 in dynamic complex systems. Such systems were found to be more vulnerable compared to
classical networks with only connectivity links. Their percolation transition is usually a first-order one compared
to the second-order transition found in classical networks14,15. City traffic networks as one of such systems, which
couple bus and subway networks, has caused much attention16,17. Cascading failures are common in most of the
coupled communication and transportation networks. The failure of initial removal nodes in one network will
cause further failures in other networks and vice versa18 resulting in a cascade of failures. Buldyrev et al.10 studied
the robustness of two interacting networks, and found that interdependent networks became significantly more
vulnerable compared to their non-interacting counterparts. Cao et al.19,20 analyzed the robustness of a network of
networks, and gave a general analytical framework for studying percolation of n interdependent networks. It was
found by Schneider et al.21 that scale-free networks with an onion-like structure are very robust against targeted
high degree attacks. An optimal way of interconnection was found against cascading failures22,23. Recently, these
works of Refs. [9,11,24,25] demonstrated that a crossover in phase transitions of cascading failures can arise in
interdependent networks.

The unprecedented pressure of traffic congestion forced many researchers to study the robustness of city traffic
networks. Understanding the robustness of city traffic networks has become a major challenge for solving the
traffic congestion problem. In previous studies, the failure nodes only cause the failure of nodes that are connected
to them directly in one or more networks. The interrelated traffic systems contain dependency subway chains and
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connectivity nodes of buses. A subway network S is composed of
nodes, and the subway lines often intersect at the same nodes. The
subway network has a special property, i.e. if a node of a dependent
subway line (or lines) failed, then it will lead to the failure of its entire
dependent nodes of the same line (or lines). That in turn leads to a
new failure among connecting nodes of the bus network B. Once the
cascade process is triggered, it will only stop if nodes that fail in one
step do not cause additional failure in the next step. The existing
models cannot explain this appropriately. Therefore, to understand
the intricate cascade failures of real complex traffic systems where
many different attacking rules and load patterns coexist, we need a
better model, and a new level of description.

From this perspective, applying real data of Beijing’s traffic net-
work, i.e. the subway network and the bus network, we find that the
traffic system is robust for the NRB attacking model. Moreover, the
efficiency of transferring people flow for removing a node of the bus
network randomly (NRS) is higher with only increasing the tolerance
parameter of the subway network aS . a0 than that of the bus
network aB . a0. This means that the increment of some buses
may release the traffic jam caused by NRS attacking model if the
damage is limited. However, increasing the nodes capacity of the
subway network aS . a0 will much sharper increase the efficiency
to transfer people flow than that of the bus network. It is expected
that the proposed model will reflect some important properties of
real-life traffic systems when special properties of the subway are
taken into account.

Model. To illustrate how the flow redistributes on interrelated net-
works, we introduce a network model. The network is considered as a
weighted and undirected graph G with N nodes. The value of the
weighted arc eij is a measure of the effect between adjacent nodes i
and j.

The load Li on node i is the ‘‘betweenness’’ centrality, i.e., the
probability of all the shortest paths passing through it26,27. The node
capacity Ci by using the Motter-Lai model is defined analogously as28:

Ci~(1za)Li, i~1,2, � � � ,N: ð1Þ

The capacity parameter a g [0,1] is the control parameter represent-
ing the tolerance capacity. If one node is removed from the depend-
ency subway network (due to a failure or attack), it affects the
shortest paths between some other nodes. Then the loads of many
nodes are changed. If it is greater than its capacity, then it will over-

load, and the efficiencies of its adjacent edges will decrease. Remote
nodes will reselect its shorted path. It triggers further load adjustment
over and over again until the loads of all remaining nodes are less
than their capacities29.

With the above definitions, we can simulate the dynamic process
of redistribution of people flows for the initial removal of a node in
the related networks. It is well-known that all the sites or nodes on a
line cannot work after one interdepended site is destroyed. Without
loss of generality, we assume that a node i of the dependent network S
is randomly selected as the initial damaged one. So the people at the
same line of node i in network S will choose one of the vehicles in the
connected network B (for more details, see Fig. 1).

The redistribution rule produce a decrease of the efficiency (refer
to Methods section) of the interrelated networks. In order to com-
pare the effects of different attacks for the network’s robustness
against cascading failures, we adopt the following three basic attacks
in the proposed cascading model:

(1) Attack on the nodes randomly (NR): an easy attack strategy,
here we compare the result of selecting a node of the dependent
(NRS) and connected (NRB) network randomly and removing
it;

(2) Attack on the node with the highest load (HL): a common
attack strategy, it is to remove the node with the highest load
of the system. In heterogeneous networks, e.g., scale-free ones,
HL is more likely to trigger cascading failures generally;

(3) Attack on one node of the dependent chain with highest sum
loads (HSL): it is to select the line number of the depended
network in ascending order of the sum loads in the depended
network and then to remove one node of the chain with the
highest loads.

Database in random network and real network. We analyze the
robustness of different random networks with connectivity links and
dependency chains.

Network models. We study the robustness of ER and BA networks
with connected lines and dependency chains. Here we consider two
interrelated networks (cf. Fig. 2). Without loss of generality, the
initial ER and BA networks are assumed to share the same size
initially (i.e., the number of nodes N 5 1000). Then choose edges
from all possible ones of the ER network with the probability p9 5

Figure 1 | Cascading failures in the dependent network (S) and the connected network (B) with the initial removal of a single node chosen at random in
the connected network B. The colorful solid spheres are different sites. Nodes 1, 2 and 3 linked with broken lines in network S are in the dependent chain

1. Nodes 4 and 5 being connected with solid lines in network S belong to dependent chain 2. The nodes with the same number in these two networks are

the nodes that have both dependent and connected edges. Suppose that node 3 in network B is attacked at t 5 0, so nodes 3 in network S also could not

work at t 5 1. Then nodes 1, 2 and 3 of network S dependent linking with network S could not work in the next time step t 5 2. This may cause the

congestion of some relevant nodes in the connected network and an iterative cascading of overload between both networks.
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0.01; the BA network grows according to the preferential attachment
principle that each new node with m 5 5 edges has larger possibility
attaching to existing high degree nodes. Then select nodes by the
following rule: for a Normal Gaussian distribution with an average

number of nodes ,s. 5 10 in each dependent chains and the
standard deviation s 5 0.5. The initial values of spending time
passing two connecting nodes is tB 5 2, tS 5 1 and tBS 5 0.5 (eq.3).

Real networks. Further we extend the analysis to real systems, the
bus and subway networks of Beijing, and check the relationship
between E and a, which are the average efficiency and the
tolerance parameter. We choose all the 227 subway nodes and 924
bus nodes of the lines which have 6 nodes in common with the
subway nodes at least, and exert one of the three attack types on
the interrelated networks. The largest load node of the systems is
on the highest load line. For the NR attacking model, we give the
average result over 10 trials.

Results
In Fig. 3 we find that the efficiencies of both the ER and BA network
decrease with the increment of the percentages of dependency nodes
(pD). The efficiency of the ER network is about 0.03 when the per-
centages of the dependency is 0 and the initial rate of moving nodes is
0.5. However, for the same efficiency, the initial rate of removing
nodes decreases to 0.3 if the percentage of the dependency increases
to 0.6. Moreover, BA networks are a little more robust than ER net-
works with the same increment of pD. The efficiencies of BAs
decrease slower than those of ER networks.

In Fig. 4(a) we show the results of removing a node of the bus
network randomly (NRB) for different values of the tolerance para-
meter a in Eq.(1). We find that after both systems have reached a
stationary state, the average efficiencies of the networks increase for
increasing both aS and aB. However, the average efficiency of the
system with NRB for aS 5 0,1, aB 5 0 is bigger than that for aS 5

0, aB 5 0.1. The efficiency of the network is highest for aS 5 0.1, aB 5

0.1.

Figure 2 | Interrelated random network model with connectivity lines
and dependency chains. Suppose that there are six nodes in the initial

network B at t 5 0. Select two groups of nodes (B1 and B2 as chain 1; B4, B5

and B6 as chain 2) and add their corresponding nodes (S1, S2, S4, S5 and S6)

at t 5 1. Here the nodes of S1, S2, S4, S5 and S6 constitute network S.

Connect these new nodes of each group with the dependent chains as the

new network S. Nodes S1 and S2 are selected to be chain 1; nodes S4, S5 and

S6 are selected to be chain 2. Both networks are coupled by interconnected

links of corresponding nodes from both networks, e.g., the arc of B1 and S1.

tB, tBS and tS are the values of spending time passing two connecting nodes.

Figure 3 | Efficiencies (eq.5) of ER and BA networks under randomly removing nodes (NR). p is the initial rate of removing nodes. pD is the percentages

of the dependent nodes. (a) Relations of the overload efficiency of the ER network, p and pD with nodes of the network removed randomly. (b) Relations of

the overall efficiency of the BA network, p and pD with nodes of the network removed randomly. The value of the tolerance parameter a is 0.03.

Each of the networks has 1000 initial nodes. Each point is from an averaging over 10 realizations.
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We also study the average efficiencies of networks with attacking a
node of the subway network randomly (NRS). In Fig. 4(b) the same
situations were found. We also find the efficiency of the networks
with NRB attacking model is always higher than that with NRS attack
strategy. Huge error bars show there are diverse effects for the system
attacking nodes of different dependent chains.

In order to study the influence of the distributed flow on the
efficiency of interrelated networks, we compare the efficiencies of
these two networks with our four different attacking regimes in
Fig. 5(a). We find that the efficiency of the system under the attacking
model of NRB is highest. The efficiency under the attacking model of
NRS is the next one. For the highest load node belonging to the
highest sum loads chain of the subway network, the efficiency of
the system under the attacking model of HL is almost equal to that
under the attacking model of HSL for each value of ag [0,1]. Both of
them are lower than that with NRB and NRS attacking strategies.

We further study the efficiencies of networks under the envir-
onment of attacking one node which randomly changes as increasing
only the tolerance parameters of the subway network (aS) or the bus
network (aB) (see Fig. 5(b)). The efficiency of the system with the
removal of a node of bus network (NRB) is higher than that of
removing a node of the subway network for each value of a g
[0,1]. That is to say, removing a node of the subway network causes
more serious damages than that of the bus network. The efficiency of
the network as increasing aS (aB 50) is higher than that increasing aB

(aS 50) for both random removing attacking models NRB and NRS.
That means the efficiency of increasing the node capacity of the
subway network will sharper increase the efficiency of the system
than that of increasing the node capacity of the bus network. This
confirms the results of Fig. 4.

We further investigate the relationship among the tolerance para-
meter a and the efficiencies of each network (see Fig. 6). In Fig. 6(a)
we can see that the efficiency of the traffic system for NRB attacking
model grows quickly to a constant for increasing the tolerance para-
meter of the subway network (aS) and the bus network (aB).
However, it grows gradually for NRS (cf. Fig. 6(b)). The overall effi-
ciency of the traffic system under the attacking model of NRB grows

rapidly to recover the efficiencies with increasing aB in a small region
for some constant aS and vice versa (Fig. 6(c)). So the traffic system is
robust for responding to the attacking model of NRB. There exists a
small critical threshold of the tolerance parameter a0 for NRB. We
find that there exist non-equilibrium phase transitions at the point of
a0 < 0.1. The efficiency of the network increases quickly with the
increment of the tolerance parameter for a , a0, but it will recover
immediately when a . a0. That is, small increasing of the tolerance
parameter of the bus network could decrease the traffic pressure
quickly. This explains why the pressure of the traffic congestion is
relaxed by increasing some buses during rush hours. In Fig. 6(d), we
find that there also exists a small critical threshold of the tolerance
parameter a0 < 0.1 for NRS. The efficiency of the network for aS , a0

and aB 5 0.1 is lower than that for aB , a0 and aS 5 0.1. However, it
is greater when aS . a0 and aB . a0 respectively. Both efficiencies
increase gradually with the increment of the tolerance parameter. So
the efficiency of the traffic system recovers gradually as aS and aB

increase. Increasing the number of buses can release the traffic jam if
it is limited. But the traffic conjunction can be greatly slaked for
increasing the tolerance parameter of the subway network (aS) when
a . a0 (also could see Fig. 6(d)).

Discussion
Summing up, we have simulated a flow redistribution model of two
types of interrelated networks, i.e. dependent network and connected
network, and considered the special property of the subway’s struc-
ture that all the nodes in the same dependency chain are out of work
once one node is failed. Within this framework, we have studied
effects of the tolerance parameter of nodes and uncovered that the
traffic system of Beijing is robust for an NRB attacking strategy. It will
be best to transfer people flow if the tolerance parameter is larger
than the critical thresholds. Moreover, we find that the efficiency has
a non-equilibrium phase transition at the point of lower a0. This
implies that increasing the number of small buses can substantially
decrease traffic pressure during jam periods. Additionally, the effi-
ciency will be recovered within a very small region of the tolerance
parameter a. However, the damage of attacking the node of the high-

Figure 4 | Efficiency for the interrelated bus B and subway S network of Beijing. (a) and (b) are the processes of the redistribution of people flows in the

interrelated networks with the attacking models of NRB and NRS respectively for different tolerance parameters aS (the capacity parameter of the subway

network) and aB (the capacity parameter of the bus network). The efficiency of the system for aB (star) increases (aS 50) is lower than that as aS

(circle) increases (aB 50) under both attacking models of NRB and NRS. The efficiency of the network with NRB attacking model is always greater than

that with NRS attack strategy for the same tolerance parameters. For different effects of the dependent chains, there are huge error bars for NRS.
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Figure 5 | (a) and (b) compare the efficiencies of the networks with four different attacking strategies. (a) is the efficiencies of the networks for four

different attacking strategies as the tolerance parameters of both bus and subway networks increase at the same time. The green lines (circle) are for the

traffic system under the attack of the highest load node (HL); the blue lines (square) are for the traffic system under the attack of the highest sum loads line

of the subway network (HSL); the black lines (triangle) are for the traffic system when we remove a node of bus network randomly (NRB), and the red lines

(star) are for the traffic system when we remove a node of subway network randomly (NRS). The efficiency of the system under the attacking model of NRS

as the tolerance parameter increases are highest, following by that under the attacking model of NRS. And it is the same lowest with HL and HSL.

(b) is to compare the efficiencies with attacking models of NRB and NRS respectively for different tolerance parameters a. The red lines (square and star)

are for the efficiencies of the networks as increasing the tolerance parameters aS g [0,1] when aB 5 0. The black lines (circle and triangle) are for the

efficiencies of the networks as increasing the tolerance parameters aB g [0,1] when aS 5 0. All data points of attacking model of NR are averaged over ten

times.

Figure 6 | In (a, b), the color 3D curved surfaces are the relations of the efficiency of the traffic system, changing the tolerance parameter of the subway

network (aS) and the bus network (aB). (a) is the relations of the overall efficiency of the traffic system, aS and aB with a node of the bus network removed

randomly (NRB). (b) is the relations of the efficiency of the subway network subtracting the efficiency of the subway network removed randomly (NRS).

(c) and (d) show some corresponding section planes of (a) and (b), respectively. The black lines (triangles) are the efficiencies of the networks as increasing

the tolerance parameter of bus network (aB) when aS 5 0.1. The red ones (squares) are the efficiencies of the networks as increasing the tolerance

parameter of the subway network (aS) when aB 5 0.1. All the data points are averaged over ten times.
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est load and the node in the highest sum loads line of the subway
network is most serious for Beijing’s traffic system. Furthermore,
increasing the tolerance parameter of the bus network is more effec-
tive than that of the subway network for a , a0. However, this is
contrary to a , a0. These findings will be useful for relieving traffic
congestion of our daily life. As the proposed model allows for effec-
tive simulations, it could also be used for the analysis process of other
interrelated networks. Moreover, BA and ER networks with depend-
ency chains and connectivity links are studied. We find that increas-
ing the percentages of dependency nodes could decrease the
efficiency of the networks for the NR attacking strategy. The efficien-
cies of a BA network is a little more robust than that of an ER network
with the increment of the percentages of dependency nodes (pD).

We emphasize the generic character of the cascading failures in
Beijing’s traffic networks; it can be analogously employed an other
city traffic systems with dependency chains and connectivity links,
such as Shanghai, Mumbai, Sao Paulo, etc.. Our model is readily
applicable to these situations that all the nodes of the same depend-
ency chain will be out of work if one node is attacked. The progress of
cascading failures is not limited to assess the effect of overload nodes
of city traffic systems, but is also relevant to many aspects of systems
with dependency chains and connectivity links. However, this
important aspect has received little attention so far.

Methods
First we show how the damage of a single node (refer to three attacking models in
Model section) is sufficient to decrease the efficiency of the entire system simply based
on the dynamics of redistribution of the flows on the networks. Suppose a node of
network B is attacked at the beginning (see Fig. 1). This leads to changes of the most
efficient paths (the shortest ones) between nodes and consequently the loads of nodes
in network B redistribute, creating overloads on some nodes. Note that the overloaded
nodes are not removed. Instead, for the efficiencies of the arcs, we adopt the following
iterative rule at each redistribution time t . 2 (see Fig. 1):

eBij tz1ð Þ~
eBij 0ð Þ

eBij 0ð Þ CBi
LBi (t)

( LBi (t)ƒCBi

otherwise

ð2Þ

where it is supposed that the efficiency of the arc is equal to the initial value if the load
of node i is not greater than the node capacity Cj. Otherwise, its efficiency will
decrease meaning that the efficiency of all the arcs passing through node i are reduced
so that eventually the flow will take alternative paths.

We assume that the spending time passing through the connected nodes i and j, tij,

is inversely proportional to the efficiency of the arc, so it is defined by: tij*
1
eij

. In this

paper, we suppose the initial values of spending time passing a subway and bus
network arc are tS 5 1 and tB 5 2, respectively. The initial value of time passing
between a subway site and a near (less than half distance of two connecting nodes of
the bus network) bus site is tBS 5 0.5. We also suppose that all users go along the
shortest time path between two sites. Then we have

Tij~tik1 ztk1 k2 z � � �ztkm j ~
1

eik1

z
1

ek1k2

z � � �z 1
ekmj

, ð3Þ

where ki, k2,…km are the nodes on the path from node i to j. The efficiency Eij of a path
between all vertices i and j, can then be defined as the harmonic mean30 of the
efficiency of the shortest time path between them

Eij~
1

Tij
~

1
1

eik1

z
1

ek1k2

z � � �z 1
ekm j

: ð4Þ

The robustness of the whole network is measured by the average transmission effi-
ciency of the network:

E(G)~
1

N(N{1)

X
i=j[G

Eij~
1

N(N{1)

X
i=j[G

1
1

eik1

z
1

ek1 k2

z � � �z 1
ekm j

: ð5Þ
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