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Power grids, road maps, and river streams are examples of infrastructural networks which are highly
vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level)
might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous
perturbations can be modeled by shock waves which can eventually interfere constructively and endanger
the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation
under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow
distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a
heterogeneous load distribution, having a difference of one order of magnitude between the highest and
average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a
broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce
the concept of node-basin size, a purely topological property which we show to be strongly correlated to the
average load of a node.

B
lackouts, traffic gridlocks, and floods are all malfunctions of infrastructures which drastically affect their
performance1–5. In many situations, they occur abruptly and might propagate through the network as shock
waves6–9. These waves can either weaken by shedding their impact among branches or interfere construc-

tively when two or more branches meet at the same node. The global consequences of these perturbations will
strongly depend on the propagation dynamics and the capacity of each network element to bear abrupt
changes10–12. The identification of vulnerable spots is a challenging scientific and technological question and this
is precisely what we address here.

Propagation of failures and cascading in complex networks have been subject of much scientific interest13–15.
Examples are the use of the theory of self-organized criticality to study the propagation of failures in power grids
and water transport on reservoir networks1,3,16–20, the Olami–Feder–Christensen model for earthquakes21,22,
traffic2,23,24 and financial networks25. Typically, the focus is on the cascading of failures resulting from an initial
triggering event. However, it is also crucial to understand the dynamics preceeding these failures and identify the
vulnerable spots where they can possibly be triggered.

To describe the propagation of shock waves on directed networks we use the Burgers equation26. This equation
describes flow when the flux depends quadratically on the load (e.g., voltage, traffic density, and water level). The
range of applications of the Burgers equation goes beyond fluid dynamics as it is applied in many propagation
processes, such as traffic jams, glacier avalanches or chemical processes27,28. Here we show that, in the case of
perturbations randomly distributed in space, the dynamics of the solutions of the dissipative Burgers equation
converges to a steady state in which the load distribution is strongly heterogeneous. Surprisingly, we find that the
load of some nodes can exceed the average load by one order of magnitude. One might expect that the location of
such nodes mainly depends on the propagation dynamics. Yet, we show that their fate is deeply imprinted in the
network topology. We propose a new topological measure which allows to identify the most vulnerable nodes
without solving the dynamics.

Model
Dynamics. To describe the propagation of load (e.g., traffic density or water level) on a directed network, we
consider on each link the one-dimensional Burgers equation27
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which we solve using Godunov’s scheme. The details of the
discretization and numerical solution are presented in the section
Methods.

Perturbation. Initially, the load on all directed edges and nodes is set
to zero. Perturbations are described as local changes in the load
according to the following procedure. First, we choose a node i at
random and set ri to a fixed value r0 (r0 . ri) during a time interval
Tp. The load on the corresponding edges and on the other nodes is
determined by solving the Burgers equation as described in the
section Methods. After Tp, the constraint on the load of node i is
released and its load is determined by the dynamics. A new node is
selected and perturbed and the procedure is iterated. In addition to
the perturbations, at each iteration step, 0.1% of every node load is
dissipated. This dissipation would correspond, for example, to the
evaporation of water from a river network, cars leaving the streets, or
a potential drop due to Joule heating.

Directed networks. The dynamics is investigated on the European
high-voltage power grid29 and two network models: the configu-
ration model with power-law degree distribution30–33 and the
Watts-Strogatz model, with small-world features34. In the case of
the model networks, the length of the edges are random variables
chosen uniformly from the interval [3520]. Initially, the power grid
and the model networks are undirected. Inspired by the fact that in
power grids the direction of the current depends on the node
voltages, we use the following method to define the direction of the
link. To each node i, a random value wi (the node voltage) is assigned
uniformly from the interval [051] and the edge between two nodes is
directed from the node with higher voltage to the one with lower
voltage (i.e., wsource . wtarget). This method for generating directed
edges automatically prevents the presence of loops. Since
fluctuations are always present in the network, the direction of the
current can vary in time. Our results are averaged over different
voltage distributions as well.

Results
Steady state. At each time step, we measure the temporal load
correlation, defined as:

D�r tð Þ~
�r t’ð Þ{�r t’{100Tp

� �
�r t’ð Þ

����
����

� �
t’

ð2Þ

where �r tð Þ is the load averaged over all nodes at time t. The brackets
represent an average over the last ten consecutive time intervals of
length 100Tp, i.e., t9 5 t 2 n100Tp with n 5 0, 1, …, 10.

Starting with all loads equal to zero, we observe that D�r decays in
time towards a steady state in which the dissipation balances the total
incoming load. When D�r tð Þ drops below 1% of the relative standard
deviation of the loads within the network, we assume that the steady
state is reached. In the steady state, the load at each node has a well-
defined average value with small fluctuations. The spatial distri-
bution for a given realization of voltages in the European power grid
is shown in Fig. 1. The size of the dots represents the average load
over a time window of 1000Tp measured in the steady state. Most
nodes accumulate negligible load (r < 0), while surprisingly a small
fraction of the nodes are overloaded (r . 10r0, where r0 is the
magnitude of each perturbation).

The observed load exemplarily shown in Fig. 1 corresponds to one
realization of the voltage distribution and thus for one configuration
of the direction of the edges. Assuming small temporal changes in the
network (e.g., fluctuations of voltage in the power grid or number of
cars entering a road junction), the direction of the edges changes in
time. Thus, we also consider different realizations of the voltage
distribution and, for each realization, we determine the steady state
load distribution. Figure 2 shows the relative load distribution aver-
aged over 5000 realizations. In order to compare the load distribution

of different networks (power grid, Watts–Strogatz and scale-free
networks), loads in each curve are rescaled by the magnitude of each
perturbation (r0). The strongly inhomogeneous behavior of the
steady-state load seen in Fig. 1 is also visible in the load distribution.
The distributions are bimodal defining two different types of nodes:
those with a negligible load compared to the perturbation (r , r0)
and those with a larger load (r . r0). The latter ones are typically
overloaded in the steady state, suggesting that the incoming pertur-
bations interfere constructively at them.

The plots for the two network models (Watts–Strogatz and scale-
free) in Fig. 2 are obtained for networks with the same number of
nodes as the power grid. The average degrees are also kept close to the

Figure 1 | Spatial distribution of load on the European power grid in the
steady state. Distribution is shown for a particular realization of the

voltage distribution. The size of the nodes corresponds to the average load

allocated on them. The smallest size refers to zero load, where the largest

one to the maximum load.

Figure 2 | Relative load distribution in the steady state for different
network topologies. The considered topologies are: power grid (green

dots), scale-free (red squares) and Watts–Strogatz networks (blue

triangles). The power grid and the scale-free network have N 5 1254 nodes

and M 5 1811 edges, while the Watts–Strogatz network has N 5 1254

nodes and an average degree of Ækoutæ 5 2. All loads are in units of the

amplitude of the perturbation. Each curve is an average over 5000 voltage

realizations and, in the case of the model networks, also an average over 100

different networks. The magnitude of the standard deviation of the curves

is comparable to the size of the symbols.
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power grid, with the same number of edges in the scale-free network
and Ækoutæ 5 2 in the Watts–Strogatz graph. In both cases, a bimodal
distribution is also observed. The power-grid network is constructed
from real data and its size corresponds to the real network size. Thus,
a finite-size study is not possible. Yet, in the case of the model net-
works one can systematically study the effect of the network size on
the load distribution. Figure 3A shows the load distribution for
Watts–Strogatz networks of different network sizes. The majority
of the nodes (more than 90%) has always a negligible load, while
the load of the remaining nodes follows a broad distribution, char-
acterized by a decay in the relative frequency with increasing load
and a cut-off for values of load close to r0. The bimodal distribution
smoothens out for larger network sizes. For scale-free networks the
qualitative picture is slightly different. As shown in Fig. 3B, for all
network sizes, one observes two power-law regimes, with a crossover
at r0. Nevertheless, note that for both network models, there is always
a significant fraction of nodes (around 10%) with a non-negligible
load. The load value of the cutoff suggests that, at large system sizes,

consecutive shock waves that enter the network are separated so that
they attenuate their amplitude before being able to interfere.

The specific nodes that exhibit these high load values typically
change from realization to realization. However, after averaging over
different voltage distributions, we still find some nodes which are
consistently overloaded. For each distribution of voltages, we classify
as ‘‘overloaded nodes’’ the ones with a load at least ten times larger
than the average. We define vulnerability of a node as the probability
that it is an overloaded node. Figure 4A shows the spatial distribution
of vulnerability in the European power grid where the color and size
of the nodes denotes their vulnerability. The vulnerability of white
nodes is lower than 0.1%, while the one of the black nodes is larger
than 5%. All the other nodes (about 30% of the nodes, in gray color)
have a vulnerability between 0.1% and 5%. In comparison, the highly
vulnerable nodes are at least 50 times more frequently exposed to
large incoming fluxes. In the case of random perturbations, vulner-
able nodes are more likely to fail or be congested. It is therefore

Figure 3 | Size-dependence of the relative load distribution in the steady
state for two network models. The considered topologies are: (A) Watts–

Strogatz and (B) scale-free networks with Ækæ 5 2. Insets show the

respective data collapse, where r and P denote the load and the relative

frequency, respectively, N is the size of the network. Loads are divided by

the magnitude of the applied perturbation to ensure comparability. Each

data is averaged over at least 100 different graphs and 100 voltage

realizations. The breaks in the distributions around r 5 1023 are due to the

logarithmic binning.

Figure 4 | Spatial distribution of two properties on the power grid
network. (A) Vulnerability of the nodes obtained solving the Burgers

equation (probability of having 10�r in a voltage realization). (B) Node-

basin sizes averaged over different voltage realizations. Color and size

indicate the strength of the corresponding property: black corresponds to

large vulnerabilities (. 5%) and basin sizes (. 10), while white nodes have

negligible vulnerabilities (below 0.5%) and small basin sizes (close to 1).

The data are the average over 5000 voltage realizations.
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crucial to identify these nodes to improve their capacity and to mit-
igate the risk of failure. Figure 5 shows the vulnerability distribution
corresponding to the map in Fig. 4A and to other network topologies.
In the case of the Watts–Strogatz and scale-free networks, a vulner-
ability distribution for networks of size N 5 105 are presented.

Identifying vulnerable nodes. Next we will introduce a simple
topological property of the nodes to identify the vulnerable spots
without solving the dynamics of the Burgers equation. According
to the Burgers equation, each node sheds the incoming shock wave
among its out-edges and the total load agregated at the node at a time
t is the sum of incoming loads. Hence, if we track the path of a given
shock wave, it is fragmented at each node with multiple out-edges
and will stop at any node that does not have any out-edges. Assuming
that the time average of the load at a node is proportional to the
number of incoming shock waves, we determine the basin
corresponding to that node. For this purpose, let us consider one
realization of the edge directions (see Fig. 6). For a given node (the
one in red in Fig. 6), the corresponding basin is defined as
the smallest subgraph of the network containing this node (as the
sink), which is connected to the rest of the network by outgoing
edges. Following the procedure as illustrated in Fig. 6, we go
through the nodes following the opposite direction of the in-edges,
starting from the red node (Fig. 6A), and add nodes to the basin that
has only out-edges at the end of the process (marked by the blue
region in Fig. 6B). The resulting subgraph is the basin of the red node,

and the contribution of the load of the nodes in the basin is simply the
inverse of their out-degree (Fig. 6C), except for the initial (red) node,
that contributes to the load with unity. This choice of the
contribution of the nodes in the basin is based on the fact that Eq.
(7) conserves the flux at each node. For simplicity, we assume here
that the amplitude of the shock waves leaving a node is on average the
same for each out-edge.

We calculated the size of the basins for each node, defined as the
sum of contributions from all nodes inside the basin of the corres-
ponding node. This basin size (which is determined for one voltage
distribution) is then averaged over different voltage configurations.
The resulting basin size distribution is depicted in Fig. 4B for the
power-grid network. One sees that for this network, the distribution
of the node-basin size is very similar to the distribution of the vul-
nerability. A quantitative comparison of the two properties can be
given by their correlation. Thus, we plot the rank-rank scatter plots in
Fig. 7 of the indices of the nodes after being sorted in ascending order
by vulnerability and node-basin size. The plots are the average over
5000 voltage distributions and over 100 different topological realiza-
tions of model networks.

The corresponding product-moment correlations rSp of the ranks
are given above the plots, showing strong correspondence between
the ranked vulnerability and node-basin size for the power grid and
scale-free networks. The product-moment correlation is,

x{mxð Þ y{my
� �� �

sxsy
ð3Þ

where mx and my are the mean and sx and sy are the corresponding
standard deviation of the two quantities x and y. The crucial nodes
are the ones with large vulnerability since they are more exposed to
large loads. The basin size shows a strong correlation with the vul-
nerability for these large values (top right corner of the scatter plots),
meaning that it is a good estimator of vulnerability. Watts–Strogatz
network exhibits much less correlation because the degree distri-
bution is extremely narrow, that is, deviations from the average
degree are negligible. Thus, for each realization, the differences in
the loads from node to node are very small. This conclusion is also
supported by Fig. 5 showing a narrow vulnerability distribution for
Watts–Strogatz networks. In order to describe the nodes that are
overloaded more frequently than the average in the small-world
network, we measured the average length of the in-edges of the
nodes, i.e., the average number of mesh points on the in-edges.
Also, to obtain a more realistic distribution of the edge lengths, the
graphs were constructed by first considering a two-dimensional lat-
tice and then rewiring each edge with probability p 5 0.01, finally we
applied a deviation of 50% to each length, distributed uniformly
around the original values. Simulations on 50 network realizations
with N 5 32 3 32 nodes and 1000 voltage realizations for each

Figure 5 | Distribution of vulnerabilities for three different network
topologies. The distribution of the vulnerability (i.e., the probability of

having a load ten times larger than the average) is shown for power grid

(green circles), scale-free network (red squares) and Watts-Strogatz graph

(blue triangles). The data for the model networks are the average over 100

network realizations.

Figure 6 | Calculation of the node-basin size. (A) The basin corresponding to the red node is considered. (B) We determine the smallest subgraph

containing the red node and having only out-edges to the rest of the network. This is equivalent to a breadth-first search traversing the fraction of the

graph reached through only in-edges. (C) When the basin is determined, each node in the basin contributes to the red node’s basin size by the inverse of its

out-degree. The contribution of the red node (i.e., the sink of its basin) is unity.

www.nature.com/scientificreports
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network resulted in a Pearson-correlation of -0.51 between the vul-
nerability of the nodes and the average length of their in-edges (with
Pearson-correlation of 0.1 between vulnerability and basin size),
meaning that nodes with short in-edges are more frequently over-
loaded. On short edges, decrease in the magnitude of the shock waves
is lower, compared to the attenuation of the waves on longer ones.
This suggests that in the case of small-world networks, structural
homogeneity is very strong (differences among nodes are less pro-
nounced, compared to the scale-free networks), and the physical
length of the edges through which load is transmitted have to be
considered. See Supplementary Material for snapshots and the scat-
ter plot of the average length and vulnerability in this small-world
network model.

Discussion
We study the propagation of shock waves on directed networks using
the Burgers equation. Under sequentially applied perturbations and
constant dissipation, the dynamics approaches a steady state. In this
steady state, most of the nodes have negligible average load and a
significant fraction of the total load is localized on a few nodes. We
found that some nodes are more likely to accumulate load even after
averaging over many edge direction configurations. These nodes (the
vulnerable nodes) are more likely to fail, when there is a finite capa-
city of the load they can bear. Unexpectedly we find for the European
power grid a broad pronounced bimodal distribution for the loads,
while for scale-free network the distribution resembles more a power
law.

The steady state and thus the probability distribution of vulner-
ability among the network is determined by solving numerically the
partial differential equations of Eq. (1) on each edge. The propaga-
tion velocity of the shock waves depends on their amplitude, which
can vary rapidly throughout the network. We propose a simpler
alternative based on the node-basin size to estimate the vulnerability
of the nodes and identify the most vulnerable ones. Simulations on a
real network (European high-voltage power grid) and on scale-free
networks show that the node-basin size can predict very accurately
the location of vulnerable nodes while it performs worse for the
Watt-Strogatz network due to its narrow degree distribution.
Investigation of the edge lengths suggests that in the Watts-
Strogatz network, vulnerable nodes are related to those having very
short in-edges.

Our results suggest that it is possible to establish a remarkable
connection between dynamics and network structure. Although for
many networks the node-basin size seems to be an accurate tool in
predicting the distributions and detecting vulnerability, it is only the
first step towards a complete description of the steady state. More
might be understood by studying the relation between the most
vulnerable nodes: under what circumstances are they separated or

forming connected subgraphs? Is any local property of the network
responsible for a node being highly vulnerable? This information
would provide the tools to mitigate the risk of systemic failure.
Further investigation may involve the removal of nodes that reach
their capacity. In this case, the study of the time evolution of the
network structure or optimal strategies of dynamical node/edge
addition or deletion can be of relevance.

Methods
Dynamics. In this section, we describe the generalization of Eq. (1) on a directed
network. The numerical solution of the one-dimensional Burgers equation can be
discretized using Godunov’s scheme35,36

rtz1
i ~rt

i z
Dt
Dx
½ F rt

i{1,rt
i

� �zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{in{flow

{ F rt
i ,r

t
iz1

� �zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{out{flow

�, ð4Þ

where rt
i is the load at the mesh point i at time t, Dx and Dt are the spatial and

temporal discretizations, and F r,gð Þ~ ~r2

2
is the flux. The value of ~r is given as

follows35: If r $ g then

~r~
r if rzg

2 w0

g otherwise

(
, ð5Þ

otherwise,

~r~

r if rw0

g if gv0

0 if rƒ0ƒg

8><
>: : ð6Þ

To solve this equation on a network, one needs to fix the direction of each link in order
to have a precise definition of the in- and out-flux of a mesh point. For practical
purposes, this is a realistic approach as water always flows downhill and the current
follows a decreasing gradient in electric potential. Our discretization model for the
edges and nodes is illustrated in Fig. 8. The edges of a network are one dimensional
and thereby Eq. (4) holds. The number of mesh points in each edge is proportional to
its length and the direction is defined by the direction of the edge. In the case of model
networks, the length of the links is a uniformly distributed random value.
Furthermore, a value of rk is assigned to each node k. Nodes interact with the nearest
mesh points of their incident edges according to the following equation,

rtz1
i ~rt
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Dt
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X
j[Bin

i
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t
i
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i

� �
denotes the set of in- (out-) edges of node i, and r̂j r̂kð Þ is the load at the last

(first) mesh point of the corresponding edge. The resulting dynamics conserves the
total mass and at each node, the total incoming flux is equal to the outgoing one.

Figure 7 | Scatter plots of the ranked vulnerability and node-basin sizes for different network topologies. The corresponding network models are: (A)

power grid, (B) scale-free and (C) Watts–Strogatz network. The axes on the plots indicate the corresponding ranked property, and the color denotes the

number of nodes for which the two ranks were identical. In other words, the color of a dot at (x, y) corresponds to the number of nodes with

vulnerability rank of x and node-basin size rank of y (see the colorbars). All plots are the average over 5000 voltage realizations. In the case of model

networks, 100 different realizations are considered.
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Also, we should add an important remark on the various constraints of the
investigated model. First, in the numerical solution of a nonlinear PDE on a network,
the degree of a node corresponds to the local dimension of the space in which one
solves the equations. As the size of the scale-free network increases, the frequency of
nodes with very large degrees also grow. Considering numerical stability, the
appearance of larger degrees sets an upper limit on the magnitude of the applied
perturbations. However, if the perturbations are small (which is required by the
numerical treatment), shock waves tend to vanish by travelling on the edges and they
are not able to interfere constructively. Therefore, in the finite-size study, we con-
sidered only networks below the size of N 5 104.

Networks. We consider three network models: the European power grid (with N 5

1254 nodes and M 5 1811 edges, i.e., Ækoutæ 5 1.44), the Watts–Strogatz small-world
network (Ækoutæ 5 2) and scale-free network models (Ækoutæ 5 1.44 for N 5 1254 and
Ækoutæ 5 2 in the case of large network sizes). The Watts–Strogatz network is
constructed by considering first a one-dimensional chain with first and second
neighborhood connections and periodic boundary conditions, and then rewiring
each edge with probability p 5 0.01 (with undirected edges, this corresponds to an
undirected average degree Ækæ 5 4). After the voltages are set and edge directions are
introduced, the resulting network has a directed average degree of Ækoutæ 5 2. The
scale-free network is constructed by the configuration model: first we assign the
degrees for each node according to a power-law with exponent c 5 2.5, and then
connect randomly chosen nodes. Finally, further rewiring of the edges is carried out in

order to eliminate degree-correlations. Note that the number of edges in the Watts–
Strogatz network is different from that in the power grid and the scale-free network.
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