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Transfer entropy is a recently introduced information-theoretic measure quantifying directed statistical
coherence between spatiotemporal processes, and is widely used in diverse fields ranging from finance to
neuroscience. However, its relationships to fundamental limits of computation, such as Landauer’s limit,
remain unknown. Here we show that in order to increase transfer entropy (predictability) by one bit, heat
flow must match or exceed Landauer’s limit. Importantly, we generalise Landauer’s limit to bi-directional
information dynamics for non-equilibrium processes, revealing that the limit applies to prediction, in
addition to retrodiction (information erasure). Furthermore, the results are related to negentropy, and to
Bremermann’s limit and the Bekenstein bound, producing, perhaps surprisingly, lower bounds on the
computational deceleration and information loss incurred during an increase in predictability about the
process. The identified relationships set new computational limits in terms of fundamental physical
quantities, and establish transfer entropy as a central measure connecting information theory,
thermodynamics and theory of computation.

T
ransfer entropy1 was designed to determine the direction of information transfer between two, possibly
coupled, processes, by detecting asymmetry in their interactions. It is a Shannon information-theoretic
quantity2–4 which measures a directed relationship between two time-series processes Y and X. Specifically,

the transfer entropy TYRX measures the average amount of information that states yn at time n of the source time-
series process Y provide about the next states xn11 of the destination time-series process X, in the context of the
previous state xn of the destination process (see more details in Methods):

TY?X~ log2

p xnz1 xn,yn

�� Þ
�
p xnz1 xnjð Þ

� �
: ð1Þ

The definition is asymmetric in Y and X, hence the labelling of an information source and destination. Intuitively,
it helps to answer the question ‘‘if I know the state of the source, how much does that help to predict the state
transition of the destination?’’.

Following the seminal work of Schreiber1 numerous applications of transfer entropy have been successfully
developed, by capturing information transfer within various domains, such as finance5, ecology6, neuroscience7,8,
biochemistry9, distributed computation10–12, statistical inference13, complex systems14, complex networks15,16,
robotics17, etc. Interestingly, maxima of transfer entropy were observed to be related to critical behaviour, e.g.,
average transfer entropy was observed to maximize on the chaotic side of the critical regime within random
Boolean networks18, and was analytically shown to peak on the disordered side of the phase transition in a
ferromagnetic 2D lattice Ising model with Glauber dynamics19. Transfer entropy was also found to be high while
a system of coupled oscillators was beginning to synchronize, followed by a decline from the global maximum as
the system was approaching a synchronized state16. Similarly, transfer entropy was observed to be maximized in
coherent propagating spatiotemporal structures within cellular automata (i.e., gliders)10, and self-organizing
swarms (cascading waves of motions)14.

There is growing awareness that information is a physical quantity, with several studies relating various
information-theoretic concepts to thermodynamics20–24, primarily through Landauer’s principle25. In this paper
we report on a physical interpretation of transfer entropy, and its connections to fundamental limits of com-
putation, such as Landauer’s limit.

Landauer’s principle, dating back to 196125, is a physical principle specifying the lower theoretical limit of
energy consumption need for a computation. It associates the logical irreversibility of functions involved in the
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computation with physical irreversibility, requiring a minimal heat
generation per machine cycle for each irreversible function.
According to Bennett20, ‘‘any logically irreversible manipulation of
information, such as the erasure of a bit …, must be accompanied by
a corresponding entropy increase in non-information bearing
degrees of freedom of the information processing apparatus or its
environment’’. Specifically, the principle states that irreversible
destruction of one bit of information results in dissipation of at least
kT log 2 J of energy into the environment (i.e. an entropy increases in
the environment by this amount — the Landauer limit). Here T is the
temperature of the computing circuit in kelvins and k is Boltzmann’s
constant.

We shall consider the non-equilibrium thermodynamics of a
physical system X close to equilibrium. At any given moment in time,
n, the thermodynamic state Xn of the physical system is given by a
vector xn g Rd, comprising d variables, for instance the (local) pres-
sure, temperature, chemical concentrations and so on. A state vector
completely describes the physical macrostate as far as predictions of
the outcomes of all possible measurements performed on the system
are concerned26. The state space of the system is the set of all possible
states of the system.

The thermodynamic state is generally considered as a fluctuating
entity so that conditional probability for a transition from xn to xn11,
that is, p (xn11jxn), is a clearly defined property of the system, and can
be accurately estimated by a proper sampling procedure. Each
macrostate can be realised by a number of different microstates
consistent with the given thermodynamic variables. Importantly,
in the theory of non-equilibrium thermodynamics close to equilib-
rium, the microstates belonging to one macrostate x are equally
probable.

A state vector, y, describes a state of some exterior system Y,
possibly coupled to the system represented by X. Due to the presence
or lack of such coupling, the time-series processes corresponding to
X and Y may or may not be dependent. For a state transition from xn

to xn11, we shall say that s(x)y is the internal entropy production of X
in the context of some source Y, while DS(x)ext is the entropy pro-
duction attributed to Y, so that (see Methods, (22)):

DS xð Þ~s xð ÞyzDS xð Þext , ð2Þ

where DS(x) is the total variation of the entropy of system X.
Henceforth, we shall consider two simple examples illustrating

entropy dynamics. In both these examples the physical system X is
surrounded by the physical system Y (note that X is not a component
of Y). The first example is the classical Joule expansion, and the
second is compression in the Szilárd engine-like device. These exam-
ples are fully described in Methods, illustrating cases with and with-
out external entropy production. A comparison between these two
examples shows that, although the resultant entropy change is the
same in magnitude jDS(x)j 5 k log 2 in both cases, the change is
brought about differently: (i) for the Joule expansion (of a one mole-
cule gas), s(x)y 5 k log 2 and DS(x)ext 5 0, while (ii) for the Szilárd
engine’s compression (resetting one bit) s(x)y 5 0 andDS(x)ext 5 2k
log 2.

At this stage, we would like to point out two important lessons
from this comparison. Firstly, as argued by Bennett20, ‘‘a logically
irreversible operation, such as the erasure of a bit or the merging of
two paths, may be thermodynamically reversible or not depending
on the data to which it is applied’’. The (computation) paths referred
to here are trajectories through the state-space or phase portrait of a
system: if at time step n 1 1 we reach a global system state xn11 with
multiple precursor states xn, then we have irreversibly destroyed
information which is non-zero. This information is quantified by
the entropy of the previous state conditioned on the next state, i.e.,
the conditional entropy h(xn j xn11) at time step n 1 1 (see Methods).
Bennett elaborates that, if the data being erased is random, its erasure
would represent a reversible entropy transfer to the environment,

compensating an earlier entropy transfer from the environment dur-
ing, e.g., a previous isothermal expansion. This, as expected, would
make the total work yield of the cycle zero, in obedience to the Second
Law. For a bit reset, as for any usual deterministic digital computa-
tion, the data is not random, being determined by the device’s initial
state — this is a crucial difference, as pointed out by Landauer and
Bennett.

It is worth pointing out that the laws ‘‘of a closed physical system
are one-to-one’’22, p.78, meaning that in closed physical systems (or the
universe as a whole) computational paths do not merge, and
information cannot be destroyed. We can only measure information
destruction in open systems, and what we measure is a departure of
information from this system into the external, unobserved envir-
onment, where the destroyed information is offloaded along with
energy dissipation. Note that a typical connection between an
observed computational system and external environment is the
physical representation of the computational system (e.g. bit regis-
ters): after all, ‘‘information is physical’’27.

Secondly, we note that for the Szilárd engine’s compression (reset-
ting the bit), there is a decrease in the thermodynamical entropy of
the one molecule gas by k log 2, and so one may argue that there is an
increase in predictability about this system transition. It is precisely
this intuition that was recently formalized via transfer entropy cap-
turing the external entropy production28.

Arguably, transfer entropy takes an opposite perspective to
information destruction, focussing on ability for prediction in
coupled systems, rather than uncertainty in retrodiction. In our
recent work28, transfer entropy has been precisely interpreted ther-
modynamically. The proposed thermodynamic interpretation of
transfer entropy near equilibrium used the specialised Boltzmann’s
principle, and related conditional probabilities to the probabilities of
the corresponding state transitions. This in turn characterised trans-
fer entropy as a difference of two entropy rates: the rate for a resultant
transition and another rate for a possibly irreversible transition
within the system affected by an additional source. Then it was
shown that this difference, the local transfer entropy, is proportional
to the external entropy production, possibly due to irreversibility. In
the following sections we revisit the main elements of this approach,
leading to new fundamental connections with Landauer’s principle,
Bremermann’s limit, the Bekenstein bound, as well as Massieu-
Planck thermodynamic potential (free entropy).

Results
Preliminary results: transfer entropy as external entropy
production. Supported by the background described in Methods,
specifically the assumptions (23) – (24) and the expressions (18) –
(20), transfer entropy can be interpreted via transitions between
states28:

tY?X nz1ð Þ~log2
Z1

Z2

z
1

k log 2
{ S xnz1ð Þ{S xnð Þð Þzs xð Þy
� �

:

ð3Þ

When one considers a small fluctuation near an equilibrium, Z1 <
Z2, as the number of microstates in the macrostates does not change
much. This removes the additive constant. Using the expression for
entropy production (2), one obtains

tY?X nz1ð Þ~{
DS xð Þext

k log 2
: ð4Þ

If Z1 ? Z2, the relationship includes some additive constant log2

Z1

Z2
.

That is, the transfer entropy is proportional to the external entropy
production, brought about by the source of irreversibility Y. The
opposite sign reflects the different direction of entropy production
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attributed to the source Y: when DS(x)ext . 0, i.e. the entropy due to
interactions with the surroundings increased during the transition in
X, then the local transfer entropy is negative, and the source misin-
forms about the macroscopic state transition. When, on the other
hand, DS(x)ext , 0, i.e. some entropy produced during the transition
in X dissipated to the exterior, then the local transfer entropy is
positive, and better predictions can be made about the macroscopic
state transitions in X if source Y is measured.

Turning to our examples (see Methods), we note that (i) for the
Joule expansionDS(x)ext 5 0, and so, according to equation (4), tYRX

5 0 as well, as the transition is adiabatic and X and Y are independent
processes, while (ii) for the Szilárd engine’s compression DS(x)ext 5

2k log 2, and so equation (4) yields tYRX 5 1. That is, in the latter
case of resetting one bit, the decrease in the thermodynamical
entropy of the one molecule gas by k log 2 is accompanied by an
increase in predictability about this state transition, by one bit pre-
cisely: this increase is captured by the transfer entropy from the
exterior heat bath Y to the container X.

It is important to realize that local transfer entropy may increase,
indicating an increase of predictability about a transition, not neces-
sarily only when there is an irreversible operation, such as a bit reset.
In other words, predictability about a transition may be increased for
a wider range of processes. The transfer entropy quantifies then the
extent by how much the predictability is increased. Furthermore, in
general, there is a distinction between retrodiction (e.g., bit reset)
when multiple computational paths converge, and a more compli-
cated prediction along potentially diverging forward-looking compu-
tational paths. This distinction is addressed in the following section.

Connection to Landauer’s limit. Turning our attention to
quasistatic and not necessarily reversible processes, we note that in
these processes Z1 < Z2, and under this approximation, equation (4)

still holds without the additive constant log2

Z1

Z2
. Furthermore, under

constant temperature, the external entropy production is

DSext~

ð
dqext=T~Dqext=T , where qext represents the heat flow to

the system from the exterior in the context of the source Y. Hence,

tY?X nz1ð Þ~{
1

k log 2
Dqext

T
, ð5Þ

In other words, for irreversible but quasistatic processes, local
transfer entropy is proportional to the heat received or dissipated
by the system from/to the exterior.

Thus, we observe that Landauer’s limit kT log 2 that associated a
minimum entropy with a single bit of information is applicable here
as well. In particular, for quasistatic processes, using (5), we obtain an
equality that includes the classical Landauer’s limit:

Dqext~{ kT log 2ð ÞtY?X nz1ð Þ: ð6Þ

Both of the considered examples, the Joule expansion of a one mole-
cule gas and the Szilárd engine’s compression (resetting one bit), can
be interpreted using this equation. For the Joule expansion, Dqext 5 0
due to thermal isolation, and there is a zero transfer entropy tYRX 5 0
due to independence of X and Y, so either side of the equation is
trivially zero. During the bit reset by the Szilárd engine compression,
heat is dissipated, yielding Dqext 5 2kT log 2, while the transfer
entropy tYRX 5 1, again in agreement with equation (6).

Landauer inequalities for non-equilibrium dynamics. Depending
on the processes, heat transfer can occur at different temperatures,

and, in general,
ð

dqext=T=Dqext=T . Nevertheless, under some

stronger assumptions outlined in28, the conditional entropies can
be related to the heat transferred in the transition, per
temperature, even when temperatures are varying. In a general

non-equilibrium case, we may consider two cases: (i) when the
system dissipates heat, transfer entropy is positive, and Z1 # Z2:

tY?X nz1ð Þƒ{
1

k log 2

ð
dqext

T
, ð7Þ

and (ii) when the system absorbs heat, transfer entropy is negative,
and Z1 $ Z2:

tY?X nz1ð Þ§{
1

k log 2

ð
dqext

T
, ð8Þ

In the first case (a cooling system with positive transfer entropy), the

negative
ð

dqext=T is bounded from above by negative 2k log 2

tYRX(n 1 1), while in the second case (a heating system with

negative transfer entropy), the positive
ð

dqext=T is bounded from

below by positive 2k log 2 tYRX(n 1 1). Generally, for absolute
values, ð

dqext

T

����
����§k log 2 tY?X nz1ð Þj j: ð9Þ

For isothermal processes, this reduces to

Dqextj j§kT log 2 tY?X nz1ð Þj j: ð10Þ

For non-isothermal processes, a linear relationship between the
transferred heat and temperature breaks down. For example,
transfer entropy of a cycling system interacting with one hot (Th)
and one cold (Tc) thermal reservoirs, and exchanging with the
surroundings the net heat Æqextæ, can be bounded either as

0ƒtY?X nz1ð Þƒ{
1

k log 2
1
Tc

{
1

Th

� 	
qexth i

~{
bc{bh

log 2
qexth i,

ð11Þ

when Z1 # Z2, or

0ƒ{tY?X nz1ð Þƒ 1
k log 2

1
Tc

{
1

Th

� 	
qexth i

~
bc{bh

log 2
qexth i,

ð12Þ

when Z1 $ Z2.
Hence, we obtain an inequality involving a modified Landauer’s

limit:

qexth ij j§ log 2
bc{bh

tY?X nz1ð Þj j: ð13Þ

The expressions (6) and (13) essentially set the ‘‘conversion rate’’
between transfer entropy and the dissipated/received heat.
Specifically, when transfer entropy is increased within the system
by one bit, tYRX(n 1 1) 5 1, the dissipated heat must be equal to
(or larger than the modified) Landauer’s limit. The obtained inequal-
ity is in agreement with the generalised Clausius statement consid-
ered by29 in the context of information reservoirs and memory
writing. The modified version of Landauer’s principle offered in29

appears to have a slight error in the concluding equation [50] where
the corresponding (bcold 2 bhot) term is in the numerator rather than
the denominator.

Intuitively, when the system is cooled by losing heat equivalent to
Landauer’s limit, the predictability about the system cannot be
increased by more than one bit. This interpretation is non-trivial
because Landauer’s limit specifies the amount of heat needed to reset
one bit of information (limiting retrodiction), i.e., information is
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destroyed because multiple computational paths converge, while
when dealing with local transfer entropy one considers prediction
along forward-looking computational paths which may diverge.
Thus, the suggested interpretation generalises Landauer’s limit to
bi-directional information dynamics for quasistatic processes, and
generalises the modified Landauer’s limit to bi-directional informa-
tion dynamics for non-equilibrium processes (subject to the afore-
mentioned additional assumptions specified in28).

Connection to Bremermann’s limit. In this section we analyze how
fast a physical computing device can perform a logical operation, by
connecting this problem to the dynamics of predictability captured
by local transfer entropy. Margolus and Levitin30 specified this
question through computational speed: the maximum number of
distinct states that the system can pass through, per unit of time,
pointing out that, for a classical computer, this would correspond to
the maximum number of operations per second. It is well-known
that this quantity is limited (Bremermann’s limit31), and is
immediately connected to how much energy is available for
information processing, e.g., for switching between distinct states.
As pointed out by Margolus and Levitin30, the rate at which a system

can oscillate between two distinct states is n\ƒ

4E
h

, where h is the

Planck constant, and E is fixed average energy, assuming zero of
energy at the ground state. For a quantum system, where distinct
states are orthogonal, ‘‘the average energy of a macroscopic system is
equal to the maximum number of orthogonal states that the system
can pass through per unit of time’’30. The limit is smaller when a

sequence of oscillations is considered: n\ƒ

2E
h

for a long evolution

through orthogonal states.
The work by Margolus and Levitin30 strengthened a series of pre-

vious results which related the rate of information processing to the

standard deviation of the energy: n\ƒ

4dE
h

(cf.32). While these pre-

vious results specified that a quantum state with spread in energy dE

takes time at least Dt~
1
n
~

h
4dE

to evolve to an orthogonal state, the

result of Margolus and Levitin bounds the minimum time via the

average energy E: Dt§
h

4E
, rather than via the spread in energy dE

which can be arbitrarily large for fixed E.
Importantly, Margolus and Levitin30 argued that these bounds are

achievable for an ordinary macroscopic system (exemplified, for
instance, with a lattice gas): ‘‘adding energy increases the maximum
rate at which such a system can pass through a sequence of mutually
orthogonal states by a proportionate amount’’30.

Following Lloyd33 we interpret Bremermann’s limit as the max-
imum number of logical operations that can be performed per sec-

ond, i.e. n~
1
Dt

~
2E
p�h

, where �h is the reduced Planck constant, and E

is the energy of the system.
We now consider a transition during which the system dissipates

energy, DE , 0, noting that the notation DE for the energy change
should not be confused with the spread in energy dE. Then we define
the change in the maximum number of logical operations per second,

i.e. the computational deceleration, as Dn~
2DE
p�h

. This quantity

accounts for how much the frequency of computation n is reduced
when the system loses some energy. This expression can also be
written as h Dn 5 4DE, relating the energy change to the change in
frequency.

Then, generalizing (10) to jDEj$ kT log 2 jtYRXj, where DE is the
heat energy which left the system X and entered the exterior Y during
an isothermal process, we can specify a lower bound on the compu-
tational deceleration needed to increase predictability about the
transition by tYRX, at a given temperature:

Dn§
2 log 2

p�h
kT tY?Xj j: ð14Þ

That is, the expression (14) sets the minimum computational decel-
eration needed to increase predictability. For example, considering
the Szilárd engine’s compression resetting one bit, we note that the
computational deceleration within such a device, needed to increase

predictability about the transition by one bit, is at least
2 log 2

p�h
kT , or

4
h

kT log 2. In other words, the product h Dn is bounded from below

by the energy equal to four times the Landauer’s limit, that is, h Dn $
4kT log 2.

Connection to the Bekenstein bound. Another important limit is
the Bekenstein bound: an upper limit Î on the information that can be
contained within a given finite region of space which has a finite
amount of energy E34:

Î~
2pRE

�hc log 2
, ð15Þ

where R is the radius of a sphere that can enclose the given system,
and c is the speed of light.

While Bremermann’s limit constrains the rate of computation, the
Bekenstein bound restricts an information-storing capacity35. It
applies to physical systems of finite size with limited total energy
and limited entropy, specifying the maximal extent of memory with
which a computing device of finite size can operate.

Again considering a transition during which the system dissipates
energy, DE , 0, we define the change in the maximum information Î
required to describe the system, i.e., the information loss, as

DÎ~
2pRDE
�hc log 2

.

Then the predictability during an isothermal state transition
within this region, reflected in the transfer entropy tYRX from a
source Y, is limited by the information loss DÎ associated with the
energy changeDE during the transition. Specifically, using jDEj$ kT
log 2 jtYRXj for any source Y, we obtain:

DÎ§
2pR
�hc

kT tY?Xj j: ð16Þ

While predictability about the system is increased by one bit, at a
given temperature, i.e., tYRX(n 1 1) 5 1, there is a loss of at least
2pR
�hc

kT from the maximum information contained within (or

describing) the system.
Let us revisit the Szilárd engine compression during a bit reset

operation, this time within a spherical container of fixed radius R
which dissipates heat energy to the exterior. Such a compressed
system needs less information to describe it than an uncompressed
system, and the corresponding information loss about the com-
pressed system DÎ is bounded from below by Landauer’s limit scaled

with
2pR

�hc log 2
.

It is important to realise that while the system dissipates energy
and loses information/entropy, the increased predictability is about
the transition. Therefore, this increased predictability reflects the
change of information rather than the amount of information in
the final configuration. Hence, the expressions (14) and (16) set
transient limits of computation, for computational deceleration
and information loss, respectively.

Discussion
The obtained relationships (6), (9), (13), (14) and (16) specify dif-
ferent transient computational limits bounding increases of predict-
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ability about a system during a transition, represented via transfer
entropy. These relations explicitly identify constraints on transfer
entropy in small scale physical systems, operating on the scale of
the thermal energy kT, and being essentially ‘quantized’ by
Landauer’s limit. These constraints express increases of predictabil-
ity via dissipated heat/energy; set the minimum computational decel-
eration needed to increase predictability; and offset the loss in the
maximum information contained within a physical system by the
predictability gained during a transition. Unlike classical Bremer-
mann’s limit and the Bekenstein bound which set the maximum
computational speed and information, these inequalities specify
the lower bounds, showing that in order to achieve a gain in predict-
ability, the transient computational dynamics such as deceleration
(or information loss) need to operate faster (or contain more) than
these limits. Understanding these limits and their implications is
becoming critical as computing circuitry is rapidly approaching these
regimes36.

Finally, we point out an important relationship between an
increase of predictability about the system (higher local transfer
entropy) and negentropy: the entropy that the system exports (dis-
sipates) to keep its own entropy low37. That is, the expression (4) may
indicate the general applicability to guided self-organisation in vari-
ous artificial life scenarios, where one would expect that maximising
transfer entropy corresponds to maximising negentropy. It is known
that negentropy DSext 5 2W, where W is the Massieu-Planck ther-
modynamic potential (free entropy). It was shown that maximising
W is related to stability in several molecular biology contexts (e.g.,
protein stability38), and so the suggested thermodynamic interpreta-
tion associates such increases in stability with increases in transfer
entropy to the system. One may also argue that the increase of
stability in biological systems due to a free entropy change (measured
in bits) is also scaled, and in some cases ‘quantised’, by Landauer’s
limit.

Methods
Preliminaries. Formally, consider a time-series process X of the (potentially
multivariate) random variables {… Xn21, Xn, Xn11 …} with process realizations
{… xn21, xn, xn11 …} for countable time indices n. The underlying state of the process
X is described by a time series of vectors {… Xn21, Xn, Xn11 …} with realizations
{… xn21, xn, xn11 …}, where the multivariate realization xn fully describes the state of
the process at n, perhaps using vectors xn 5 {xn2k11, …, xn21, xn} for a length k
Markovian process, or for a thermodynamic process by including all relevant
thermodynamic variables. If vectors {xn2k11, …, xn21, xn} are interpreted as
embedding vectors39, as proxies of hidden states, one should in general be cautious to
avoid false coupling detections40.

The probability distribution function for observing a realization xn is denoted by

p(xn), while p xnz1 xnjð Þ~ p xnz1,xnð Þ
p xnð Þ

, denotes conditional probability of observing

realization xn11 having observed xn at the previous time step, where p(xn11, xn) is the
joint probability of the two realizations. These quantities are similarly defined for
process Y, for corresponding time indices n.

Transfer entropy. The transfer entropy TYRX, defined by (1), is a conditional
mutual information3 between Yn and Xn11 given Xn. Following Fano41 we can
quantify ‘‘the amount of information provided by the occurrence of the event
represented by’’ yn ‘‘about the occurrence of the event represented by’’ xn11,
conditioned on the occurrence of the event represented by xn. That is, we can
quantify local or point-wise transfer entropy10 in the same way Fano derived local
or point-wise conditional mutual information41. This is a method applicable in
general for different information-theoretic measures42: for example, local entropy
or Shannon information content for an outcome xn of process X is defined as
h(xn) 5 2log2 p(xn). The quantity h(xn) is simply the information content
attributed to the specific symbol xn, or the information required to predict or
uniquely specify that specific value. Other local information-theoretic quantities
may be computed as sums and differences of local entropies, e.g., h(xn11 j xn) 5

h(xn11, xn) 2 h(xn), where h(xn11, xn) is the local joint entropy. In computing
these quantities, the key step is to estimate the relevant probability distribution
functions. This could be done using multiple realisations of the process, or
accumulating observations in time while assuming stationarity of the process in
time (and/or space for spatiotemporal processes).

As such, the local transfer entropy may be expressed as a difference between local
conditional entropies:

tY?X nz1ð Þ~log2

p xnz1 xn,yn

��� 

p xnz1 xnjð Þ ð17Þ

~h xnz1 xnjð Þ{h xnz1 xn,yn

��� 

, ð18Þ

where local conditional entropies are defined as follows3:

h xnz1 xnjð Þ~{log2 p xnz1 xnjð Þ, ð19Þ

h xnz1 xnj ,ynð Þ~{log2 p xnz1 xn,yn

��� 

: ð20Þ

Entropy definitions
The thermodynamic entropy was originally defined by Clausius as a state function

S satisfying

SB{SA~

ðB

A
dqrev=T, ð21Þ

where qrev is the heat transferred to an equilibrium thermodynamic system during a
reversible process from state A to state B. It can be interpreted, from the perspective of
statistical mechanics, via the famous Boltzmann’s equation S 5 k log W, where W is
the number of microstates corresponding to a given macrostate. Sometimes W is
termed ‘‘thermodynamic probability’’ which is quite distinct from a mathematical
probability bounded between zero and one. In general, W can be normalized to a
probability p 5 W/N, where N is the number of possible microstates for all macro-
states. This is not immediately needed as we shall consider (and later normalize)
relative ‘‘thermodynamic probabilities’’.

At this stage, we recall a specialization of Boltzmann’s principle by Einstein43, for
two states with entropies S and S0 and ‘‘relative probability’’ Wr (the ratio of numbers
W and W0 that account for the numbers of microstates in the macrostates with S and
S0 respectively), given by: S 2 S0 5 k log Wr. Here again the ‘‘relative probability’’ Wr

is not bounded between zero and one. For instance, if the number of microstates in B
(i.e., after the transition) is twice as many as those in A (as is the case, for instance,
after a free adiabatic gas expansion; see the Joule expansion example described in the
next section), then Wr 5 2, and the resultant entropy change is k log 2. Thus, the
‘‘relative probability’’ Wr depends on the states involved in the transition.

In general, the variation of entropy of a system DS 5 S 2 S0 is equal to the sum of
the internal entropy production s inside the system and the entropy change due to the
interactions with the surroundings DSext:

DS~szDSext , ð22Þ

so that when the transition from the initial state S0 to the final state S is irreversible, the
entropy production s . 0, while for reversible processes s 5 0.

Examples of coupled systems. Joule expansion. The first example is the classical Joule
expansion. A container X is thermally isolated from the heat bath Y, and there are no
heat exchanges between X and Y. A partition separates two chambers of X, so that a
volume of gas is kept in the left chamber of X, and the right chamber of X is evacuated.
Then the partition between the two chambers is opened, and the gas fills the whole
container, adiabatically. It is well-known that such (irreversible) doubling of the
volume at constant temperature T increases the entropy of X, i.e. DS(x) 5 nk log 2,
where n is the number of particles (cf. the Sackur-Tetrode equation44). The same
increase of entropy results from a quasistatic irreversible variant of the Joule
expansion. If there was just one particle in the container (a one molecule gas, as shown
in Fig. 1), the entropy would still increase after the gas expansion, by DS(x) 5 k log 2,

Figure 1 | The Joule expansion of a one molecule gas. The container X is in

thermal isolation from the surrounding exterior Y. As the partition is

removed, the particle may be on the left or on the right.
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reflecting the uncertainty about the particle’s position with respect to the container’s
chambers (left or right).

In this example, there are no interactions between the systems X (the container)
and Y (the exterior). In other words, DS(x)ext 5 0, and the entropy increase is due to
the internal entropy production. Formally, DS(x) 5 s(x)y, that is, the internal entropy
produced by X is not affected at all by the system Y, because of the total thermal
isolation between X and Y.

Szilárd engine compression. Now let us consider the second example with the same
container X, surrounded by the exterior system Y, but now without a thermal isolation
between the two, so that heat can be exchanged between X and Y. Two movable
partitions can still divide the container into two separate chambers, as well as fric-
tionlessly slide along the walls of the container to either side, the left or to the right.
For clarity, we consider only one particle contained in the system X, and consider the
dynamics of the partitions as part of the exterior Y. This setup is (a part of) the Szilárd
heat engine45,46.

When a partition is in the middle of the container, the particle is located either in
the left or the right chamber with equal probability, but eventually collisions between
the particle and the partition force the latter to one side. It is easy to calculate that, as
one partition isothermally moves to the side of the container (at temperature T), the
maximum work extracted from the heat bath is kT log 2. In order for the work to be
extracted, one obviously needs to know on which side the particle was located initially.
The most important aspects, in the context of our example, are how this coupled
system modelled on the Szilárd engine realizes the logically irreversible operation of
resetting a bit — the operation used to illustrate Landauer’s principle — and what are
the resultant entropy dynamics.

A similar physical implementation of this operation is, for instance, considered by
Maroney47, as shown in Fig. 2. If the particle is on the left side, then the physical state
represents logical state zero, and if the particle is on the right side, it represents logical
state one. The partition is removed from the middle of the container, allowing the
particle to freely travel within the container. Then the partition is inserted into the far
right-hand side of the container and is slowly (quasistatically) moved to its original
position in the middle. This compression process maintains thermal contact between
the container X and heat bath Y. Collisions with the particle exert a pressure on the
partition, requiring work to be performed, and the energy from the work is trans-
ferred to heat in the heat bath Y, amounting to at least kT log 2. Such resetting of a bit
to zero, which converts at least kT log 2 of work into heat, is a typical example of
Landauer’s principle: any logically irreversible transformation of classical informa-
tion is necessarily accompanied by the dissipation of at least kT log 2 of heat per reset
bit. The entropy dynamics is the same for the Szilárd engine compression, where one
partition is fixed at the edge and only the second one is moving.

It is easy to see that the physical result of such isothermal compression is a decrease
in the thermodynamical entropy of the one molecule gas by k log 2, accompanied by
an increase in the entropy of the environment by (at least) the same amount. That is,
DS(x) 5 2k log 2. At the same time, as the example shows, the heat is dissipated to the
exterior system Y, i.e., compensated by the entropy change due to the interactions
with the surroundings, DS(x)ext 5 2k log 2, and hence, there is no internal entropy
production, s(x)y 5 0.

Assumptions and their illustration in the examples. In an attempt to provide a ther-
modynamic interpretation of transfer entropy two important assumptions are
made28, defining the range of applicability for such an interpretation. The first one

relates the transition probability Wr1 of the system’s reversible state change to the
conditional probability p(xn11 j xn):

p xnz1 xnjð Þ~ 1
Z1

Wr1 ð23Þ

where Z1 is a normalization factor, and Wr1 is such that S xnz1ð Þ{S xnð Þ~k log Wr1 .
The normalization factor is equal to the ratio between the total number of microstates
in all possible macrostates at n 1 1 and the total number of microstates in all possible
macrostates at n.

We note that the normalization is needed because ‘‘relative probability’’ Wr1 is not
bounded between zero and one, while the conditional probability is a properly defined
mathematical probability. For example, in the Joule expansion, the number of
microstates in xn11 is twice as many as those in the old state xn, making Wr1 ~2. In
this simple example the state xn11 is the only possible macrostate, and the normal-
ization factor Z1 5 2 as well, since the number of all microstates after the transition is
twice the number of the microstates in the old state before the transition. Hence, the

right-hand side of the assumption is unity,
1

Z1
Wr1 ~1, concurring with the con-

ditional probability p(xn11 j xn) 5 1, as this transition is the only one possible. The
entropy change is S(xn11) 2 S(xn) 5 k log 2, as expected.

On the contrary, for the Szilárd engine’s compression example, the number of
microstates in xn before the transition is twice as many as those in the new state xn11

after the transition (e.g., partition moves from the far right-hand side to the middle),
and Wr1 ~1=2. Following Szilárd’s original design, we allow for two possibly moving
partitions: either from the right to the middle, or from the left to the middle, with both
motions resulting in the same entropy dynamics. Hence, the total number of possible
microstates in all the resultant macrostates is still 2: the particle is on the left, or on the
right, respectively. Therefore, there is no overall reduction in the number of all
possible microstates after the transition from xn to xn11, so that Z1 5 1. Thus,
1

Z1
Wr1 ~1=2, setting the conditional probability p(xn11 j xn) 5 1/2 for the partition

moving from the right. The entropy change is given by S(xn11) 2 S(xn) 5 k log 1/2 5

2k log 2.
The second assumption relates the transition probability Wr2 of the system’s

internal state change, in the context of the interactions with the external world
represented in the state vector y, to the conditional probability p(xn11 j xn, yn).
Specifically, the second assumption is set as follows:

p xnz1 xn,yn

��� 

~

1
Z2

Wr2 ð24Þ

for some number Wr2 , such that s xð Þy~k log Wr2 , where s(x)y is the system’s
internal entropy production in the context of y. The normalization factor is again the
ratio between the total numbers of possible microstates after and before the transition.
In general, Z1 ? Z2 because yn may either increase or constrain the number of
microstates in xn11.

For the Joule expansion example, Wr2 ~Wr1 ~2, Z2 5 Z1 5 2, with identical
resultant probabilities. The lack of difference is due to thermal isolation, and hence
independence, between X and Y, yielding DS(x) 5 s(x)y 5 k log 2.

For the Szilárd engine’s compression example, Z2 5 Z1 5 1. There is no internal
entropy production, s xð Þy~k log Wr2 ~0, entailing Wr2 ~1. Thus, our second
assumption requires that the resultant conditional probability is set as

p xnz1 xn,yn

��� 

~

1
Z2

Wr2 ~1. That is, once the direction of the partition’s motion is

selected (e.g., from the right to the middle), the transition is certain to reach the
compressed outcome, in context of the external contribution from Y.
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