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This report discusses the electrical characteristics of two-terminal synaptic memory devices capable of
demonstrating an analog change in conductance in response to the varying amplitude and pulse-width of the
applied signal. The devices are based on Mn doped HfO2 material. The mechanism behind reconfiguration
was studied and a unified model is presented to explain the underlying device physics. The model was then
utilized to show the application of these devices in speech recognition. A comparison between a 20 nm 3
20 nm sized synaptic memory device with that of a state-of-the-art VLSI SRAM synapse showed ,103
reduction in area and .106 times reduction in the power consumption per learning cycle.

E
mulating ‘‘artificial intelligence’’ in computational devices, inspired by energy-efficient, robust, cog-
nitive, and emergent computational ability of a biological-brain, has inspired the scientists from
multiple disciplines for the last several decades. On one-hand tremendous efforts have been made

to understand how information processing, learning and decision-making processes are actually performed
in a biological brain1, while, on the other-hand, significant efforts have been devoted to implement some of
these understandings in computational systems using software based neural network algorithms2. In spite
of these significant progresses, software-based neuromorphic approaches impose severe challenges in-
terms of energy-efficiency and scalability in emulating the complexity and diversity of a biological-brain3–4.
For example, a human brain, because of its massively parallel and reconfigurable architecture spanning a
complex network of ,1012 neurons and 1015 synapses, is able to perform a simple cognitive task by
consuming only around 20 W of power as compared to multi-core based supercomputers that require
10,000 times more power5. To overcome the limitations of scalability and energy requirement, there have
been tremendous efforts to implement hardware-based neuron and synapse network in task–specific
neural circuits6–7. However, this approach also suffers from fundamental scalability limitation of
Complementary Metal Oxide Semiconductor (CMOS) devices3, given each neuron will require at least 6
transistors for the axon hillock8 and a plastic synapse will require more than 10 components9. Therefore,
over the past few years several 2-terminal (2-T) devices have been discovered which can emulate synaptic
behaviour. A fundamental property of a synapse is the analog change in its efficacy when subject to
different input conditions. The 2-T devices that have gained attention include WOx

10 and Ag:Si11 based
devices whose conductance or strength can be modulated using different input bias, much like a synapse
subject to various inputs. The mechanism of operation of these devices has been shown to be either the
movement of oxygen vacancies (WOx) or the migration of dopants (Ag) in the semiconductor material.
Resistive random access memory devices based on formation and rupture of conducting filaments12, and
phase-change memories based on resistance modulation by bias dependent change of phase13, have also
shown synaptic characteristics. In spite of these recent advancements, a device model supported by
experimental results has been lacking. In this paper a synaptic memory device is presented which shows
a reconfiguration in conductance as a function of input pulse parameters— amplitude and width, caused
due to the generation and annihilation of defects. The mechanism of generation of defect was explained by
stress induced leakage current (SILC)14. The physics behind this model is investigated and a comprehensive
device model is presented. The model is then used to simulate learning in a 16 3 16 crossbar array
consisting of these synaptic devices by spike timing dependent plasticity (STDP) learning algorithm. A
simulation of speech recording and discrimination was shown using these devices as the synaptic com-
ponent. Finally a comparison of the performance specifications of the proposed synaptic memory device
when scaled to nanometer dimensions with that of biological systems and existing VLSI circuits for
neuromorphic computation is presented.
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Results
The device structure and testing configuration is shown in
Figure 1(a). Mn doped HfO2 forms the switching layer while Ru
and TiN form the bottom electrode (BE) and top electrode (TE)
respectively. Figure 1(b) shows hysteresis in I–V with repetitive
DC sweeps. Positive voltage sweeps increase the conductance, while
negative voltage sweeps decrease it. Figure 1(c) shows the current
reads at 0.5 V after each excitation. A 12.5 V, 50 ms wide pulse was
applied to the device repeatedly for 15 times and the current was
measured after each excitation. It is evident that the first increase of
conductance (from 1 to 2) is always the highest, while the conduc-
tance tends to saturate with increased number of pulses. Once the
device was driven to near saturation of increased conductance,
22 V, and 50 ms wide pulses were applied. Here, too, the first
decrease is highest; while subsequent reduction in conductance tends
to saturate.

Next, capacitance voltage (CV) characteristic of the device was
obtained at several frequencies as shown in Fig. 2(a). From here,
assuming a dielectric constant of 24, the film thickness was estimated
to be 9.93 nm. To understand the mechanism of charge transport, I–
V sweeps were performed at temperatures ranging from 260 K to
350 K. The conduction mechanism was found to be Frenkel-Poole
(F-P) emission15 based on excellent r-square (R2) values obtained for
the F-P fitting, shown in Figs. 2(a)–2(d). The equation for F-P can be
given as:
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Here, m is the mobility of dielectric, E is the electric field, A is the area
of the device, n0 is defect concentration and WB is the depth of the
trap from the conduction band of HfO2 which is corrected for the
electric field in the exponential. Figures 2(b) and 2(c) show Ln(I/V)
vs. sqrt(V) for different temperatures for positive bias and negative
bias respectively. Beyond 0.2 V, a straight line fitting with R2 values
between 0.998 and 0.999 is obtained for the plots at all temperatures
indicating the conduction mechanism to be dominated by F-P. At
low bias (,0.2 V) some other mechanism can be dominant, such as
trap-assisted tunnelling17 at low temperatures and thermionic emis-
sion at higher temperatures (.330 K). The parameters for emission
were determined by extracting the slope (Ea) of Ln (I/V) vs. 1/kT plot
for different bias points as shown in figure 2(d) for positive bias and
2(e) for negative bias. For comparison, Schottky emission fittings for
Ln(I/T2) vs 1/kT were also tried as shown in the inset of figures 2(d)
and 2(e). However, R2 values for F-P (0.983–0.999 for negative biases

and 0.998–0.999 for positive biases) were found to be better than
Schottky fittings indicating the dominant mechanism of conduction
to be F-P in these samples. The Ea was then plotted as a function of
the square root of V for positive and negative bias as in Figure 2(f).
The extracted WB for positive and negative bias were found to be
0.207 and 0.232 eV respectively. Assuming m , 0.15 cm2/V-s16, n0

was estimated to be around 3 3 1011 cm23. Using Mn:HfO2 thickness
of 9.93 nm, extracted from CV, the dielectric constant of ,24 was
extracted for both positive and negative bias using F-P fitting. F-P
emission is usually associated with symmetric I-Vs29 due to bulk
defects. However, asymmetric I-Vs in our devices could be a result
of different WB observed for the positive and negative biases. It is
possible that TiN, being an oxygen gettering layer, can getter oxygen
from HfO2 near TiN/HfO2 interface which can lead to different
oxidation states of Mn. As a result, defects of different depths in
the band-gap of HfO2 can exist which can preferentially participate
under positive and negative bias. It has also been reported that the
dielectric constant extracted for F-P emission in HfO2 corresponds to
optical frequencies30. However, the optical dielectric constant is valid
for very high fields, while the E-field for our samples was much lower.

To gain an insight into the physical processes that govern the
hysteretic behaviour, constant voltage stressing (CVS) of the device
was performed. It was observed that the current increases during the
stress. Figure 3(a) shows the increase of current during CVS of the
device when a pulse of 2.5 V and 100 ms duration was applied to it.
Such an increase of current under stressing is usually observed in
high-k dielectrics where the mechanism is described by SILC
model14. The equation for SILC is given as:

I~I0zN 1{ exp {t=t0

� �h i
za:tc ð2Þ

Here, I0 denotes the current at the start of the 2.5 V bias, N is the
saturation value of electron de-trapping, a is the leakage current from
SILC traps and c is the trap generation rate. The experimental data
was fitted with this equation and the parameters were extracted as
shown in Figure 3(a). The physical process of the model in our device
can be explained as follows. The Mn:HfO2 initially has Vo based
defects with electrons trapped in them. When a positive bias is
applied, the electrons de-trap and participate in conduction. The
de-trapping of electrons from pre-existing defects is a field-depend-
ent phenomenon. Therefore, the device has different increase of
current under different bias. The de-trapping effect is usually mod-
elled by the second term of (2). However, as supported by the
extracted parameters, de-trapping is a fast process and the second
term quickly reaches its maximum. The subsequent increase of
current in the remainder of the pulse can thus be attributed to gen-

Figure 1 | (a) Device structure and testing configuration (b) IV hysteresis. Incremental loops were observed when the device was swept to 2.5 V and back.

The conductance of the device decreased during negative sweep to 21.5 V. (c)Potentiating (2.5 V) pulses of 50 ms width were applied for 15 cycles. Then

depressing (22 V) pulses were applied for next 15 cycles. The plot shows the read (0.5 V DC) after each excitation. The first data point is initial

conductance level. The first increase/decrease is always greatest. Saturation of conductance tends to occur after a number of cycles.
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eration of additional defects during the stressing, which take part in
conduction. This is denoted by the third term. Therefore, when
repetitive positive pulses are applied, the conductance increase is
highest in the first pulse due to fast de-trapping of electrons.
Thereafter, the increase in subsequent pulses is small due to the
leakage current term. This explains the current saturation trend in
figure 1(c).

An analogous decrease of current is observed when the device is
stressed using a negative CVS. Figure 3(b) shows the decrease of
current when a 22 V pulse of 100 ms duration was applied to the
device which had previously been excited using positive CVS
(Figure 3(a)). The current was fitted to the following equation:

I~InzNn exp {t=tn

� �h i
zan:t

{cn ð3Þ

Figure 2 | (a) CV measurement is shown for the sample. Assuming a dielectric constant ,24, the thickness was estimated to be 9.93 nm. The dielectric

constant was verified by the transport study. Ln(I/V) vs sqrt(V) plots are shown here for (b) positive and (c) negative bias. Straight line fittings are

obtained beyond 0.15 V which indicate that the dominant current conduction mechanism is F-P. At low bias and/or high temperatures (.330 K)

different conduction mechanisms set in. Ln(I/V) vs 1/kT plot is shown for different bias points for (d) positive bias and (e) negative bias. The activation

energy for carriers in F-P emission is extracted from the slopes of these plots. The intercepts provide the average carrier concentration in the device,

assuming a mobility of 0.15 cm2/V-s. Ln(I/T2) vs 1/kT plots for Schottky emission are also shown in the insets of (d) for positive bias and (e) for negative

bias. The fits obtained for F-P were better than that of Schottky which confirmed the dominant conduction mechanism in the dielectric to be F-P. (f) The

activation energy is plotted as a function of sqrt(V). The slope provides the dielectric constant of the material. For a thickness of 9.93 nm the dielectric

constant was estimated to be 24. The average trap depth was 0.207 eV for positive bias and 0.232 eV for negative bias.

Figure 3 | SILC fitting. (a) Increase in current during the constant voltage pulse (2.5 V) for 100 ms. SILC model (equation (2)) was used to fit the data.

b.) 22 V pulse of width 100 ms was applied to a device driven to high conductance by the pulse in (a). The decrease was modelled according to

equation (3).
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Here In is the unstressed conductance level of the device. Hence the
device can be reconfigured to its unexcited condition only when a
long pulse is applied to the device. It is hypothesized that the first
term indicates re-trapping of electrons in the defects that were emp-
tied during positive stressing, while the second term denotes anni-
hilation of the oxygen vacancies that were generated during positive
CVS. Here, too, the saturation of conductance decrease in sub-
sequent negative pulses can be modelled by neglecting the second
term of (3) in subsequent pulses.

Once the stress is removed from the device, its conductance tends
to decay. Such a transient decay of conductance under low bias is
usually attributed to dielectric relaxation in high k-dielectrics. This
process can be modelled using the Curie-von Schweidler (CS) equa-
tion for relaxation18.

I~c:t{n ð4Þ

Figure 4(a) shows the relaxation of conductance after removal of the
positive CVS. Based on the fit using CS equation, the time to reach
the initial un-excited conductance was estimated to be 3.3 months.
However, the device conductance already seems to be saturating
towards the end of 1000 s, which would suggest that the conductance

is retained. Similar fitting was done for relaxation after a negative
pulse was applied to the device. The fitting is given in figure 4(b).

Discussion
From the results in the previous section, it was clear that the hyster-
esis in I-Vs is caused by the increase of n0 during positive sweep and
decrease in n0 during negative sweep. Therefore, in order to model
the hysteresis, it was necessary to obtain the transient current
increase and decrease as a function of applied bias. During a voltage
sweep, each bias point is applied to the device for some time before a
measurement is done. This stress during each bias point increases/
decreases the conductance of the device and hence the current
increases/decreases depending on the polarity of the bias. CVS was
applied to the device in increasing amplitudes of bias and the SILC
increase and the current decrease parameters were extracted as a
function of bias. Figure 5(a) shows positive CVS on a device with
increasing voltages ranging from 1.25 V to 2.5 V. No significant
change of current was observed below 1.75 V constant stress which
indicates that the activation of SILC and hence hysteresis requires a
minimum electric field. The parameters for SILC were extracted by
fitting the I-t curves with equation (2) and their values are provided

Figure 4 | Dielectric relaxation. (a) relaxation after positive voltage stressing. 2.5 V/100 ms pulse was used for the stressing and the current was

measured once the stress was removed. The conductance saturates after 1000 s. (b) relaxation after 22 V/100 ms pulse was applied to a positively stressed

device. Saturation of conductance is evident here too.

Figure 5 | (a) Subsequent constant voltage stressing for different positive biases is shown. The extracted SILC parameters are field dependent as shown in

the inset (b) Several negative biases applied to device after positive excitation and the extracted parameters are shown in inset. The parameters have a weak

field dependency for negative bias. Stress time was 100 ms in both plots. The biases applied are given in legends. The current increase or decrease is

obtained as a function of field based on the extracted parameters from the plot.

www.nature.com/scientificreports
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in the inset of Figure 5(a). Similarly, the device was stressed using
negative bias ranging from 21 V to 21.75 V. Figure 5(b) shows the
decrease of current during negative stressing. The parameters were
again extracted from fits of the decrease to equation (3) and are
presented in the inset. It is observed that for negative bias, the para-
meters for the stress induced reduction in current have a weak
dependency on the applied bias.

From the extracted parameters, the change in current during stres-
sing can be estimated as a function of applied bias. During a positive
sweep, the excess current generated due to SILC can be obtained by
incorporating the field dependency of the extracted parameters in
equation (2). Likewise, the reduction in current during negative
sweep can be obtained by incorporating the parameters extracted
in Figure 5(b) into equation (3). Figure 6(a) and 6(b) shows this
increase and decrease in current respectively as a function of bias.
The time-stamp for each bias point is varied from 20 ms, 50 ms,
100 ms and 200 ms. It is evident that for larger time stamps or in
effect slower sweep rates, the change in current due to stress is higher.
This field dependent change in current could be added to or sub-
tracted from the F-P equation to model the I–V hysteresis in positive

or negative bias. However, using theWB from equation (1) the current
was under-estimated for the positive bias while the shape of the curve
did not fit well. Therefore, it was apparent that along with the
increase/decrease in the density of traps in the dielectric, the WB

was also changing during voltage sweeps. In fact it was observed that
theWB decreases during positive voltage sweep. This can be explained
by assuming that the traps generated during positive voltage sweeps
occupy a higher energy in the dielectric than the native traps, thus
lowering the average WB. In an analogous manner, during negative
sweeps, the WB would increase as the extra defects generated get
annihilated. The hypothesis was confirmed by obtaining the relation
of WB with E-field.

To obtain the variation ofWB with E-field, the following procedure
was applied. A time-stamp of 100 ms was used for each bias point.
For positive hysteresis, the current due to SILC was obtained for
voltages equal to and above 1.75 V. This current was subtracted from
the experimental hysteresis I–V to obtain the unstressed current level
of the device, when there is no trap generation. The unstressed cur-
rent is then used to extract WB as a function of E-field using the F-P
equation (1). Similarly, for the negative hysteresis, the unstressed

Figure 6 | (a) Excess current generated is given as a function of bias applied. Several time stamps (time for each bias point application) are used. The

current at each bias point was evaluated using the field dependent parameters extracted from Figure 5. (b) Current decrease during negative hysteresis as a

function of bias. Here, too several time stamps are used as shown in legend. These two plots are used to extract the dependency of trap level with E-field

during the hysteresis. (c) Positive I–V hysteresis as obtained from the theoretical model. The carrier concentration increased during each bias step to

simulate hysteresis. The field dependency of trap depth was also accounted for. A decay was introduced in between sweeps given by equation (4) to get

overlap of hysteresis. The variation of trap depth with E-field is shown in the inset. The traps generated during stressing occupy higher energy than native

traps. (d) Negative hysteresis from theoretical model. Decrease of carrier concentration and trap depth dependency were included. In subsequent sweeps

the decay is only given by relaxation effects and hence very small hysteresis is observed. This follows the experimental observation of negative I–V sweeps

wherein the first decrease is high. The kink in negative hysteresis is due to a combined effect of conductance decrease and trap depth increase at higher

negative bias. This is consistent with the experimental observation. The trap depth variation with E-field is shown in inset. As the generated traps during

positive stressing are annihilated, the trap depth increases as the conduction occurs more often through the native traps.
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device current refers to the condition when there is no decrease of
current due to negative stress. Therefore, the unstressed current was
the sum of the experimental current and the current decrease due to
stressing. For positive bias, as explained above, WB was found to
decrease with E-field. The best fit relation was found out as:

wB Eð Þ~azb:E{k ð5Þ

where a and b are constants and k is the power for the E-field
dependency. Similarly, as explained earlier, for the negative bias
WB was found to increase with E-field, the relation given as:

wB
0 Eð Þ~a0zb0: Ej jk

0
ð6Þ

The fittings for the extracted WB are shown in the insets of figure 6(c)
and 6(d) for positive and negative sweeps, respectively. Based on this
extracted trap depth, henceforth referred to as WB(E), the carrier
density generated or annihilated during positive or negative stress
could be extracted as a function of field. Therefore the overall F-P
equation needs to be modified to reflect the variations in n0 and
WB(E) as:

I~qmEA n0zDnz E,tð Þ½ �: exp {

wB Eð Þ{
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for positive bias and:

I~qmEA n0
0{Dn{ E,tð Þ½ �: exp {
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for negative bias.
Here n0 denotes the carrier concentration of an unstressed device,

while n0’ refers to some carrier concentration after the device was
positively stressed. Dn1 and Dn2 are the changes in n0 and n0’
respectively due to stressing, and are functions of both E-field and
stress time.

Based on these equations, the hysteretic behaviour of the device
was modelled as shown in figures 6(c) and 6(d) for positive and
negative sweeps respectively. The overlap between subsequent loops
was modelled using the relaxation effect between applications of
voltage sweeps. Equation (3) was used to include a slight decay of
carrier concentration when no bias was applied to the device. The
kink in the negative hysteresis is due to the combined effect of
increase in WB(E) and reduction of current. Such a kink is also
observed in the experimental data as shown in Figure 1(b). Hence,
a unified model was obtained to explain the synaptic behaviour of the
Mn:HfO2 synaptic devices.

To examine the repeatability in the reconfiguration of these
devices, an endurance testing on the device was performed as shown
in Figure 7. A potentiating pulse of 2.5 V and the given pulse width
was applied, followed by measurement of the device conductance. A
depressing pulse of the same width was then applied and the con-
ductance was again measured at 0.5 V. Clearly, a repeatable reconfi-
guration in conductance as a function of pulse width is evident for
multiple cycles without any obvious signs of failure.

STDP and Speech Recognition. STDP is a biologically inspired
learning algorithm that is typically followed in unsupervised
neuromorphic learning19. In a neural-synapse aggregate, pre-
synaptic action potentials (AP) are incident on the synapses that
are connected to the dendrite. The dendrite sums the contribution
of synaptic weights to the incoming APs and fires a post-synaptic AP
once the membrane reaches a certain threshold potential. Based on
the relative timing of pre- and post-synaptic AP (Dt), the

corresponding synapse is either potentiated or depressed20. In
biological systems, STDP usually occurs in the spike timing
window of 640 ms with the highest change in synaptic plasticity
occurring in the 610 ms range. Therefore, when a pre-synaptic
AP arrives before postsynaptic depolarization (positive Dt), long-
term potentiation (LTP) or the enhancement of synaptic strength
occurs, whereas if the postsynaptic firing precedes the pre-synaptic
arrival of AP (negative Dt), long-term depression (LTD) or
weakening of synaptic strength occurs31. The synaptic strength due
to STDP in biological systems is usually fitted to an exponentially
decaying function21:

W tð Þ~Az exp {Dt=tz

� �
ð9Þ

for LTP and

W tð Þ~{A{ exp Dt=t{

� �
ð10Þ

for LTD. The plot for STDP using these equations is shown in
Figure 8(a).

To demonstrate the possibility of implementing STDP using the
proposed synaptic devices, a 2.5 V pulse for potentiation and 22 V
pulse for depression were applied while the pulse-width (v) was
modulated based on Dt. When a pre-synaptic spike preceded the
post-synaptic firing, a potentiating pulse would be applied, while a
depressing pulse would be applied when post-synaptic firing pre-
cedes the pre-synaptic AP. Once a neuron fired, the relative timing
of spike arrival (Dt) was recorded directly into the applied pulse
width and polarity by the following mapping procedure. To be com-
patible with biological systems, a spike timing window of Dt 5

640 ms was chosen, where the highest change of conductance was
intended when Dt 5 610 ms. Since these devices needed much
longer v to show appreciable changes in conductance, a relation
between Dt and v was defined such that a Dt 5 610 ms corre-
sponded to v 5 200 ms, Dt 5 620 ms corresponded to v 5

100 ms, Dt 5 630 ms corresponded to v 5 50 ms, and finally Dt
5 640 ms corresponded to v 5 20 ms. This relation between Dt
and v can be conveniently represented by the equation (11).

v~l: exp {k: Dtj jð Þ ð11Þ

where l and k are fitting parameters. This simple test to demonstrate
STDP is schematically shown in figure 8(b). The observed potentia-
tion (LTP) and depression (LTD) characteristic of the device, mea-

Figure 7 | Endurance for multiple pulse width potentiation and
depression is shown for 1000 potentiating/depressing cycles. Here pot.

refers to potentiation or applying a 2.5 V bias and dep. refers to depression

or applying a 22 V bias. The pulse widths applied are as mentioned in the

legend.
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Figure 8 | STDP analysis. (a) STDP plot for a biological synapse. Equations (9) and (10) were used to generate this plot. The largest change in synaptic

strength occurs in the Dt 5 610 ms window. The values for generating the plot are given in the inset. (b) Application of pulse during STDP. For Dt . 0, a

potentiating 2.5 V pulse is applied, while for Dt , 0, a 22 V depressing pulse is applied. The pulse width is determined using equation (11). (c) STDP for

theoretical and experimental comparison. Theoretical model used the dependency of carrier concentration on pulse width to calculate percentage change

from Figure 8(d). Experimental data was obtained by exciting devices in their unexcited conductance levels using 2.5 V for potentiation. For LTD, already

excited devices were stressed using 22 V. The percentage change in conductance is plotted as a function ofDt. TheDt for STDP is obtained from a one-to-

one mapping described in the text. (d) Carrier concentration change is shown as a function of applied pulse width. This property was used in

implementing STDP. Higher the pulse width, greater is the change in carrier concentration. The plot was also used to generate the theoretical STDP in

8(c).

Figure 9 | (a) Block diagram showing the speech processing. The speech signal is sampled at 11.025 KHz and passed to a 16 channel band pass filter bank.

The central frequency for each channel is obtained from an exponential distribution of frequencies, where for channel 1,200 Hz is used and 4 KHz is used

for channel 16. After filtering the signals are rectified and passed to thresholding stage where spikes are generated by three serial integrate and fire neurons

with three different thresholds. The spikes are directly fed into the crossbar array. The post synapse fires once the threshold crosses 2.5 V. Once it fires, a

feedback signal is sent to each of the synaptic device based on STDP rules as defined in the text. (b) Application of STDP is shown here. When the weighted

sum of incoming signals Sxigi . Vth the postsynaptic neuron fires an output spike and a feedback signal. The pulse width of the feedback signal is

estimated byDt and is given by equation (11). For LTP, a potentiating pulse of 2.5 V is applied as shown for devices g2 and gn while 22 V depressing pulse

is applied for LTD as shown for g1.

www.nature.com/scientificreports
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sured using this technique is shown in figure 8(c). The LTP was
calculated by measuring the change in the conductance of the device
in response to the applied potentiating pulse. LTD was calculated by
measuring the change in the conductance of the potentiated device in
response to the applied depressing pulse. Therefore, the timing
information is stored in the device as a change of conductance.

Next, to model the LTP and LTD behaviour of the device, it was
necessary to obtain the change of n0 (Dn) when potentiating or
depressing pulses were applied. Figure 8(d) shows Dn of the device
as a function of pulse width for potentiating (2.5 V) and depressing
(22 V) pulse. The increase or decrease of current due to the applied
pulse width was evaluated first using equations (2) and (3). Dn was
then extracted from that current using an average WB(E) 5 0.19 eV
to account for bias dependent change in the trap depth. Once Dn as a
function of applied pulse width was obtained, it was expressed as a
percentage change to get the theoretical LTP and LTD values. The
pulse width was mapped to Dt using equation (11). This data is
plotted in Fig. 8(c).

To demonstrate the application of these devices in neuromorphic
learning, a 16 3 16 crossbar array of Mn:HfO2 synaptic memory
devices was simulated in a neuron-synapse framework to dem-
onstrate STDP algorithm based speech recording. The schematic is
shown in Fig. 9(a). A voice was sampled at 11.025 KHz and recorded
for duration of 1 s. To emulate the filtering process of the cochlea, the
data was passed through a band-pass filter bank. In this simulation, a
central frequency (fc) ranging from 200 Hz to 4 KHz was used to
include most of the audible human range. The frequencies were
distributed in a log scale and each channel corresponded to one
frequency level. The filter bandwidths were chosen following the
work of Moore and Glassberg and were defined by22,23:

V~108|f cz24:7 ð12Þ

where, fc is in KHz. The filtered signals through each channel were
rectified. The rectified speech was processed through three integrate
and fire (IF) neurons with three different thresholds levels. Each of
the IF neurons would fire a spike once the summation crossed their
respective thresholds. These spikes were then directly input to the

crossbar array with each cross-point consisting of Mn:HfO2 synaptic
devices connected between input and output neurons.

Training of the synaptic array in the simulation was performed as
follows. The devices were all initialized to their unexcited conduc-
tance levels. When input neurons spike, it sends out 1 V pulses of
1 ms width as the AP. A counter was used to keep track of the time of
arrival of each AP. The incoming currents from different rows were
summed along a column of the crossbar and fed to the output neu-
ron. The total current through a given column j is given by:

Ij~
X

i

gijVi ð13Þ

where Ij is the current summation of the jth column, Vi is the mag-
nitude of incoming spike AP for the ith row, and gij is the synaptic
conductance of Mn:HfO2 device at the cross-point of ith row and jth

column. The summed current was used to charge a capacitor of
20 pF for the postsynaptic IF neurom circuit in jth column. Once
the potential of the jth column reached a threshold voltage of 2.5 V,
a post-synaptic spike was fired. The time of postsynaptic firing was
noted and the capacitor was reset to 0 V. The arrival of pre-synaptic
spikes was paused temporarily and the Dt was obtained from the pre-
and post-synaptic firing instants for each of the rows. Figure 9(b)
shows an example of this implementation across one column. The
conductance of each synapse in that column was then modified based
on the relation shown in figure 8(c). It is worth noting that the pre-
synaptic spikes were chosen to be 1 V since it ensured the devices are
not affected by the incoming pulses due to the fact that any signifi-
cant change in device conductance occurs only when the applied bias
is .1.75 V. At the same time the speech was sampled at 11.025 KHz,
which meant that each sample of the 1 s recording was of 90 ms
duration. Therefore it must be ensured that when the feedback pulses
are applied during STDP, the incoming spikes are paused tempor-
arily until the end of feedback. Hence for practical implementation of
such a system, a timer based on a global clock is required which can
help keep track of the pre- and postsynaptic firing instants. Once the
post-synapse fires, the input pulses are paused by activating delay
circuits at the input. The stored instances of pre- and postsynaptic

Figure 10 | Synaptic weights. (a) The initial current level of the 16 3 16 array of synaptic devices is shown. The conductance is initialized to 7.5 nA at

0.5 V read. (b) The word ‘‘hello’’ when trained on to the 16 3 16 crossbar array of synaptic devices results in a conductance distribution as shown in the

plot. The same word was repeated 10 times to ensure the distribution is similar. (c) When the word ‘‘apple’’ was input into the network, the distribution of

conductance is markedly different. The weight evolution is obtained from the theoretical STDP fitting of figure 8(b). The colormap shows the current read

in nA at 0.5 V after the training procedure. The conductance of each synaptic device along a row is the same since they were initialized to the same

conductance level and faced the same STDP training.

Table I | Comparison of biological synapse with Mn doped HfO2 synaptic device

Parameter Biological synapse27 Mn:HfO2 specifications

Postsynaptic potential ,100mV 1V (dielectric thickness 54nm)
Postsynaptic current ,1nA 2.41pA (Device area 5 400 nm2)
Energy consumed per bit ,1fJ 482fJ (200ms pulse)
LTP percentage change ,5100% 56% (for 200ms pulse)
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firings are used to estimate the feedback pulse width and magnitude
for each of the synaptic devices from equation (11). The above imple-
mentation is based on a synchronous learning scheme. In this
scheme, the requirement for keeping track of the precise firing times
of neurons can add significant overhead in terms of circuit require-
ment, which needs to be further studied. To alleviate the requirement
of additional circuitry, implementation of asynchronous STDP based
on the back-propagation of post-synaptic spikes has been pro-
posed24,25. Since the device conductance can be modulated using both
pulse width and amplitude, such asynchronous STDP can also be
implemented by capitalizing on the appropriate overlap between
pre-and post-synaptic spikes. However, additional circuitry may be
needed in this scheme for the desired spike-profile design, which is
currently been studied24,25.

The initial synaptic weights before training are shown in
Figure 10(a). The current levels at 0.5 V read are shown on the
adjacent colour map. A unified colour refers to a constant conduc-
tance level for all the devices in the array. Figures 10(b) and (c) show
the weight distribution of the synaptic array at the end of the simu-
lation for words ‘‘apple’’ and ‘‘hello’’, respectively. A clear distinction
can be observed in the pattern of conductance levels for these two
words. It is interesting to note that the current level along each row of
the crossbar is equal as inferred from the colour map. Such a pattern
was expected as each of the synaptic elements along a particular row
undergoes the same STDP learning since the conductance change
and conductance initialization for the synaptic devices were fixed.
The impacts of device to device variability and statistical variation in
STDP have been examined in a previous work which can be incor-
porated leading to a more diversified map26.

The energy requirements of the synaptic device in the face of
biological synapses were also evaluated. The energy consumption
for transmission of 1 bit of information across a biological synapse
is around 1 fJ27. The excitatory post synaptic current is less than 1 nA
while the postsynaptic potential is ,100 mV. The size of these
devices is 100 3 100 mm2. Scaling down to a 400 nm2 node would
require a current density , (1 nA/400 nm2 5 250 A/cm2) for
matching a biological synapse. It is apparent from the proposed
model that the current due to SILC mechanism is dependent on field
and pulse width and independent of trap depth and initial trap den-
sity. For scaling down the operating voltages it must be ensured that
the electric field is still in the same range. Hence, for an operating
voltage of 1 V, the dielectric needs to be scaled to 4 nm. Therefore,
the optimum parameters for a 20 nm 3 20 nm sized synaptic device
operating at 1 V are given in Table I. Here the trap density and trap
depth have been assumed to be 5 3 1011 cm23 and 0.19 eV respect-
ively. It must be noted that there is a limit to dielectric thickness
scaling since for very thin films F-P emission would cease to be the
dominant conduction mechanism and direct tunnelling would tend
to take over. Hence the lower limit of thickness was kept to be 4 nm.

A comparison can also be made for the energy and area require-
ments of the proposed synaptic device with a 22 nm node VLSI
synapse based on existing technology as shown in Table II. A
,103 improvement in area is obtained if the synapse circuitry using
SRAM cell is replaced by the proposed synaptic devices. The power
requirement for programming the device is also significantly low as a
reduction of 106 times is obtained, while for a switching time of 10 ns

for the SRAM cell, the energy requirements are comparable with the
device. However, since the devices are slow, the overall energy con-
sumption can be lowered further by designing better materials where
defect generation and annihilation is a faster process and can occur at
much lower fields. The future work in this area would include hard-
ware implementation of the proposed approach and benchmarking
against other technologies.

Methods
Device fabrication. The synaptic devices were fabricated using RF magnetron
sputtering system. 3 nm of Ti was deposited as the adhesion layer on a 2’’ p-Si
substrate. This was followed by a 100 nm layer of Ru that was deposited as the BE. The
9.93 nm thin switching layer of Mn doped HfO2 was deposited by co-sputtering of
Mn and Hf in an Argon and Oxygen environment. The sputtering power of Mn to Hf
was in the ratio of 155. The Ar:O2 gas ratio was 451. The layer was deposited at a
substrate temperature of 300uC. Mn introduces doubly ionized oxygen vacancies and
negatively charged defects in HfO2

28 as given by:

MnO ����?HfO2
MnHf

00zO0zV 00
0 ð14Þ

The TiN TE was deposited by reactive sputtering of Ti in an Argon and Nitrogen
environment. The Ar:N2 ratio was chosen as 151 and the substrate temperature was
300uC. The TE layer was 20 nm thick. A 70 nm thick W capping layer was deposited
finally.

Electrical characterization. The device characterization was done in a Lakeshore
probe-station under a chamber pressure of 7.5e-5Torr. The bias was applied to the BE
while the TE was always grounded as shown in figure 1(a). 100 mm 3 100 mm sized
devices were used for characterization. Cryogenic testing was done on 200 mm 3

200 mm sized devices. The simulation was performed using MATLAB.
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