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In humans, leukocyte telomere length (LTL) is positively correlated with lifespan, and shorter LTL is
associated with increased risk of age-related disease. In this study we tested for association between telomere
length and methylated cytosine levels. Measurements of mean telomere length and DNA methylation at
.450,000 CpG sites were obtained for both blood (N 5 24) and EBV-transformed cell-line (N 5 36) DNA
samples from men aged 44–45 years. We identified 65 gene promoters enriched for CpG sites at which
methylation levels are associated with leukocyte telomere length, and 36 gene promoters enriched for CpG
sites at which methylation levels are associated with telomere length in DNA from EBV-transformed
cell-lines. We observed significant enrichment of positively associated methylated CpG sites in subtelomeric
loci (within 4 Mb of the telomere) (P , 0.01), and also at loci in imprinted regions (P , 0.001). Our results
pave the way for further investigations to help elucidate the relationships between telomere length, DNA
methylation and gene expression in health and disease.

T
elomeres are protective nucleoprotein structures that cap the ends of linear chromosomes. Vertebrate
telomeres are composed of variable numbers of a tandem repeat sequence, (TTAGGG)n, bound to the
shelterin protein complex1. Telomere length is maintained by the action of telomerase in some cell types,

notably stem and germ cells. However, in most somatic tissues telomeres shorten with each cell division, a process
believed to be accelerated by oxidative stress and inflammation2–5. Very short or dysfunctional telomeres trigger
replicative senescence, a process that may be activated by a single critically short telomere in a cell6.

In humans, mean leukocyte telomere length (LTL) is positively correlated with lifespan7,8, and has been
proposed as a potential biomarker of biological ageing9–11. In support of this hypothesis, mean LTL is generally
shorter in adult men than in women at any given age, consistent with shorter average male life expectancy in most
populations12. Furthermore, numerous studies report associations between LTL and age-related diseases includ-
ing heart disease, type 2 diabetes (T2D) and cancer13–16, although the causal direction of these relationships
remains largely unknown.

There is substantial inter-individual variation in both newborn telomere length and telomere length shortening
rates throughout life17,18. Shorter LTL is associated with several known determinants of ill health, including
smoking, excessive alcohol consumption, obesity and chronic life stress such as long-term caring responsibilities
or prolonged unemployment19–23. There is also evidence for association between maltreatment in childhood and
shorter adult LTL24,25, suggesting that early-life exposures may have long-term effects on cellular ageing rates.

In addition to multiple environmental factors, human LTL is influenced by genetic variation. Recent genome-
wide association studies (GWAS) have revealed associations between LTL and several common genetic var-
iants26–28. Some of the genes within these associated loci have a direct role in telomere maintenance. These include
the TERT and TERC genes, which encode components of the telomerase enzyme, and OBFC1 and CTC1, which
encode components of the human CST (Ctc1, Stn1 and Ten1) complex recently shown to inhibit telomerase29.
Despite their known roles in telomere biology, the effect sizes of individual variants in these loci are small.
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Importantly however, a genetic risk score analysis showed that inher-
itance of multiple alleles associated with shorter LTL is associated
with an increased risk of coronary artery disease, providing prelim-
inary evidence that telomere shortening might play a causal role in
this condition28.

The aim of the present study was to further investigate the pro-
cesses involved in telomere shortening by interrogating epigenetic
variation in genomic DNA (specifically methylation of cytosine resi-
dues), in order to identify novel loci that are either i) affected by
telomere shortening or ii) influence telomere length. Since both tel-
omere length and DNA methylation variations are associated with
chronological age30–33, we compared DNA from individuals all aged
44–45 years when blood samples were taken. We first performed
HumanMethylation450 microarray analysis and measured telomere
length in DNA from male participants in a longitudinal birth cohort.
We next investigated the associations between methylation at CpG
sites and telomere length in blood DNA. We also performed a par-
allel investigation in no-passage EBV transformed cell-lines prepared
from the same venepuncture, in order to shed light on the potential
mechanisms involved in the maintenance of telomere length in this
cell type, and to compare them with any identified in blood cells.

Results
Telomere length measurements. Telomere measurements were
obtained for 60 DNA samples from 38 different participants.
These comprised 24 blood and 36 cell-line samples (for 22
participants, both blood and cell-line DNA was available). Mean
relative telomere length measurements were obtained using the
multiplex qPCR method34, which provides a ‘‘T/S ratio’’ for each
DNA sample. This is a relative measure of the amplification of the
telomeric DNA sequence (T) compared to that of a single copy gene
(S) in each test sample, normalised using a common reference DNA
sample. The whole blood telomere measurements were normally
distributed (Mean T/S 5 1.00, SD 5 0.29, range 5 0.52–1.55),
whereas those obtained for EBV cell-lines were not normally
distributed and show a greater range of values (Mean T/S 5 1.26,
SD 5 0.45, range 5 0.57–2.32). We found no evidence of correlation
between telomere measurements in whole blood and an EBV cell-
line DNA taken from the same individual (Spearman r 5 20.3, P 5
0.18) (Fig. 1). Six samples showed a decrease in T/S from blood to

cell-line; two samples remained same (within 10% of blood T/S
value); and 14 samples showed an increase in T/S from blood to
cell-line.

Identification of genes in which DNA methylation is associated
with telomere length. In order to identify genes likely to be affected
by telomere length-associated methylation, each CpG represented on
the microarray was first assigned the Ensembl gene identifier with
the nearest transcription start site (TSS), up to a maximum of 10 Kb
away. We then identified gene promoters significantly enriched with
CpG sites that are individually associated with telomere length
(enrichment false discovery rate P , 0.05 and at least one CpG site
with unadjusted association P , 0.05; see Methods for more details).

After applying this stringent approach, we found that overall,
association statistics were stronger in whole blood DNA than in cell
lines, and were mostly positive, i.e. methylation increases as telomere
length increases. We identified 364 sites within 47 different gene
promoters that were positively associated with telomere length in
whole blood DNA. We also found 100 sites that were negatively
associated with telomere length, corresponding to 27 different genes
(Table 1 and Data S1). Since some gene promoters contained both
positively and negatively associated sites, the total number of gene
loci for which methylation levels were associated with telomere
length in whole blood was 65.

In cell lines, 94 sites were positively associated with telomere
length, corresponding to 28 genes, and 31 sites were negatively assoc-
iated, corresponding to 12 genes (Table 1 and Data S2). Again, as
some promoters contained both positively and negatively associated
sites, the total number of gene loci for which methylation levels were
associated with telomere length in cell-lines was 36.

The heatmaps in Fig. 2 illustrate these associations, full details of
which are given in Data S1 and S2. Together, these results clearly
show that methylation is more strongly associated with telomere
length in DNA from whole blood than from cell lines.

Little in common between cell lines and whole blood. There are no
individual CpG sites associated with telomere length in both whole
blood and cell line DNA, although there are three genes with
transcription start sites near sites associated in both cell types:
C15orf26, RN5S206 and L3MBTL1. Interestingly, the corresponding
methylation associations were mostly reversed between the cell types
for these three loci. Sites near C15orf26 were all positively associated
with telomere length in cell lines but negatively associated in whole
blood cells. Sites near L3MBTL1 and RN5S206 tended to be negatively
associated with telomere length in cell lines and positively associated
in whole blood cells.

Enrichment for positive associations near telomeres but not centro-
meres. Of the 65 genes enriched for sites associated with telomere

Figure 1 | Scatterplot showing lack of correlation between telomere
measurements in whole blood and EBV cell-line DNA taken from the
same individual (N 5 22) (Spearman r 5 20.3, P 5 0.18).

Table 1 | Identification of gene promoters enriched for sites at
which methylation levels are associated with telomere length: sum-
mary data (SD 5 standard deviation, TSS 5 transcription start site)

Blood (N 5 24) Cell-line (N 5 36)

Mean telomere length,
T/S ratio (SD)

1.00 (0.29) 1.26 (0.45)

Genes with TSS near
associated CpG sites

65 36

Imprinted genes with
associated CpG sites

12 3

Genes near telomeres
with associated CpG sites

12 8

Associated CpG sites (all) 464 125
Associated CpG sites (positive) 364 (78%) 94 (75%)
Associated CpG sites (negative) 100 (22%) 31 (25%)

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4954 | DOI: 10.1038/srep04954 2



length in whole blood, 12 are located near telomeres (within 4 Mb of
a chromosome end): RP11-978I15.10, FAM50B, MAD1L1, CYP2E1,
B4GALNT4, DRD4, CEND1, H19, KCNQ1OT1, CREBBP, RP11-
1260E13.1 and ADNP2. Methylation levels in all but one of the
CpG sites in these 12 loci (RP11-1260E13.1) are positively
associated with telomere length, two examples of which are shown
in Fig. 3. This represents a significant enrichment of associated genes
located in subtelomeric regions (P , 0.01, Fisher’s exact test (FET)).
In contrast, there is no evidence for any enrichment of associated
genes within 4 Mb of centromeres; P . 0.85, FET).

We observed nearly identical results in cell lines. Here, enrichment
near telomeres was again significant for positively associated sites but
not negatively associated sites (P 5 0.012 and P . 0.7, respectively,
FET), and not for any associated sites near centromeres (P . 0.85,
FET).

Enrichment of imprinted genes. Of the 65 genes with methylation
levels associated with telomere length in whole blood DNA (Table 1), 12
are either confirmed (ten) or predicted (two) imprinted human genes,
according to information in the geneimprint database (http://www.
geneimprint.com, accessed January 2014). For seven of these loci
(MEST, KCNQ1OT1, DIRAS3, FAM50B, SGCE, L3MBTL1, GNAS-
AS1), only the paternal allele is expressed; for four (H19, B4GALNT4,
HOXA5, MEG3) only the maternal allele is expressed; and for one
(BLCAP) parental allele expression is isoform-dependent. Cross-
checking of this information using a second database (http://igc.otago.
ac.nz/home.html, accessed January 2014) also listed nine of the
confirmed imprinted loci present in geneimprint, while the tenth
(DIRAS3) was listed as provisional. Neither of the two loci listed as
‘predicted’ imprinted loci in geneimprint (B4GALNT4 and HOXA5)
were included in the second database. However, since there are only
around 80 confirmed and 120 predicted imprinted loci in total in the
human genome, the observation of even just ten of these genes in our
study represents a highly significant enrichment (P , 1 3 1025;
permutation test). Four of these imprinted loci (FAM50B, H19,
B4GALNT4 and KCNQ1OT1) are also located within 4 Mb of a
telomere. Moreover, another gene for which methylation levels of
nearby CpG sites was associated with telomere length is ZFP57,
recently shown to be a global regulator of methylation in imprinting
control regions (ICRs) in the genome35.

Identification of potential ZFP57 binding sites in silico. Following
our discovery that telomere length is associated with methylation levels
in both ICRs and the gene encoding a zinc finger protein responsible
for their methylation status, ZFP57, we hypothesised that Zfp57 may
also play a role in the methylation status of subtelomeric regions. We
therefore investigated whether subtelomeric regions are enriched for
predicted Zfp57 binding sites; a TGCCGC[A/G] sequence in which the
cytosine of the CpG is methylated35. We identified 45,366 instances of
this sequence (irrespective of methylation status) in the human genome
(Build hg19/GRCh37) on both the forward and reverse strands.
Of those, 8,547 are subtelomeric (within 4 Mb of the end of a
chromosome) and 2,913 are centromeric (within 1.5 Mb from the
centromere). If uniformly distributed, less than 6,000 motifs would
be expected in subtelomeric regions, and more than 4,500 in
centromeric regions. Hence, telomeres are enriched and centromeres
are depleted of the predicted Zfp57 binding motif (P , 2.2 3 10216,
hypergeometric). However, since the 450 K array only includes probes
for 2,471 of the 45,366 predicted motifs, it was not possible to
determine the methylation status of the majority of these target
sequences, and thus their likely ability to bind Zfp57 in vivo.

Pathway analysis. Table 2 shows the results of functional and
network analyses carried out using the ingenuity pathway analysis
system (IPA), for genes in which methylation levels of nearby CpG
sites were associated with telomere length. These analyses were
carried out separately for the results obtained in both blood and
cell-line DNA. Of note, we observed significant enrichment of
genes involved in endocrine disorders for the sites associated with
telomere length in blood DNA, particularly diabetes mellitus (nine
genes, P 5 3.94e24) (Table S1). We also observed significant
enrichment for imprinting disorders and various forms of cancers.
The top canonical pathways enriched for associated loci were
‘dopamine-DARPP32 feedback in cAMP signaling’ in blood (P 5
8.40e-03) and ‘B cell development’ in cell-line DNA (P 5 7.61e-04).

Discussion
Among 44–45 year-old men, we have identified multiple gene pro-
moters enriched for sites at which methylation levels are associated
with telomere length in human blood DNA. Furthermore, these
associated loci are significantly overrepresented in subtelomeric

Figure 2 | Heatmaps showing M-value variation for CpG sites (rows) across study participants (columns), in A) whole blood and B) cell-line DNA
samples. Samples and CpG sites clustered using the Ward algorithm with Pearson’s correlation as the distance metric. Relatively lower methylation levels

are shown in green and higher methylation levels in red. The key for the telomere length of each sample in both heatmaps is given on the top right

of the figure.
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and imprinted genomic regions. We identified 65 gene promoters
that contained sites associated with telomere length, which are lar-
gely distinct from the loci in which methylation levels have been
associated with increasing age30–33. This lack of overlap is not unex-
pected, since our study examined telomere length variation at a single
chronological age. However, four of the gene promoters that we
found to be associated with telomere length also contained sites that
belong to a set of 353 ‘age-predictor’ CpGs30: those at the CYP2E1,
DIRAS3, FAM50B and SGCE loci. This may indicate that part of the
epigenetic ‘signature’ of chronological age is related to telomere
length shortening. It is well-known that there is wide inter-individual
variation for the risk of age-related disease in people of the same
chronological age. Loci at which methylation levels are associated
with both chronological age and telomere length may thus be of
particular relevance to the investigation of factors that influence
successful ageing.

The associations identified in leukocyte DNA may represent either
causal, consequential or coincidental relationships, that is, the pro-
moters enriched for associated sites may be: i) genes that encode
transcripts involved in regulating telomere length; ii) loci in which
epigenetic changes are induced by changes in telomere length or iii)
loci in which methylation levels are affected by cellular processes that
also influence telomere length. We discuss our results in the context
of each of these scenarios.

Several of the 65 loci enriched for CpG sites at which methylation
levels are associated with telomere length have potential roles in
human telomere biology, and are thus potential regulators of telomere
length. Three of the positively-associated sites are within the MAD1L1
gene, which has been shown in HeLa cells to act as negative regulator
of TERT, the reverse transcriptase component of the telomerase
enzyme36. Multiple positively-associated sites are located within the
POU5F1 locus, encoding the key pluripotency transcription factor

Oct-4, which regulates expression of the shelterin component TRF1
in mice37. We also identified both negative and positively associated
sites within the U1 locus, which encodes part of the spliceosome, but is
also essential for processing the RNA component of telomerase in
fission yeast38. Furthermore, one of the negatively associated sites is
located between the MECOM and TERC genes on chromosome 3; the
latter encodes the RNA component of the human telomerase enzyme.
Multiple common variants in this locus are associated with leukocyte
telomere length in adults28. None of the other genes identified through
GWAS of telomere length were amongst the loci for which we found
methylation associations. However, we did find an association
between methylation levels in the MPL locus and telomere length. A
rare mutation in this gene causes a form of aplastic anaemia, a dis-
order also caused by mutations in the TERC and TERT genes39.

Associated sites may also be indicative of epigenetic changes
induced by telomere length changes. We discovered that a significant
proportion of the sites associated with telomere length are located in
subtelomeric regions, and that for the majority of these, increased
methylation levels are associated with longer telomeres. This finding
supports previous evidence from animal and in vitro work that het-
erochromatin is lost in subtelomeric regions as telomeres shorten40.
Age-related global hypomethylation of subtelomeric regions has
been observed in both healthy Japanese individuals and those with
Parkinson’s disease and sarcoidosis41–43, although the same group
also report hypermethylation of subtelomeres in short telomeres in
blood DNA from Alzheimer’s disease patients44. The authors pos-
tulate that this latter observation may result from the selective loss of
cells with short, hypomethylated telomeres from the blood of
Alzheimer’s patients. Further longitudinal studies of changes in tel-
omere length and subtelomeric methylation levels in both healthy
individuals and those affected by age-related disease are warranted to
resolve this issue.

Figure 3 | Scatterplots showing examples of positive associations between telomere length (T/S ratio, X-axis) in blood DNA and on the Y-axis,
methylation levels at two loci located in subtelomeric regions: A) cg21024264, located 193 kb from chr10 qter within CYP2E1 gene promoter region
and B) cg25020933, located 369 kb from chr11 pter within B4GALNT4 gene promoter region. Each point represents the mean T/S ratio of duplicate

measurements for an individual DNA sample.
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If confirmed, our finding that shorter telomeres are associated
with decreased methylation levels of multiple cytosine sites located
within 4 Mb of telomeres suggests a possible causal explanation for
the relationship between shorter LTL and age-related diseases: as
telomeres shorten, the resulting epigenetic changes in subtelomeric
regions may alter the expression of disease-related genes. Such a
mechanism was first postulated after the discovery of the ‘telomere
position effect’ (TPE) in eukaryotic cells, in which the expression of
transgenes located close to telomeres is repressed in a telomere
length-dependent manner45. More recently, investigation of molecu-
lar pathology of facioscapulohumeral muscular dystrophy provides a
precedent for the involvement of this mechanism in monogenic
disease. Symptoms of this condition only appear once telomeres
reach a critically short length. Stadler et al postulated that the effects
of the mutant allele of the candidate gene concerned, DUX4 (located
in 4q35.2), are only apparent once it is ‘‘unmasked’’ by altered
expression of this and other genes in subtelomeric regions46.

Several of the associated sites we identified in subtelomeric regions
are within loci that have a known or potential role in age-related
diseases. In particular, two positively associated sites are located
within the CREBBP locus, which encodes a protein believed to play
a central role in the pathogenesis of T2D47. Additionally, 15 positively
associated sites are located within the KCNQ1OT1 locus, also
involved in T2D susceptibility48. Of potential relevance to cardio-
vascular disease are ten positively associated sites in ADNP2, which
is involved in the cellular response to oxidative stress49.

Finally, we discovered a highly significant enrichment of telomere
length-associated methylation sites near imprinted genes. We

speculate that this intriguing finding may indicate shared regulation
of methylation status of both subtelomeric regions and imprinted
genes – potentially via ZFP57, a locus in which we identified 21 sites
positively associated with telomere length. This gene encodes a global
regulator of imprinted genes, part of a specialised version of the
KRAB-ZFP/KAP1 system recently been shown to be a general mech-
anism for establishing methylation patterns in the early mouse
embryo. The Zfp57 protein specifically targets only the methylated
version of a TGCCGC[A/G] motif in ICRs, ensuring that methyla-
tion of the imprinted allele is maintained after fertilisation35. We
determined that in addition to their expected presence within
ICRs, there is enrichment of predicted Zfp57 binding sites in sub-
telomeric regions. However, only 5.4% of the CpG sites within these
predicted target sequences are detected by probes on the 450 K array
used in our study. Thus, further investigations are required to deter-
mine the methylation status and actual binding of Zfp57 within
subtelomeric regions, in DNA isolated from different tissues and
developmental stages.

We also investigated telomere length in DNA from EBV-trans-
formed cell lines, which were created using the same venepuncture
samples used to prepare the blood DNA samples. We identified
multiple sites associated with cell-line telomere length, but there
was minimal correlation between these and the sites associated with
telomere length in blood DNA. This finding may reflect differences
in the regulatory processes involved in controlling telomere length in
somatic cells versus those involved in maintaining telomere length in
immortalised cells. Telomere length in germ cells, haematopoietic
and other stem cells is maintained by the action of telomerase.

Table 2 | Results of Ingenuity pathway and network analysis for genes with promoters enriched for CpG sites at which methylation levels are
associated with telomere length in either blood DNA (65 genes) or cell-line DNA (36 genes). Details of the disorders and gene names for the
analysis of blood DNA are given in Table S1

BLOOD DNA CELL LINE DNA

DISEASES AND DISORDERS
Name P-value No. genes Name P-value No. genes
Developmental Disorders 9.59E-05 - 4.39E-02 13 Developmental Disorders 1.28E-03 - 4.40E-02 4
Endocrine System Disorders 9.59E-05 - 4.39E-02 18 Endocrine System Disorders 1.28E-03 - 3.91E-02 3
Gastrointestinal Disease 9.59E-05 - 4.77E-02 15 Hereditary Disorders 1.28E-03 - 4.77E-02 4
Hereditary Disorders 9.59E-05 - 4.39E-02 15 Infectious Disease 1.28E-03 - 4.41E-02 6
Reproductive System Disease 9.59E-05 - 4.22E-02 14 Metabolic Disease 1.28E-03 - 3.91E-02 2
MOLECULAR AND CELLULAR FUNCTION
Name P-value No. genes Name P-value No. genes
Gene Expression 1.86E-06 - 4.77E-02 19 Cell Cycle 1.28E-03 - 3.66E-02 2
Cellular Development 1.39E-04 - 4.77E-02 16 Cellular Compromise 1.28E-03 - 1.28E-03 1
Cell Morphology 6.62E-04 - 3.68E-02 12 Cellular Development 1.28E-03 - 4.52E-02 8
Cell-To-Cell Signaling

and Interaction
1.07E-03 - 3.78E-02 10 Cellular Movement 1.28E-03 - 3.04E-02 4

Drug Metabolism 1.07E-03 - 3.78E-02 3 Energy Production 1.28E-03 - 1.02E-02 2
PHYSIOLOGICAL SYSTEM DEVELOPMENT AND FUNCTION
Name P-value No. genes Name P-value No. genes
Connective Tissue Dev’t

and Function
2.14E-05 - 4.03E-02 7 Cardiovascular System Development

and Function
1.28E-03 - 4.15E-02 2

Embryonic Development 2.14E-05 - 4.81E-02 15 Embryonic Development 1.28E-03 - 4.52E-02 3
Organ Development 2.14E-05 - 4.52E-02 14 Nervous System Development and

Function
1.28E-03 - 4.28E-02 3

Organ Morphology 2.14E-05 - 4.52E-02 12 Organ Development 1.28E-03 - 4.52E-02 3
Organismal Development 2.14E-05 - 4.81E-02 13 Organ Morphology 1.28E-03 - 4.89E-02 6
TOP CANONICAL PATHWAYS
Name P-value Ratio Name P-value Ratio
Dopamine-DARPP32 Feedback in

cAMP Signaling
8.40E-03 3 of 186 B Cell Development 7.61E-04 2 of 33

Lymphotoxin b Receptor Signaling 8.46E-03 2 of 61 Nur77 Signaling in T Lymphocytes 2.24E-03 2 of 63
Prod’n of NO and ROS in

Macrophages
1.08E-02 3 of 211 IL-4 Signaling 4.01E-03 2 of 79

Pregnenolone Biosynthesis 1.53E-02 1 of 13 SAPK/JNK Signaling 6.53E-03 2 of 103
Dopamine Receptor Signaling 1.63E-02 2 of 95 iCOS-iCOSL Signaling

in T Helper Cells
8.21E-03 2 of 123
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However, a telomerase-independent pathway, known as ‘‘alternative
lengthening of telomeres’’ (ALT), is activated in some cancer cells.
There is also some evidence for activation of ALT in cells newly
transformed with EBV50. This pathway synthesises telomeric
sequences independently of telomerase, using homologous recom-
bination following telomere sister chromatid exchange. Our results
are consistent with distinct mechanisms being responsible for main-
taining telomere length in blood and early passage EBV-transformed
cells, with activation of the ALT pathway in transformed cells over-
riding DNA methylation states of genes that are associated with
telomere length and telomerase activity in blood cells. Some of the
CpG sites identified in our study as being associated with telomere
length in cell-line DNA may provide further insights into the immor-
talisation process and the consequences of EBV infection.

Our study of methylation and telomere length was based on a
relatively small number of samples, taken at one time point.
Additionally, we only studied telomere length in blood DNA, so
the relevance of our findings to other tissues remains to be deter-
mined. However, the LTL measurement method gives a mean value
for the telomeres of all chromosomes in all the different types of
leukocyte present in blood, which in turn is presumed to reflect
telomere length of the haematopoietic stem cells. It is likely that
mechanisms that regulate telomere length are common to all healthy
somatic tissues and the stem cells from which they are derived, since
there is high correlation between telomere length in multiple tissues
from the same individuals51.

One strength of our study is the homogenous nature of the popu-
lation with respect to age and gender (i.e. all men aged 44–45 at the
time blood samples were taken). Accordingly, the potential con-
founding effects of these variables - both known to be strongly assoc-
iated with telomere length and DNA methylation - were absent from
our analyses. A further consequence of the age group examined is
that our findings represent methylation associations with telomere
length, rather than chronological age, and are thus of relevance to the
study of healthy ageing.

The results of our pilot study suggest that as telomeres shorten, the
methylation levels of many gene promoters in subtelomeric regions
may change, which in turn could cause changes in gene expression
that increase the risk of age-related disease. Since LTL is highly
heritable, this supports the notion that ‘telotype’ may contribute
towards explaining some of the missing heritability observed for
many common conditions with a genetic component, as proposed
by Armanios and Blackburn52. Further functional and epidemiolo-
gical investigations of these observations are required to confirm the
role of telomere length-dependent gene expression in health and
disease.

Methods
Samples. Genomic DNA samples from both whole blood and EBV cell-lines from
adult males aged 44–45, participants in the 1958 British Birth Cohort Study, were
available for this study53. Details of these samples have been reported previously54, and
the characteristics of the 38 participants included in this study are summarised in
Table 3. In brief, 40 male participants were originally selected to represent extremes of
socioeconomic position in child and adulthood, and other characteristics namely, in
utero exposure to tobacco and childhood abuse. Telomere length measurements and
DNA methylation data were obtained using the same DNA sample for 38 of the
original 40 males (those for whom enough blood or cell-line DNA was available for
both these analyses). DNA from whole blood was available for 24 males and from
EBV cell lines N 5 36, while for 22 participants both whole blood and EBV cell line
DNA was available.

Ethics statement. All participants provided written consent and a blood sample for
DNA analysis and EBV-transformation into a lymphoblastoid cell-line for future
studies. Ethical approval was given by the South-East Multi-Centre Research Ethics
Committee. All methods were carried out in accordance with approved guidelines.

Telomere measurements. Mean relative telomere length was measured in genomic
DNA samples prepared from either whole blood or EBV cell-lines, using a multiplex
quantitative real-time PCR method34 with minor modifications as described
previously22. To minimise intra-assay variability, all PCRs were carried out on a single
384-well plate on a CFX384 Real-time PCR detection system (Bio-Rad). Five serial
dilutions of a reference sample (leukocyte DNA from a 42-year-old non-cohort
female) spanning 5–50 ng were run in triplicate, in addition to a no-template control
(NTC). Human beta-globin (Hgb) was used as the single copy reference gene.
Following amplification and data collection, the CFX manager software (Bio-rad) was
used to generate standard curves for the reference DNA dilutions, one for the
telomere signal (T) and one for the single copy gene signal (S). Telomere
measurements for each sample were calculated as T/S ratios, a relative measure of the
amplification of the telomeric DNA sequence compared to that of the single copy
gene. The T/S values reported are the mean of duplicate measurements for each
sample, and the overall mean coefficient of variation (CV) between duplicates was 4%.

Infinium HumanMethylation450 microarray analysis. DNA methylation profiles were
generated from the DNA of whole blood samples and EBV cell lines using the
Infinium HumanMethylation450 microarray55. In all, there were 22 study partici-
pants with both a whole blood DNA methylation profile as well as an EBV cell line
methylation profile.

Microarray quality was assessed by generating quality control plots using the minfi
Bioconductor package and found to be satisfactory56. Microarrays were background
corrected and normalised to control probes using the minfi package. The probe
intensities were then transformed into beta-values (M/(M 1 U)) where M and U are
the corresponding methylated, and unmethylated, probe intensities, respectively.
Although beta-values can be conveniently interpreted as methylation levels, asso-
ciation analyses were carried out using so-called M-values, logit-transformed beta
values as previously recommended57.

Statistically significant associations between DNA methylation and telomere
length were identified by fitting linear models using the limma Bioconductor pack-
age58 with microarray M-values as the dependent variables and sample telomere
lengths as the independent. In addition, models included adjustments for potential
confounding due to technical artifacts such as plate effects, as well as individual
characteristics including childhood and adulthood SEP, childhood abuse and
maternal smoking during pregnancy. Adjustments were made by including inde-
pendent surrogate variables in the limma design matrix as identified by the DoISVA
function of the isva R package59. The DoISVA function was applied to the M-values
twice, once with no potential confounders included in the input and a second time
with the technical and individual variables noted above along with any statistically
significant variables identified in the first call to DoISVA (False discovery rate (FDR)
, 0.05). The resulting two most statistically significant independent surrogate vari-
ables were then retained for inclusion in the limma design matrix.

In order to identify genes likely to be affected by telomere length-associated
methylation, each CpG represented on the microarray was assigned the Ensembl gene
identifier with the nearest TSS not more than 10 Kb away (retrieved January 2013).
The Wilcoxon rank-sum test was then applied to compare the limma t-statistics of the
CpG sites associated with each gene to the limma t-statistics of the CpG sites not
associated with the gene. Hence, a significant P-value indicates that the CpG sites
associated with the gene are enriched for methylation levels either positively or
negatively correlated with telomere length. FDRs were calculated from these P-values
in order to control for multiple testing using the Benjamini-Hochberg algorithm. The
methylation levels of an individual CpG site were considered significantly associated
with telomere length if the FDR of its associated gene was ,0.05 (‘Q value’) and if the
unadjusted P value for the site calculated by limma was ,0.05. All such sites are listed
in Data S1 and S2.

Enrichment of sites near imprinted genes. Given how methylation associations are
identified, it is not possible to simply apply Fisher’s exact test to determine whether
there is a surprisingly large number of imprinted genes near significantly associated
CpG sites. This is because genes near a large number of CpG sites represented on the
microarray are more likely to be near a significantly associated CpG site than another
gene near a small number of CpG sites. We confirmed that this was the case for

Table 3 | Characteristics of the 38 male study participants

Age (y) n

Childhood manual social class n (%) 0 19 (50.0) 38
Adulthood manual social class, n (%) 42 20 (52.6) 38
Education level – below O level, n (%) 42 9 (23.7) 38
Smoker, n (%) 42 10 (27.0) 37
Alcohol drinks daily, n (%) 42 9 (24.3) 37
Birth weight, g, mean 6 SD birth 3522 (590) 37
Height, m, mean 6 SD 7 1.23 (0.07) 35
Height, m, mean 6 SD 42 1.77 (0.08) 37
Body mass index, kg/m2, mean 6 SD 45 27.5 (4.07) 38
Waist circumference, cm, mean 6 SD 45 99.6 (10.5) 38
Systolic blood pressure, mmHg,

mean 6 SD
45 134.4 (18.3) 38

Diastolic blood pressure, mmHg,
mean 6 SD

45 84.5 (11.6) 38

FEV1*, mean 6 SD 45 3.82 (0.64) 34

*FEV1 5 one-second forced expiratory volume; best test of three spirometry readings.
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imprinted genes, which are on average near twice as many microarray CpG sites as
expected. Consequently, we designed a permutation test that adjusts for this bias. We
first identified the nearest gene TSS for each CpG site and then calculated for each
gene the number of such CpG sites, called the nearest count of the gene. For our
permutation test, we repeatedly selected (100,000 times) gene sets with the same size
and ‘‘nearest count’’ distribution as the set of genes found significantly associated with
telomere length. Whereas our associated gene set contained 12 imprinted genes, the
average random gene set contained only 1 imprinted gene, and only one random gene
set contained 10 imprinted genes.

Pathway analysis. Functional and network relationships between the genes
associated with CpG sites in which methylation levels are correlated with telomere
length were investigated using the Ingenuity Pathway Analysis (IPA) software tool
(Ingenuity Systems, www.ingenuity.com).
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