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We present a framework for relativistic quantum metrology that is useful for both Earth-based and
space-based technologies. Quantum metrology has been so far successfully applied to design precision
instruments such as clocks and sensors which outperform classical devices by exploiting quantum
properties. There are advanced plans to implement these and other quantum technologies in space, for
instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications
and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into
account the effects of relativity on quantum properties. To include and exploit these effects, we introduce
techniques for the application of metrology to quantum field theory. Quantum field theory properly
incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take
place. This framework allows for high precision estimation of parameters that appear in quantum field
theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel
generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we
present a high precision device which in principle improves the state-of-the-art in quantum accelerometers
by exploiting relativistic effects.

Q
uantum technologies are widely expected to bring about many key technological advances this century.
Experiments in quantum communication are rapidly progressing from table-top to space-based setups.
For instance, in 2012 a teleportation protocol was successfully performed across a distance of 143 km by

the group led by A. Zeilinger1. Partly motivated by this success, major space agencies, e.g., in Europe and Canada,
have invested resources for the implementation of space-based quantum technologies2–4. There are advanced
plans to use satellites to distribute entanglement for quantum cryptography and teleportation (e.g., the Space-
QUEST project5) and to install quantum clocks in space (e.g., the Space Optical Clock project6). However, at these
scales relativistic effects become observable. General relativity provides an effective description of the Universe at
large length scales—observable effects can thus be expected at the regimes where satellites operate. For instance,
the Global Positioning System (GPS), a system of satellites used for time dissemination and navigation, requires
relativistic corrections to determine time and positions accurately7. Cutting-edge experiments are reaching
relativistic regimes, yet the effects of gravity and motion on quantum technologies are largely unknown.

The inability to unify quantum theory and general relativity remains one of the biggest unsolved problems in
physics today. Understanding general relativity at small length scales where quantum effects become relevant is a
highly non-trivial endeavour that suffers from a scarcity of experimental guidance. Therefore, an alternative
approach is to study quantum effects at large scales where experiments promise to be within reach in the near
future8,9. However, in order to exploit quantum properties to measure position and time at scales where relativity
becomes relevant, it is necessary to work within quantum field theory which provides a description of quantum
fields in curved space-time10. It is a semiclassical description in the sense that matter and radiation are quantized
but the spacetime is classical. As a first step in this direction, it was shown that quantum metrology techniques can
be applied to measure the Unruh effect at accelerations that are within experimental reach11–13 and to estimate the
curvature of space-time14. It was also shown that entanglement can be used to determine space-time parameters
such as the expansion rate of the universe15. An appropriate quantum field theory approach that includes the
effects of quantum theory and relativity will enable the development of a new generation of quantum technologies
for space. Indeed, previous work on relativistic quantum information has already addressed fundamental ques-
tions about entanglement in quantum field theory where results show that gravity, motion and space-time
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dynamics can create and degrade entanglement16. Recent work17

shows that this implies that relativistic motion produces observable
effects on quantum communication. These preliminary results are of
great importance for the space-based quantum experiments that will
test quantum theory at large scales.

In this paper we develop a new framework for relativistic quantum
metrology by incorporating and exploiting relativistic effects in
quantum parameter estimation. The framework provides the neces-
sary methodology that will enable the design and production of new
measurement instruments. As an example we present an accel-
erometer (see Fig. 1) with a precision that, in principle, improves
the state-of-the-art in cutting-edge experiments to detect gravity
anomalies in outer space18,19. Our device is based on the fact that
acceleration produces observable relativistic effects on Bose-Einstein
Condensates (BEC)20. The motion-induced transformation of the
state of the relativistic phononic field on the BEC allows an extremely
accurate estimation of the magnitude of the acceleration. We use
quantum metrology tools, in particular, quantum Fisher informa-
tion21 to compute optimal bounds to the error of the estimation
procedure.

Methods
Quantum field theory and the covariance matrix formalism. We are interested in
applying metrology techniques to determine with high precision parameters that
appear in quantum field theory, for instance accelerations, gravitational field
strengths, and proper times. In order to do so, we begin by reviewing basic concepts
from quantum field theory and the covariance matrix formalism. We consider a real,
scalar quantum field that obeys the Klein-Gordon equation in curved spacetime. It is
convenient to expand the field in a discrete set of modes {wnjn 5 1, 2, 3, …}22 so that
we can represent the field and its transformations in the covariance matrix formalism
which is commonly employed in continuous variable quantum information and
quantum metrology. We refer the readers to23,24 for further details. The functions wn

are solutions to the field equation and form a complete set of orthonormal modes with
respect to a chosen inner product10 denoted by (. , .). The creation and annihilation
operators associated to the field modes satisfy the commutation relations
am,an½ �~ a{

m,a{n
� �

~0 and am,a{
n

� �
~dmn . The vacuum state is defined as the state that

is annihilated by the operators an for all n, i.e., anj0æ 5 0. A coordinate transformation
between different observers, for example, between inertial and accelerated
observers25, results in a Bogoliubov transformation between wn and mode solutions in

the new coordinate system denoted by ~wn. The operators associated with ~wn are ~an .
The most general linear transformation between the field operators am and ~an is

given by,

~am~
X

n

a�mnanzb�mna{
n

� �
, ð1Þ

where amn~ ~wm,wn

� �
and bmn~{ ~wn,w�m

� �
are the Bogoliubov coefficients. The

transformed vacuum ~0
�� 	 is annihilated by the new annihilation operators ~an for all n.

Note that ~0
�� 	 is annihilated by the initial field operators an only if all coefficients bmn

are zero. Indeed particle production manifests when bmn ? 0. This occurs, for
instance, in the Unruh effect where the inertial vacuum state is seen as a thermal state
by uniformly accelerated observers10. Another example of interest is that of a cavity in
non-inertial motion. The vacuum state of an inertial cavity becomes populated by
particles after the cavity undergoes non-uniformly accelerated motion26.

Let us now consider the covariance matrix formalism, which has been very useful to
investigate entanglement in quantum field theory24,27,28. In this phase space form-
alism, for Gaussian states of a bosonic field, all the relevant information about the
state is encoded in the first and second moments of the field. In particular, the second
moments are described by the covariance matrix sij 5 ÆXiXj 1 XjXiæ 2 2ÆXiæ ÆXjæ,
where Æ.æ denotes the expectation value and the quadrature operators Xi are the
generalized position and momentum operators of the field modes. In this paper we
follow the conventions used in23,24, i.e., the operators for the n-th mode are given by

X2n{1~
1ffiffiffi
2
p anza{

n

� �
and X2n~

{iffiffiffi
2
p an{a{

n

� �
. The covariance matrix formalism

enables elegant and simplified calculations and has been proven useful to define and
analyze computable measures of bipartite and multipartite entanglement for
Gaussian states23,28.

Every unitary transformation in Hilbert space that is generated by a quadratic
Hamiltonian can be represented as a symplectic matrix S in phase space. These
transformations form the real symplectic group Sp 2n,Rð Þ, the group of real (2n 3 2n)
matrices that leave the symplectic form V invariant, i.e., SVST 5 V, where

V~+
n
i~1Vi and Vi~

0 1
{1 0

� �
. The time evolution of the field, as well as the

Bogoliubov transformations, can be encoded in this structure. The symplectic matrix
corresponding to the Bogoliubov transformation in Eq. (1) can be written in terms of
the Bogoliubov coefficients as

S~

M11 M12 M13 � � �
M21 M22 M22 � � �
M31 M32 M33 � � �

..

. ..
. ..

.
P

0
BBBB@

1
CCCCA, ð2Þ

where theMmn are the 2 3 2 matrices

Mmn~
Re amn{bmnð Þ Im amnzbmnð Þ

{Im amn{bmnð Þ Re amnzbmnð Þ

� �
: ð3Þ

Here Re and Im denote the real and imaginary parts, respectively. The covariance
matrix after a Bogoliubov transformation is given by ~s~SsST . Let us suppose that we
are only interested in the state of two modes k and k9 after the transformation. A great
advantage of the covariance matrix formalism is that the trace operation over a mode
is implemented simply by deleting the row and column corresponding to that mode.
Consider that the initial state of the quantum field is a general Gaussian state for
modes k and k9, and that all other modes are in their vacuum state. The covariance
matrix for modes k and k9 is given by

skk’~
yk wkk’

wT
kk’ yk’

� �
, ð4Þ

where yk, yk9 and wkk9 are 2 3 2 matrices. Then the transformed covariance matrix is
given by

~skk’~
Ckk Ckk’

Ck’k Ck’k’

� �
, ð5Þ

where

Cij~MT
kiykMkjzMT

k’iw
T
kk’MkjzMT

kiw
T
kk’Mk’jzMT

k’iyk’Mk’jz
X
n=i,j

MT
niMnj: ð6Þ

Metrology techniques
Having written the state of the field and its transformations in the covariance matrix
formalism we are now ready to apply metrology techniques21 that have been
developed for continuous variable systems. In this section we briefly review some
basic tools29–31. The aim in quantum metrology is to provide a strategy to determine
the value of a parameter H with high precision when the parameter is not an
observable of the system. Temperature, time, acceleration, and coupling strengths are
good examples. A strategy corresponds to finding optimal initial states and mea-
surements on the final states. In order to estimate the parameter with high precision it
is necessary to distinguish two states rH and rH1dH that differ by an infinitesimal
change dH of the parameter H. The operational measure that quantifies the distin-
guishability of these two states is the Fisher information21. Let us suppose that an
experimenter performs N independent measurements to obtain an unbiased
estimator ~H for the parameter H. The Fisher Information F(H) gives a lower
bound to the mean-square error via the classical Cramér-Rao inequality32, i.e.,

Figure 1 | (a) General cavity framework: the initial state of two modes of a

quantum field inside a cavity, represented initially by the covariance matrix

skk9 undergoes a relativistic transformation which depends on some

parameter H. The transformed covariance matrix ~skk’ depends on the

parameter H, which can be estimated using quantum metrology tools.

(b) Example: measurement of the acceleration in a BEC setup.
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DĤ
� �2
 �

§

1
N F Hð Þ , where F Hð Þ~

ð
dl p ljHð Þ d ln p ljHð Þ½ �=dlð Þ2 and p(ljH) is

the likelihood function with respect to a chosen positive operator-valued measure-
ment (POVM) {Ôl} with

X
l

Ôl~:. Optimizing over all the possible quantum
measurements provides an even stronger lower bound33, i.e.,

N DĤ
� �2
 �

§

1
F Hð Þ§

1
H Hð Þ , ð7Þ

where H(H) is the quantum Fisher information (QFI). This quantity is obtained by
determining the eigenstates of the symmetric logarithmic derivative LrH defined by

2
drH

dH
~LrHrHzrHLrH . Alternatively, the QFI can be related to the Uhlmann

fidelity F of the two states rH and rH 1dH through

H Hð Þ~
8 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F rH,rHzdH

� �qh i
dH2 , ð8Þ

whereF r1,r2ð Þ~ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1
p

r2
ffiffiffiffiffi
r1
pq� �2

. The optimal POVMs for which the quantum

Cramér-Rao bound (7) becomes asymptotically tight can be computed from LrH
34.

Unfortunately, these optimal measurements are usually not easily implementable in
the laboratory. Nevertheless, in typical problems involving optimal implementations
one can devise suboptimal strategies involving feasible measurements such as
homodyne or heterodyne detection, see, e.g.,29. Here we are interested in assessing
metrology strategies based on the quantum Cramér-Rao bound and thus on the QFI,
since our aim is to investigate how well one can in principle determine a parameter
that appears in quantum field theory. As an example we will consider acceleration and
we will show how our technique can be applied to develop a quantum accelerometer
that exploits relativistic effects. By doing so, it is in principle possible to improve the
state-of-the-art in accelerometers. Before presenting our example we return to our
general discussion.

We consider a bosonic quantum field which undergoes aH-dependent Bogoliubov
transformation, where H is the parameter we want to estimate. For example, the
transformation could be the expansion of the universe and the parameter in this case
is the expansion rate. We assume that the initial state of the field is given by Eq. (4). To
estimate H we must calculate the fidelity F ~skk’ H½ �,~skk’ HzdH½ �ð Þ, where the trans-
formed state ~skk’ H½ � is given by Eq. (5). If ~skk’ is a two-mode Gaussian state with zero
initial first moments, the fidelity is given by35

F ~skk’ H½ �,~skk’ HzdH½ �ð Þ~ 1

P H,HzdH½ �z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P H,HzdH½ �2{D H,HzdH½ �

q , ð9Þ

where P H,HzdH½ �~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C H,HzdH½ �

p
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L H½ �L HzdH½ �

p
, and

C H,HzdH½ �~ 1
16

det V~skk’ H½ �V~skk’ HzdH½ �{:
� �

, ð10Þ

L H½ �~ 1
4

det ~skk’ H½ �ziVð Þ, ð11Þ

D H,HzdH½ �~ 1
16

det ~skk’ H½ �z~skk’ HzdH½ �ð Þ, ð12Þ

where : is the identity matrix. Note that we follow the conventions used in23,24 for the
normalization of the covariance matrix, which differ from other conventions35.

We now present an application of the techniques to measure accelerations.

Results: Measuring Acceleration
We consider a bosonic quantum field in flat spacetime confined in a
cavity undergoing non-uniform motion. The motion-induced trans-
formation of the quantum field depends on the magnitude of the
acceleration. We will show that, using the techniques explained
above, this fact can be used as the working principle of a highly
accurate and sensitive accelerometer.

Our aim is to determine the precision with which the acceleration
can be estimated from measurements on the field modes. We present
our analysis in (1 1 1)-dimensional spacetime with metric signature
(21). Additional transverse dimensions can be included via their
contribution to the effective field mass as discussed in25,36. We con-
sider Dirichlet boundary conditions at the cavity walls. The details of
the chosen boundary condition slightly modify the quantitative fea-
tures of the model36, but not qualitatively. Physical implementations
of this setup can be realised by optical cavities37, superconducting
circuits17, or Bose-Einstein condensates20.

The cavity is considered to be initially at rest and the state of the
field given by Eq. (4). After a general trajectory the field modes
undergo a Bogoliubov transformation. In order to treat the problem

analytically we assume that the Bogoliubov coefficients which relate
the initial and final state of the field have a series expansion in terms
of a dimensionless parameter h, such that

amn~a 0ð Þ
mnza 1ð Þ

mnhza 2ð Þ
mnh2zO h3

� �
, ð13Þ

bmn~b 1ð Þ
mnhzb 2ð Þ

mnh2zO h3
� �

, ð14Þ
where

h~
aL
c2

s
~

aLn2

c2
: ð15Þ

Here a is the proper acceleration of the cavity at its center, L is the
length of the cavity in its instantaneous rest frame, cs is the propaga-
tion speed of the excitations of the quantum field inside the cavity
and we introduce n 5 c/cs, where c is the speed of light in vacuum. In
general the motion of the cavity can be an arbitrary combination of
segments of uniform acceleration and inertial motion. For example,
we can consider a finite period of uniform acceleration, a repetition
of identical trajectory segments, or even sinusoidal oscillation with a
fixed amplitude37.

The coefficients a 0ð Þ
mn~Gmdmn, where jGmj 5 1, are the phases

accumulated during both uniform acceleration and inertial seg-
ments. Furthermore, the first order coefficients are zero on the diag-
onal, i.e., a 1ð Þ

nn ~b 1ð Þ
nn ~0. In this paper we suppose that the two modes

k and k9 have opposite parity, (k 2 k9) is odd. This extra assumption
causes the coefficients akk9 and bkk9 to contain only odd powers of h in
their series expansions.

Let us consider a particular initial state of the modes k and k9. We
assume the state to be two single-mode squeezed states in a product

form. The 2 3 2 matrices in (4) are then yk~
e2rk 0
0 e{2rk

� �
,

yk’~
e2rk’ 0

0 e{2rk’

� �
and wkk’~

0 0
0 0

� �
.

Currently, we are also investigating other initial states such as
entangled Gaussian and Fock states. In this paper we restrict our
analysis to the state mentioned above which already produces pos-
itive results. The transformed covariance matrix ~skk’ hð Þ is obtained
using Eqs. (3), (5), (6) and (13), with our particular initial state. The
QFI is given by

H hð Þ~
8 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ~skk’ hð Þ,~skk’ hzdhð Þð Þ

p� �
dh2

ð16Þ

where F ~skk’ hð Þ,~skk’ hzdhð Þð Þ can be computed using Eq. (9). Using
the Bloch-Messiah reduction [38, p. 9] it is possible to show that
D~CzO h3,dh3

� �
and L~O h4 hzdhð Þ4

� �
. Therefore, the fidelity

is given byF ~skk’ hð Þ,~skk’ hzdhð Þð Þ~1{
1
2

~Cdh2, where ~C is the term

proportional to dh2 in the Taylor expansion of C. Assuming for the
sake of simplicity that both modes have the same squeezing para-
meter rk 5 rk9 5 r, we obtain the QFI H(h) 5 H(0) 1 H(2) h2, where

H 0ð Þ~< 4 cosh r f k
a zf k

b zf k0
a zf k0

b

� �
z4 cosh2r a

1ð Þ
kk0

��� ���2z b
1ð Þ

kk0

��� ���2
� �

{4 cosh4r b
1ð Þ

kk0

��� ���2
�

{4 sinh2r G�2k0 a
1ð Þ

kk0
2
zG2

k0b
1ð Þ

kk0
2
{f k

a zf k
b {f k0

a zf k0
b { a

1ð Þ
kk0

��� ���2z b
1ð Þ

kk0

��� ���2
� �

{2 sinh 2r 2a
1ð Þ

kk0b
1ð Þ

kk0z2a
1ð Þ

k0kb
1ð Þ

k0k{cos wkð Þ {f k
a zf k

b {
a

1ð Þ
kk0

��� ���2
2

z
b

1ð Þ
kk0

��� ���2
2

0
B@

1
CA

0
B@

{cos wk0ð Þ {f k
a zf k

b {
a

1ð Þ
kk0

��� ���2
2

z
b

1ð Þ
kk0

��� ���2
2

0
B@

1
CAz4 sinh r G�2k G

ab
kk zG�2k0 G

ab
k0k0

� �

z4 sinh 2r cosh2r a
1ð Þ

kk0b
1ð Þ

kk0za
1ð Þ

k0kb
1ð Þ

k0k

� �
z2 sinh4r a

1ð Þ
kk0

��� ���2{ b
1ð Þ

kk0

��� ���2{G�k0
2a

1ð Þ
kk0

2
{

�

{G�2k0 b
1ð Þ

kk0
2
{

1
2

sinh22r a
1ð Þ

kk0

��� ���2{3 b
1ð Þ

kk0

��� ���2{G�2k0 a
1ð Þ

kk0
2
{G2

k0b
1ð Þ

kk0
2

� ��
,

ð17Þð17Þ
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where f i
a~

X
n=k,k’

a
1ð Þ

ni

��� ���2, f i
b~

X
n=k,k’

b
1ð Þ

ni

��� ���2 and Gab
ij ~X

n=k,k’
a

1ð Þ
ni b

1ð Þ�
nj . The particular form of the Bogoliubov coefficients

depends on the trajectory followed by the cavity. Arbitrary traject-
ories composed of discrete intervals of accelerated and inertial
motion were considered, for instance in25, while continuous motion
was addressed in37. The latter case — continuous, sinusoidal motion
with small amplitude — features two different kinds of resonances. If
the frequency of the oscillation matches the sum of the frequencies of

the two oddly separated modes the corresponding b
1ð Þ

kk’

��� ��� grows lin-

early with the duration of the oscillation. This gives rise to a resonant
particle creation phenomenon known as the dynamical Casimir
effect26. If, on the other hand, the oscillation frequency is equal to
the difference between the frequencies of two oddly separated modes

the resonance is associated to the coefficient a
1ð Þ

kk’

��� ��� (see 37). In this

paper, we take advantage of these resonances to increase the QFI in
Eq. (17). Notice that our perturbative approach is restricted by the
condition H 0ð Þh2=1.

Finally, using Eq. (7) the optimal bound to the error in the estima-
tion of the parameter h after N measurements is obtained as

Dhh i§ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N H 0ð Þ
p . Assuming good control over the parameters L

and cs, the final error in the estimation of the acceleration is just
re-scaled by a factor of c2

s

�
L~c2

�
n2L
� �

, that is:

Dah i§ c2

n2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N H 0ð Þ
p ð18Þ

Now we will consider a specific experimental implementation using a
quasi one-dimensional BEC39 on a flat spacetime metric40,41 with
hard-wall boundary conditions20,42–44. In the dilute regime, the BEC

can be described by a mean field density plus phase fluctuations ŵ,
which we expand in terms of the so-called Bogoliubov modes. The
modes with frequencies well below the frequencies associated to the
healing length of the condensate obey a massless Klein-Gordon
equation in an effective curved spacetime metric. The effective metric
depends on the real spacetime metric, the background pressure p,
energy density r, number density n and flow velocity v40,41. In the
absence of background flows v 5 0 and for constant density (i.e. the
homogenous case), the effective metric is also flat45.

Let us now describe the BEC after it undergoes acceleration, a
situation that has been previously considered46. In the comoving
frame, the effective metric remains flat as long as the accelerations
are small enough. In this case, we can ensure that the classical back-
ground is not excited and that the condensate remains approximately
homogenous. In46 it has been shown that squeezing of the Bogoliubov
modes occurs when a BEC with hard-wall boundary conditions
undergoes small accelerations. The density of the BEC can in prin-
ciple become inhomogeneous, however, these effects are negligible in
the regimes considered in our discussion. Under the circumstances
mentioned above, we obtain a Klein-Gordon equation for the
Bogoliubov modes of the BEC with an effective flat metric and pro-
pagation speed c2

s ~c2Lp
�
Lr. The hard-wall boundary conditions

give rise to a mode spectrum given by vn~2p|
n cs

L
, where L is

the length of the condensate. Therefore, the techniques presented in
the previous sections are directly applicable. A more detailed pre-
sentation of our BEC setup can be found in20.

We have chosen to use a BEC to take advantage of amplification
effects due to small propagation speeds cs among other convenient
experimental features that we will discuss below. At this point, a
comment on the relativistic nature of phonon production on a
BEC is in order. In the Newtonian limit where v, cs=c one can
assume that cs is independent of c as explained in more detail in

reference40. In this limit an accelerated observer and an inertial obser-
ver are no longer related through Rindler transformations (i.e.
Lorentz transformations in the uniformly accelerated case) but
instead by Galilean transformations. In this case the time coordinate
in the accelerated frame coincides with the time coordinate in the
inertial frame since time dilation is negligible. As a consequence the
cavity length remains constant in all frames and the vacua of the
cavity at rest and the cavity undergoing uniform acceleration coin-
cide. There is no particle creation, confirming that the effect we
discuss is purely relativistic. In the case that v/c and cs/c are not
negligible, it is also possible to determine whether an effect is relat-
ivistic or not. In this case an effect is considered to be relativistic if it
disappears in the limit c2 R ‘. By this criterion, photon production
due to the motion of a boundary is a relativistic effect. In the BEC the
excitations propagate much slower. However, the speed of propaga-
tion is directly proportional to the speed of light through
c2

s ~c2Lp
�
Lr40,41. Therefore, the effect also disappears in the limit

c2 R ‘ and we therefore consider it to be relativistic.
We consider that the BEC undergoes sinusoidal acceleration given

by h(t) 5 h sin(v t) and we use our scheme which exploits relativistic
particle creation to estimate the amplitude h. For this continuous
motion the Bogoliubov coefficients are given by37,

a
1ð Þ

kk’ tð Þ~i e{i vk’ta
1ð Þ

kk’ vk’{vkð Þ
ðt

0
dt sin v tð Þei vk’{vkð Þt

b
1ð Þ

kk’ tð Þ~i e{i vk’tb
1ð Þ

kk’ vk’zvkð Þ
ðt

0
dt sin v tð Þei vk’zvkð Þt

ð19Þ

where a
1ð Þ

kk’~
{2

ffiffiffiffiffiffi
kk’
p

p2 k’{kð Þ3
and b

1ð Þ
kk’~

2
ffiffiffiffiffiffi
kk’
p

p2 kzk’ð Þ3
are the Bogoliubov

coefficients that relate solutions to the Klein Gordon equation in the
inertial and accelerated frames. It is easy to show that these coeffi-
cients reduce to the identity when c2 R ‘ and in the Newtonian limit
mentioned above. We assume that the frequency of the cavity oscil-
lation is v 5 vk 1 vk9 which generates a particle creation resonance.
In Fig. (2) we plot the error in the estimation of the sinusoidal
amplitude h for typical experimental parameters. The QFI, given
by Eq. (17), for an initial squeezing of r 5 10, mode frequencies vk

5 2p ? 500 Hz, v’k~2vk, length L 5 1 mm and effective velocity cs

5 1023 m/s is approximately H hð Þ^H að Þ^1016. Note that our
perturbative analysis is restricted to a=10{8m

�
s2.

It is interesting to compare our methods with techniques that have
been previously developed to estimate accelerations using BECs
within the framework of non-relativistic quantum mechanics. In
particular we consider the QFI in state-of-the-art accelerometers
designed for the detection of gravity anomalies18,19, which are based
on Mach-Zehnder atomic interferometry. In these schemes the wave
function of the BEC is split and recombined using laser pulses, giving
rise to a phase shift of w 5 k a T2, where k is the wave number of the
atomic hyperfine transition, a is the average acceleration and T the
interrogation time between pulses. The QFI in this case is given by47

H 5 (ha w)2 5 (k T2)2. Note that k is fixed by the atomic species
employed (k 5 1.6 ? 107 m21 in Rb) and T is limited by the dimen-
sions of the experimental setup, being 1 s in the best scenarios.
Therefore, H 5 2.6 ? 1014 m/s2. The readout of the phase is then
performed by fluorescence imaging of the atoms. The optimal sens-
itivity in the measurement of acceleration as provided by the QFI is

given by18,19: da~1
. ffiffiffiffi

N
p

kT2
� �

. After one measurement cycle, N is

given by the number of detected atoms. After several cycles, the
number of atoms is multiplied by the repetition rate and the integ-
ration time. Considering18,19 a number of atoms of 106—which
already assumes a signal-to-noise ratio with respect to the total num-
ber of atoms in the BEC—a repetition rate of 5 Hz and integration
time of a few hours, a number N 5 1011 is obtained. Therefore, those

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4996 | DOI: 10.1038/srep04996 4



schemes require a stable large-atom BEC machine48 in order to
achieve large integration times. The absolute sensitivity in18,19 is
impressively small (Da^5:10{12m=s2). In comparable conditions,
our scheme which has been designed within relativistic quantum
field theory is capable of improving the QFI by two orders of mag-
nitude. Assuming that it is possible to realize the same number of
measurements as done in the non-relativistic schemes, the optimal
bound to the absolute sensitivity in our setup is around 1?10213 m/s2,
yielding a performance that goes several orders of magnitude beyond
commercial accelerometers49 (Da^10{4m

�
s2).

The performance of our scheme can be further improved by
employing entangled two-mode initial states or by increasing the
number of measurements. As can be seen in Fig. (2), in our proposed
implementation the error diminishes by increasing the degree of
single-mode squeezing in the initial state. Notice that squeezing
parameters of r 5 10 appear to be within reach for phonons in
time-dependent potential traps50. Furthermore, a large number of
measurements can be in principle achieved by using atomic quantum
dots or optical lattices coupled to the condensate in order to probe
the state of the phononic field47. Assuming as in47 that a few thou-
sands of impurities can be coupled to the condensate and that each
measurement can take a few milliseconds, the number of 1011 can be
achieved after several hours of integration -that is, in conditions
comparable to18,19. We note here that even with a much more modest
level of squeezing such as r 5 2 and a number of measurements of
104, the predicted sensitivity of our device is 1026, still two orders of
magnitude beyond commercial accelerometers. Notice also that our
setup is not restricted to a particular frequency of vibration, since
there are resonances between any pair of oddly separated modes,
both for particle creation and mode mixing. Therefore, a single
BEC is sensitive to several frequencies. Moreover, each BEC can be
tuned at will by changing the length of the trap or the speed of the
propagation of the phonons, using standard experimental tech-
niques51. Taking all the above into account our setup can in principle
exhibit a good broadband performance.

Discussion
The main aim of our research programme is the study of relativistic
effects on quantum technologies. A comprehensive understanding of
such phenomena will enable us not only to make the necessary cor-
rections to technologies that are affected by them but also to use
relativistic effects as resources. Indeed, we have shown that relat-
ivistic effects can be exploited to improve quantum precision mea-

surements. In particular, we showed how particle creation within a
moving cavity, a quantum field theoretical effect known as the
dynamical Casimir effect, can be used to determine accelerations
with a precision that, in principle, can improve state-of-the-art in
accelerometers. As a particular experimental implementation, we
have discussed a BEC setup. We showed that the QFI is several orders
of magnitude larger than its counterpart in non-relativistic schemes.
Therefore, the ultimate bound to the sensitivity of the accelerometer
is several orders of magnitude smaller. This means that, by employ-
ing an optimal or close to optimal strategy of local phase estimation,
our relativistic scheme can measure accelerations much smaller than
the ones attained with optimal strategies in non-relativistic schemes.
Moreover, we have presented a general framework that can be used to
measure parameters that appear in quantum field theory such as
gravitational field strengths, proper times and accelerations.
Although Earth-based applications are also possible, the techniques
are especially useful in space-based quantum technologies, where
relativistic effects become relevant.

This paper establishes relativistic effects as resources in quantum
technologies. Our work opens an avenue for the development of a
new generation of relativistic quantum technologies.
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