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Four-dimensional imaging, which indicates imaging in three spatial dimensions as a function of time,
provides useful evidence to investigate the interactions of rising bubbles. However, this has been largely
unexplored for microbubbles, mostly due to problems associated with strong light scattering and shallow
depth of field in optical imaging. Here, tracking x-ray microtomography is used to visualize rising
microbubbles in four dimensions. Bubbles are tracked by moving the cell to account for their rise velocity.
The sizes, shapes, time-dependent positions, and velocities of individual rising microbubbles are clearly
identified, despite substantial overlaps between bubbles in the field of view. Our tracking x-ray
microtomography affords opportunities for understanding bubble-bubble (or particle) interactions at
microscales – important in various fields such as microfluidics, biomechanics, and floatation.

T
he rising of bubbles, induced by buoyancy, commonly occurs in natural and industrial processes.
Understanding the interactions between rising bubbles is important not only for scientific interests but also
for industrial applications. Many theoretical1–3, numerical4–8, and experimental9–14 investigations have been

performed on bubble interactions over several decades.
Four-dimensional (4-D) imaging (3 spatial dimensions 1 time) of rising bubbles allows us to directly measure

their sizes, shapes, time-dependent positions and velocities. These are key parameters in bubble interactions.
Recently, 4-D imaging of rising bubbles has been developed, in particular, for large bubbles (.1 mm) in a high
Reynolds number regime, based on optical tomography15–17 or magnetic resonance imaging14. However, 4-D
imaging of microbubbles (=1 mm) in low Reynolds-number flows has not yet been achieved, despite the
importance of microbubbles in many processes such as microfluidics18–20, biomechanics of microorganisms21–23,
the dynamics of lava flow24,25, and bubble-particle interactions in flotation cells. This is because of difficulties
associated with strong light scattering and shallow depth of field in optical imaging that occurs, in particular, in
high resolution imaging.

Phase contrast x-ray imaging26–29 provides excellent contrasts in microbubble boundaries of gas2liquid sys-
tems30–34. Fast x-ray microtomography using phase contrast x-ray imaging has been also developed for 4-D
visualization of quasi-static microbubbles28,29. Here, we introduce the development of a tracking x-ray micro-
tomography that visualizes rising microbubbles in 4-D by counterbalancing their rise. Even in the presence of
substantial overlap between imaged bubbles, the sizes, shapes, time-dependent positions and velocities of indi-
vidual rising microbubbles can be accurately measured.

Results
The experimental setup of the tracking x-ray microtomography is schematically illustrated in Fig. 1(a). The
experiments were performed at the BL29XU RIKEN beamline29 of SPring-8 and at the 6D X-ray Micro-Imaging
beamline of PLS-II. This is different from the fast x-ray microtomography reported previously29; the key idea of
this setup is to track rising microbubbles, specifically by accounting for their rise by moving down an in-situ cell
(IC) at the same speed as the rising bubbles [Fig. 1(b)].

Figure 1(c) shows representative equi-angular series of projection images for three unequal-sized microbub-
bles, taken with the tracking x-ray microtomography during their rise in a pure glycerol30. Microradiographs were
taken per an equi-angular series of projection images. The time interval between consecutive equi-angular series
was 2.5 s. Strikingly, boundaries of individual microbubbles could be clearly resolved with the aid of x-ray phase
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contrast edge enhancement, even with horizontal overlap between
bubbles. The sizes and shapes of the bubbles (A, B, and C) were
clearly identified despite their rise at ,100 mm/s, a relatively high
speed comparing to the effective pixel size of the CMOS camera
(4.0 mm). The sizes of bubbles A, B, and C were measured to be
580, 300, and 120 mm in diameter, respectively. There was no notice-
able change in the bubble shapes during their rise, as demonstrated
by their circular shapes in each angle and time. Here, the time was set
to be zero for the acquisition of the first angular data set.

The counterbalance was performed to account for the rising speed
of a bubble cluster, instead of each bubble. In reality, the z-coordinate
of a bubble in each projection image showed a slight variation in a
given equi-angular set of projections because of slight differences in
the rising speeds of individual bubbles (see, for instance, the bubble B
(C) marked by the black (the white) arrows in 0u and 180u at 0.0 s in
Fig. 1(c)). Therefore, for proper reconstruction all the images in the
angular set were shifted using an image shift function to match the z-
coordinate in each projection image to a reference value, i.e. the z-
coordinate at 0u. Such an image shift process was repeated for each
bubble and for each angular set. Tomographic reconstruction was
then carried out using OctopusH (Ghent University, Germany), a
commercial tomographic reconstruction software based on a fil-
tered-back projection algorithm. Volume rendering of reconstructed
images was performed with AMIRAH (MercuryTM Computer
Systems Inc., USA).

Figure 2(a) shows a reconstructed 4-D image of the rising micro-
bubbles in Fig. 1(c). Time-dependent 3-D configurations of the three
rising bubbles were visualized; hence we were able to vividly dem-
onstrate how a bigger bubble passes by a smaller bubble. Importantly,
this technique accurately extracts the positions of the three bubbles
and their dynamics (see supplementary Table 1). Furthermore, the
contact or non-contact between two microbubbles can be clearly
identified (Figs. 2(b), (c), and supplementary Movie 1). This is par-
ticularly important in understanding bubble interactions.

Discussion
One big advantage of our tracking x-ray microtomography tech-
nique is its capability to visualize rising microbubbles with substan-
tial horizontal overlap in real-time in 3-D geometry. We tested a
cluster with six, unequal-sized microbubbles. Despite a substantial
overlap along the main axis of the cluster (see the inset in the left-top
corner in Fig. 3), we were able to visualize individual microbubbles in
3-D at 0.0 s (see supplementary Movie 2). Remarkably, a very small
microbubble of 15 mm (white arrow) that was located between big
bubbles could be clearly reconstructed in 3-D – something which is
not possible using conventional 3-D imaging methods.

Additionally, the spatial and temporal configurations of the rising
microbubbles were clearly identified, as demonstrated by the recon-
structed 4-D images at 0.0 and 28.0 s (side view – Fig. S1(a), top view
– Fig. S1(b)). We observed that the bubbles were slightly aligning
horizontally (see the white arrows in Fig. S1(a)) but spreading in the
x- or y-direction, as specifically demonstrated by the time-dependent
standard deviations of their positions in Figs. S1(c) and S1(d),
respectively. Note that with this new technique we can record very
small changes in standard deviation, for instance jDsj , 4 mm for
28 s in the z-axis (Fig. S2) or in the x- or y-axis (Fig. S2).

We finally tested time-dependent behaviors of a microbubble clus-
ter of different sized bubbles (Fig. 4). The reconstructed 3-D images
in Fig. 4(a) demonstrate a dynamic sequence of non-contact (0.0 s),
contact (15.0 to 32.5 s), and coalescence (35.0 s) of bubble B and
bubble A, and show a faster rise of the coalesced bubble A9 than
bubble C (60.0 s) (see supplementary movie 3). In contrast with
the rising speed of in-line equal-sized bubbles35, that of microbubbles
showed a tendency to decrease before the coalescence (Fig. 4(b)),
presumably associated with the existence of a small bubble (B) in-
between. By the coalescence, interestingly, there was a jump in the
rising speed of bubble A9 or C. The speed then increased with higher
acceleration in bubble A9 than in bubble C. Furthermore, our 4-D

Figure 1 | Schematic illustration of 4-D visualization. (a) Schematic of

tracking x-ray microtomography for 4-D visualization of rising

microbubbles. (b) Conceptual schematic of counterbalancing the rise of

microbubbles: an in-situ cell is moving down with the same speed as their

rise. (c) Representative equi-angular series of projection images for three of

unequal-size microbubbles during their rise in pure glycerol.

Figure 2 | Successful illustration of rising microbubbles. (a)

Reconstructed 4-D image of the rising microbubbles shown in Fig. 1(c)

and close-up views of the bubbles at (b) t 5 5.0 s and (c) t 5 0.0 s (white

boxes in Fig. 2(a)). The contact (c) or non-contact (b) of two microbubbles

was clearly observable.
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visualization allowed us to accurately determine relative configura-
tions such as the inclination angle h, the non-dimensional distance S
(5d/RC, implying d 5 the distance between bubbles A and C, RC 5

the radius of bubble C), and the azimuthal angle Q between bubble A
(A9) and bubble C, illustrated in Fig. 4(a) at 32.5 s and the inset of
Fig. 4(d). In Fig. 4(c), h (blue solid circles) showed opposite behaviors
before and after the coalescence and a discontinuity, similar to the
singularity of the rising speed, in the coalescence. The distance S
[black solid triangles in Fig. 4(c)] showed a downward hump right
after the coalescence, possibly due to capillary waves carrying
momentum34. Meanwhile, the azimuthal angle QA(A9)-C showed a
large variation over the rising time (Fig. 4(d)).

In summary, we have developed a tracking x-ray microtomogra-
phy for 4-D imaging of rising microbubbles by counterbalancing
their rise. The sizes, shapes, and time-dependent positions and velo-
cities of microbubbles (,500 mm) were clearly identified in 3-D,
despite their rise and horizontal overlap between the bubbles. The
results in this study efficiently demonstrate the capability of the
tracking x-ray microtomography to visualize and accurately quantify
configurations of microbubbles. This currently cannot be achieved
with any other 4-D imaging methods at such a high spatial resolu-
tion. We believe that the tracking x-ray microtomography is a power-
ful tool that can reveal key physics that underlies the interactions of
moving microbubbles or particles in a low Reynolds or a Stokes flow
regime – important in various fields such as microfluidics, biome-
chanics, and floatation36,37. Generally speaking, 4-D visualization for
soft matter or biomedical samples with the x-ray microtomogra-
phy38,39 provides a powerful tool with great versatility.

Methods
The experiments were performed at the BL29XU RIKEN beamline29 (E 5 4.4 ,
37.8 keV, DE/E , 1.3 3 1024) of SPring-8 and at the 6D X-ray Micro-Imaging
beamline (Ec 5 9.0 keV, DE/E , 1.0) of PLS-II with the experimental setup as
schematically illustrated in Fig. 1(a). Unlike the fast x-ray microtomography reported
previously29, the key idea of this setup is to track rising microbubbles, specifically by
accounting for their rise by moving down an in-situ cell (IC) at the same speed as the
rising bubbles (Fig. 1b). In detail, the in-situ cell, while rotated at 30 or 60 rpm around
the z-axis, was translated in the minus z-direction with the premeasured rising speed
of a microbubble cluster during the tomographic experiments, allowing the x-ray
beam to always pass through the rising bubble cluster. The in-situ cell, a Kapton tube

(10 mm-diameter with 100 mm wall thickness) on an aluminum base with a micro-
needle (tip radius: 1 mm), filled with a liquid medium, was mounted on a fast rotary
stage (AEROTECH ABRS-150MP). Microbubbles were generated from the micro-
needle by applying air pulses (10 , 100 psi air pressure, 30 , 500 ms) from an air
dispenser (D, Nordson EFD UltimusTM-I). Here, the centrifugal force on a bubble
due to the rotation of the in-situ cell (30 or 60 rpm) was negligible (smaller than 0.1%
of the gravitational force). After passing through the in-situ cell, the transmitted x-
rays were converted by a scintillator (S) to visible lights (VL), which were then
reflected by a mirror (M) and magnified by an objective lens (Mitutoyo M Plan Apo 5,
NA 5 0.14). After magnification, the image on the scintillator was captured by a
CMOS camera (1,024 3 1,024 pixels; Photron SA 1.1, Photron) that was synchro-
nized with the fast rotary stage (FRS) and a fast shutter (FS). The whole imaging
system was carefully aligned to gravity by using a digital inclinometer with 0.001u
accuracy.
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