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Genetic research on influenza virus biology has been informed in large part by nucleotide variants present in
seasonal or pandemic samples, or individual mutants generated in the laboratory, leaving a substantial part
of the genome uncharacterized. Here, we have developed a single-nucleotide resolution genetic approach to
interrogate the fitness effect of point mutations in 98% of the amino acid positions in the influenza A virus
hemagglutinin (HA) gene. Our HA fitness map provides a reference to identify indispensable regions to aid
in drug and vaccine design as targeting these regions will increase the genetic barrier for the emergence of
escape mutations. This study offers a new platform for studying genome dynamics, structure-function
relationships, virus-host interactions, and can further rational drug and vaccine design. Our approach can
also be applied to any virus that can be genetically manipulated.

T
he broad field of systems biology was significantly advanced in the past decade due to many technological
improvements, such as the invention of DNA microarray, next generation sequencing, mass-spectrometry
and other applications permitting high-throughput screenings1,2. These technical advancements have

enabled large scale studies including interactomics, proteomics, transcriptomics, genomics, epigenomics, and
metagenomics, which have revolutionized biomedical research3–8. A multitude of structure-function information
is embedded in these studies that is valuable for rational drug and vaccine design. In addition, the continued
development of in silico approaches to protein structural modeling, prediction, and design further complements
the impact of high-throughput biological data9–12.

High-throughput tools have also influenced the advancement of genetic approaches. Traditional genetic
methods focus on a single genotype-phenotype relationship at a time, and has been extensively employed to
analyze individual mutations. In contrast, high-throughput genetic methods examine the phenotypic outcomes
of multiple mutations simultaneously. Genome-wide insertional mutagenesis is a common high-throughput
genetic approach. It has been employed to characterize bacterial genomes at a single-gene resolution level13,14.
A higher resolution has been achieved in two medically important RNA viruses, HCV and influenza15,16.
However, the maximum resolution of the insertional mutagenic approach is limited to a protein subdomain
level and thus is insufficient to identify critical amino acid residues. Therefore, there is a demand for a high-
throughput genetic platform at a single-residue resolution.

In this study, we developed a single-nucleotide resolution genetic approach using a large mutant library and a
sensitive deep sequencing technique to annotate the influenza A virus hemagglutinin (HA) gene, which carries
critical roles in receptor binding, viral entry, host shifts, and immune escape mechanisms. Here, we probe for
fitness effects of individual substitutions in 98% of all amino acid positions across HA. Our results provide a
comprehensive structure-function description of HA and offer a reference to identify potential vaccine epitope.
More importantly, the high-throughput profiling platform established in this study can be applied to any
genetically manipulable viral gene or genome to probe mutational fitness effects under any specified growth
condition.
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Results
High-throughput genetic approach at single-nucleotide reso-
lution. The conceptual basis of our high-throughput genetic
platform is to randomly mutagenize each position of the genome,
monitor the enrichment or diminishment of each point mutation
under a specified growth condition, and perform massive deep-
sequencing to determine which mutations are associated with
negative, neutral, or positive fitness outcomes under the given
growth condition. The mutant library was created on influenza A/
WSN/1933 (H1N1) hemagglutinin (HA) gene by performing error-
prone PCR on the eight-plasmid reverse genetics system17 (see
materials and methods). Subsequently, the viral mutant library was
generated by transfection and passaged for two 24-hour replication
selection rounds in A549 cells (human lung epithelial carcinoma
cells) (Fig. 1A). The plasmid library and the passaged viral library
were each sequenced by Illumina HiSeq 2000. Individual mutants
would experience an identical selection pressure with other mutants
in the pool during the course of transfection and infection. Therefore,
comparing the genetic compositions of the plasmid library and the
passaged viral library reflects the variation in replication rates for
each mutation. Here, we use a relative fitness index (RF index) as a
proxy for the fitness effect of individual mutations. The RF index is
calculated as:

RF index~ occurrence frequency in passaged libraryð Þ=

occurrence frequency in plasmidlibraryÞð

The occurrence frequency of individual mutations was largely
expected to be lower than the sequencing error rate of 0.1% in the
Illumina next generation sequencing (NGS).

Therefore, we utilized a two-step PCR approach for library pre-
paration to distinguish true mutations from sequencing errors
(Fig. 1B). In the first PCR, the HA gene was divided into 12 ampli-
cons for amplification with a unique tag assigned to individual mole-
cules. In the second PCR, multiple identical copies for individual
tagged molecules were generated. The input copy number for the
second PCR was well-controlled such that after a sub-saturation
PCR, individual tagged molecules would be sequenced ,10 times.
True mutations would exist in most, if not all, sequencing reads
sharing the same tag, whereas sequencing errors would not. This
error-correction approach is based on a valid assumption that occur-
rence of sequencing error is independent of the identity of the nuc-
leotide tag18. Therefore, sequencing errors could be distinguished
from true mutations. Individual molecules, each carrying a unique
tag, have an average copy number of ,10 (median 5 10) in the
sequencing data, which verified the sequencing library preparation
design.

Point mutation fitness profiling of hemagglutinin. The RF indices
of individual point mutations were profiled across 98% of amino acid
positions of HA in biological duplicate (Spearman correlation 5

0.78) (Fig. 2A). The remaining 2% of amino acid positions not
observed were from the termini of HA, where the first and last
amplicon primers are located. Silent mutations and nonsense
mutations provided an internal control to access the data quality.
In principle, silent mutations, which alter the nucleotide sequence
but not the amino acid sequence, rarely impose a fitness cost. On the
other hand, nonsense mutations, which result in a truncated protein
product, are lethal to the virus. Indeed, our data is consistent with this
notion. Silent mutations have a significantly higher RF index than

Figure 1 | Mutant library passaging and sequencing library preparation. (A) The HA segment was randomized by error-prone PCR. The randomized

segment with the remaining seven wild type segments were transfected into C227 cells to generate the viral mutant library. Two rounds of 24-hour

infections were performed using A549 cells with an MOI of 0.05. Both the plasmid library and the passaged viral library were subjected to sequencing using

the Illumina HiSeq 2000 machine. (B) The HA gene was divided into 12 amplicons for the first PCR. Unique tags were assigned to both ends of the

individual molecules during the amplification process. The second PCR generated identical copies of individual molecules linked with unique tags. Red

circles represent true mutations; Yellow circles represent sequencing errors.
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nonsense mutations (P , 2 e216, two-tailed Student’s t-test)
(Fig. 2B). In addition, the RF index distributions of silent
mutations and nonsense mutations are well separated, which
validated the reliability of our approach. However, several silent
mutations with a low RF index were observed, which may be
indicative of their roles in codon usage, RNA structure, and other
functions beyond protein-coding.

Furthermore, the fitness data is consistent with the reported phe-
notypes of mutants that have been previously characterized in the
literature. Examples include a temperature sensitive substitution
(Y174H)19, a host switching substitution (D238G)20, two ther-mody-
namic stabilizing substitutions (D111E and Q299R)21, and four HA
cleavage site substitutions (Y342H, Y342C, Y342N and Y342F)22

(Table 1). Y174H, D238G, Y342H, Y342C, and Y342N, which are
expected to be deleterious under our experimental condition (see
footnote in Table 1), have a relatively low RF index (ranging from
0.04 to 0.23). On the other hand, D111E, Q299R, and Y342F, which
are expected to be neutral under our experimental condition, have a
relatively high RF index (ranging from 0.37 to 1.03). These compar-
isons show the consistency between our dataset and the experimental
results reported in the literature.

Independent experimental validation also confirmed our dataset.
Six randomly selected point mutations were individually recon-
structed and analyzed. RF indices of each mutation have a positive
correlation with the TCID50 value measured from a rescue experi-

ment (Fig. 3A–B). Overall, these analyses verified the reliability of the
fitness profiling data and demonstrated our platform to be compre-
hensive and at high resolution. The RF indices of all profiled HA
amino acid substitutions are presented in Table S1.

Figure 2 | Single-nucleotide resolution fitness profiling. (A) The RF index for individual point mutations across the HA gene was computed. Log10

of the RF index is plotted on the y-axis. Each nucleotide position is represented by four consecutive lines for the RF indices that correspond to mutating to

A (blue), T (green), C (orange), or G (red). The Log10 RF index of wild type (WT) nucleotides is set as zero. Only point mutations with a coverage of $ 30

tag-conflated reads in the plasmid library are shown. Otherwise, point mutations are plotted as a gray circle on the zero baseline. A short region is shown as

an inset to demonstrate the resolution of our dataset. (B) The distributions of the log10 RF indices for silent substitutions, nonsense substitutions and

missense substitutions are displayed as histograms. Mutations located at the 59 terminal 200 bp and 39 terminal 200 bp regions are not included in this

analysis to avoid confounding by the vRNA packaging signal50.

Table 1 | Comparison with phenotype reported in the literature

Substitutiona RF index Expected Phenotypeb

Y174H (Y159H)c 0.04 Deleterious
D238G (D225G)d 0.23 Deleterious
Y342H (Y328H)e 0.16 Deleterious
Y342C (Y328C)e 0.11 Deleterious
Y342N (Y328N)e 0.04 Deleterious
Y342F (Y328F)e 0.37 Neutral
D111E (D110E)f 1.03 Neutral
Q299R (Q298R)f 1.00 Neutral
aPositions of the substitutions are named based on our wild type protein sequence. Positions of
substitutions in the parentheses represent the naming in the corresponding reference.
bExpected phenotype is classified into deleterious and neutral based on their reported phenotype.
cTemperature sensitive mutation, in which 37uC is a non-permissive temperature.
dPrefers a2,3 linked sialic acid receptor (avian) and does not efficiently bind to a2,6 linked sialic
acid receptor (human).
eOnly Y and F at this residue support efficient viral replication in our growth condition that is in the
absence of trypsin.
fMutations that were confirmed to thermodynamically stabilize the HA protein.

www.nature.com/scientificreports
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Structural analysis of hemagglutinin. Our platform has a high
sensitivity for monitoring negative selection in addition to positive
selection and therefore enables the identification of deleterious
mutations that disappear throughout viral passaging. The
availability of the influenza HA crystal structure allowed us to
further extrapolate structural insights from our dataset. A weak,
yet significant spearman correlation of 0.30 was observed between
the RF index and the relative solvent accessible surface area (SASA)
of HA (P , 2 e216). This indicates that surface residues are more
tolerant to substitutions than core residues, which is consistent with
observations in cellular proteins23,24. We also analyzed the fitness
effects of mutations in different types of structural elements,
namely a-helices (mean log10 RF index 5 21.19), b-strands (mean
log10 RF index 5 20.97), turns (mean log10 RF index 5 20.98) and
coils (mean log10 RF index 5 21.01). Interestingly, mutations in a-
helices are more deleterious than mutations in b-strands (P 5 1 e24),
turns (P 5 1 e23) and coils (P 5 2 e23). In contrast, the fitness effects
of mutations in b-strands, turns and coils are not significantly
different from each other (P . 0.4). This result implies that most
functional elements in HA are contained within a-helices.

We further investigated each a-helix by computing their indi-
vidual mean log10 RF index (Fig. 4A). As expected from the SASA
analysis, the a-helices located at the core of HA1 are the least tolerant
to mutations (red and pink, mean log10 RF index 5 21.52 and 21.40
respectively). The other a-helix in HA1 is also relatively intolerable to
mutations (orange, mean log10 RF index 5 21.11), which is consist-
ent with its role in receptor binding for viral entry25. In HA2, the two
a-helices located at the stem-loop region are relatively intolerable to
mutations (green and cyan, mean log10 RF index 5 21.11 and 21.22
respectively), which can be attributed to their functional role in
membrane fusion during viral entry26. In fact, all of the mean log10

RF indices reported above are lower than that of the entire HA (mean
log10 RF index 5 21.04). Together, these findings demonstrated that
a-helices in HA are important for different functional mechanisms.

Interestingly, the non-structural loop region (blue) that inter-
spaces the aforementioned helices (green and cyan) is more tolerant
to mutations compared to its neighboring a-helices (mean log10 RF
index 5 20.76) (Fig. 4A). This region undergoes a transition from a
non-structural loop to an a-helix during membrane fusion. None-
theless, the relatively high RF index in this region suggests that the
structural requirement for this transition is not stringent. This is
further evidenced by a proline substitution analysis (Fig. 4B).
Among all 20 standard amino acids, proline has the poorest a-helix
formation propensity as its presence would result in a break or a kink
of an a-helix27. Therefore, it is expected that proline substitutions in
an a-helix would carry a low RF index (deleterious). Indeed, all pro-

line substitutions in the HA a-helices have a log10 RF index , 21. In
contrast, two out of three proline substitutions in the non-structural
loop have a log10 RF index . 21 (20.81 and 20.19 respectively).
This result suggests that the formation of a continuous a-helix in this
region is not a strict requirement during membrane fusion.

We also performed an in depth analysis on the a-helix that is
important for homotrimer formation (colored in cyan in Fig. 4A).
Helix wheel projection showed that high hydrophobicity was critical
at heptad position d (Fig. 4C). We further investigated the RF index
of those amino acid substitutions at heptad position d (Fig. 4D).
Silent mutation at G430 had the lowest RF index (0.24) among all
silent mutations at this heptad position. This RF index was employed
as a reference to identify substitutions that has a relatively neutral
fitness effect. Only three out of 27 amino acid substitutions at this
heptad position has an RF index $0.24, namely Y437F (RF index 5

0.35), V465I (RF index 5 0.40) and V465A (RF index 5 0.30). These
three substitutions are conserved in volume and hydrophobicity,
which suggests that residues at heptad position d has a stringent
structural constraint in side chain conformation and hydrophobicity
for homotrimer formation.

Identification of essential regions. Our profiling also provides in-
formation to identify possible essential protein surfaces and indis-
pensable regions useful for vaccine epitopes. Our genetic platform
provides the relative fitness effects of an average of five substitutions
per amino acid residue. The RF indices of the most destructive
substitutions in our dataset can be projected on the HA structure
to identify putative functional regions that cannot tolerate certain
amino acid substitutions (Fig. 5A–B). Whereas the RF indices of the
least destructive substitutions for HA is projected on the HA struc-
ture to identify essential regions that are intolerable to any substitu-
tion (Fig. 5C). As expected, the trimer formation surface (Fig. 5A)
and the stem domain (Fig. 5B–C), which is the major functional
component of the membrane fusion machinery in HA, show as es-
sential regions in our profiling data. In addition, our dataset identi-
fied the cross-subtype conserved influenza HA stalk region as an
indispensable region (Fig. 5C–D), which is at the binding site of
the proposed influenza universal antibody, CR626128,29. The side-
chain interactions at this site are important for CR6261 recogni-
tion. Although several missense substitutions in the binding site
are allowed, they are conservative substitutions (N389D and
T392S) unlikely to disrupt antibody recognition (Fig. 5C–D). It
confirms the promising aspect of the proposed universal anti-
body29. In addition, the main antigenic sites on the globular head
of HA were largely tolerable to substitutions (Fig. 5C). This obser-
vation suggests a functional basis for the tendency of this domain to
rapidly undergo genetic drift, which adversely affects both natural

Figure 3 | Experimental validation. (A) The top panel displays the log10 TCID50 value of mutant virus rescued from transfection. The bottom panel

represents their log10 RF indices from the biological duplicate. (B) A Pearson correlation of 0.9 is obtained between log10 TCID50 from transfection

(x-axis) and log10 RF index (y-axis).
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and vaccine-induced immunity30. Overall, our work details the ge-
netic cost for individual point mutations across HA – the primary
target of anti-influenza neutralizing antibodies28–32. This dataset
therefore provides a valuable reference for rational vaccine design.

Discussion
Traditionally, critical residues on a viral genome are discovered by
testing individual mutants and requires multiple assays to dissect the
associated biological functions. The low throughput nature of this
process limits the number of mutants tested. In this study, we have
developed a comprehensive strategy using the influenza A virus as a
model system to profile the fitness effects of individual point muta-
tions and to identify essential residues throughout the HA gene in a
high-throughput manner.

Recently, two studies that describe the development of a deep
sequencing-based high-throughput genetic platform at single-
nucleotide resolution have been reported in the literature33,34.

Robins et al. probed for essential residues in T7 bacteriophage and
T7-like virus JSF7 of Vibrio cholerae using mutant libraries con-
structed by chemical-induced transition of a GC base pair to an AT
base pair33. Acevedo et al., on the other hand, interrogated the fitness
effects of individual point mutations that naturally emerged in an
evolving poliovirus population which has a high mutation rate, rather
than employing any engineering strategy of introducing mutations34.
In this study, we have developed a novel strategy which utilizes a
saturated point mutation library together with a sensitive sequencing
approach. When compared to the two aforementioned approaches,
our method is more comprehensive and unbiased due to the mutant
library construction strategy, which is independent of spontaneous
mutations. This application can be extended to other influenza genes
and to other genetically manipulable viruses under any applied selec-
tion condition at a single-nucleotide resolution level.

Identification of residues essential for viral replication is often
inferred by sequence conservation. Observed sequence conservation

Figure 4 | Structural analysis on hemagglutinin. (A) All a-helices (orange, red, pink, cyan, green, yellow) and a non-structural loop (blue) in HA are

highlighted. Mean log10 RF indices for individual highlighted structural elements are shown. (B) The log10 RF indices for all observed X R P mutations

(where X can be any amino acids but P) in individual highlighted structural elements are plotted as stripcharts. The colors of the stripcharts match the

highlight colors of the corresponding structural elements in panel A. The bottom stripchart represents the non-structural loop that undergoes

a-helix formation during membrane fusion. (C) Helical wheel was constructed by DrawCoil 1.0 (http://www.grigoryanlab.org/drawcoil/). Amino acid

property of each residue is color coded. Polar: orange; Hydrophobic: grey; Positively charged: red; Negatively charged: blue. (D) The bar chart represents

the RF indices of all profiled amino acid substitutions at heptad position d. RF indices of silent mutations are also included for comparison.

www.nature.com/scientificreports
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derives from the viral sequences that initiated the endemic, and is
influenced by the host genetic background and the specific immune
responses associated with the host. Conservation is not equivalent to
essentialness for viral replication in cells. Mutational analysis of con-
served amino acid residues on influenza A virus has revealed that a
significant fraction of conserved residues are dispensable in viral
replication35–37. In addition, new mutations emerge every flu season,
implying that a certain portion of residues that are conserved cur-
rently are still capable to mutate in the natural environment and
provide a fitness advantage under future unforeseen selection pres-
sures. This also suggests that a conserved amino acid may not neces-
sarily be essential to viral replication. Additionally, analyses of
conserved sequences provide information on viral genetic elements
that survived in the selected human population in recent history, but

does not provide much information on viral genetic elements that
were unable to survive the selection process, nor about which host
factor was responsible for exerting the selection. Our approach pro-
vides a complementary, yet more direct approach to identify amino
acid residues that are critical for viral replication in a defined cellular
environment. Nonetheless, to be more comprehensive, similar stud-
ies should be performed with strains across subtypes and include
different selection conditions.

In summary, the platform described here enabled the simultan-
eous functional profiling of point mutations across the entire influ-
enza HA at single-nucleotide resolution to determine their roles in
viral replication. Our platform provides an efficient tool to address
several important biomedical questions. The fitness profiling data
allows the study of structure-function relationships at single-amino

Figure 5 | Essential regions on hemagglutinin. (A–B) The RF indices of the most destructive missense substitutions in the profiling data for individual

amino acids are projected on the HA protein structure to identify essential regions intolerable to mutations. (C) The RF indices of the least destructive

missense substitutions in the profiling data for individual amino acids are projected on the HA protein structure to identify essential regions intolerable to

mutations. The inset represents the side chain interaction between HA (grey) and the proposed influenza universal antibody CR6261 (green) (PDB:

3GBN)28. Parentheses represent the residue naming according to HA2
28. The mean log10 RF indices of nonconservative mutations for each residue are

shown. Note that, residue 389 is an aspartic acid in the structure but is an asparagine in our wild type HA sequence. A compatible rotamer for T392 was

generated using PyMOL to display the hydrogen bond. All hydrogen bonds (black dotted lines) are displayed as described28. (A–C) Red: RF index , 0.05;

Orange: RF index , 0.1; Green: other. The structure is based on PDB: 1RUZ49. (D) The RF indices for missense mutations within the universal antibody

recognition sites are shown. Types of amino acid substitution are color coded with red: nonsense substitution; orange: nonconservative substitution; blue:

conservative substitution; green: silent mutation. A conservative substitution is defined as having a positive score in the blosum80 matrix.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4942 | DOI: 10.1038/srep04942 6



acid resolution. It enables the search for essential protein surfaces on
available structures and thus offers a reference for drug design
approaches that aim to increase the genetic barrier for the emergence
of escape mutations38–40. Essential peptide stretches could also pro-
vide potential targets for drug and vaccine development41. Our gen-
etic platform can be applied to study viral genome dynamics and
identify critical residues for virus-host interactions in a specific cel-
lular responses (such as apoptosis, autophagy, inflammasome induc-
tion, ER stress, etc.) and immune responses (such as NK cells, T cells,
antibodies, macrophages, cytokines, etc.)42,43. The current develop-
ment of a live attenuated influenza vaccine has been based on the
modification of NS1 to increase interferon sensitivity44. However,
this study provides a platform to explore alternative strategies.
Comparing the in vitro fitness profile with an in vivo profile could
also permit the identification of mutants that replicate efficiently in
vitro but not in vivo. The resultant information when coupled with
known mutants that are sensitive to a specified immune response
could help achieve a higher titer during vaccine production, but
exhibit an attenuated phenotype after injection into the human body
where an intact immune system is present. Most importantly, our
platform is applicable to other viral or microbial genomes where
genetic manipulation is available in the laboratory. The sensitivity
of our platform will increase as NGS technology improves. With the
continued development of NGS technology, we foresee that our plat-
form will be further advanced and can be applied at a much lower
cost.

Methods
Viral mutant library and point mutations. The plasmid mutant library was created
by performing error-prone PCR on the HA segment of the eight-plasmid reverse
genetics system of influenza A/WSN/1933 (H1N1)17. We PCR-amplified the HA gene
insert with error-prone polymerase Mutazyme II (Stratagene, La Jolla, CA). The
mutation rate of the error-prone PCR was optimized by adjusting the input template
amount to avoid the accumulation of deleterious mutations. The restriction enzyme
site BsmBI was present in the PCR primers, and used to clone into a BsmBI-digested
parental vector pHW2000. Ligations were carried out with high concentration T4
ligase (Life Technologies, Carlsbad, CA). Transformations were carried out with
electrocompetent MegaX DH10B T1R cells (Life Technologies), and .200,000
colonies were scraped and directly processed for plasmid DNA purification (Qiagen
Sciences, Germantown, MD). As extensive trans-complementation was expected
during the transfection step, .35 million cells were used for transfection to average
out any bias or artifact generated from possible trans-complementation. Point
mutants for the validation experiment were constructed using the QuikChange XL
Mutagenesis kit (Stratagene) according to the manufacturer’s instructions.

Transfections, infections, and titering. C227 cells, a dominant negative IRF-3 stably
expressing cell line derived from human embryonic kidney (293T) cells, were
transfected with Lipofectamine 2000 (Life Technologies) using the HA mutant library
plasmid plus 7 other wildtype plasmids. Supernatant was replaced with fresh cell
growth medium at 24 hrs and 48 hrs post-transfection. At 72 hrs post-transfection,
supernatant containing infectious virus was harvested, filtered through a 0.45 um
MCE filter, and stored at 280 degree Celsius. The TCID50 was measured on A549
cells (human lung carcinoma cells).

Virus from the C227 transfection was used to infect A549 cells at an MOI of 0.05.
Infected cells were washed three times with PBS followed by the addition of fresh cell
growth medium at 2 hrs post-infection. Virus was harvested at 24 hrs post-infection.
For the mutant library profiling, HA mutant library was passaged for two 24-hour
rounds in A549 cells. Our pilot experiments as well as our previous study revealed that
two rounds of passaging were suffcient for profiling45. The biological duplicate was
performed by an independenly transfected viral library, followed by two rounds of
passaging as described above.

Sequencing library preparation. Viral RNA was extracted from the passaged viral
mutant library using QIAamp Viral RNA Mini Kit (Qiagen Sciences) and was reverse
transcribed to cDNA using Superscript III reverse transcriptase (Life Technologies).
DNA from the plasmid library or cDNA from the passaged viral mutant library were
amplified with both forward and reverse primers each flanked with a 6 ‘‘N’’ tag and
the Illumina flow cell adapter region. Flanking region for 59 primer: 59-CTA CAC
GAC GCT CTT CCG ATC TNN NNN N-39, Flanking region for 39 primer: 59-TGC
TGA ACC GCT CTT CCG ATC TNN NNN N-39. Following PCR, 12 amplicon
products were pooled together. 1.5 million copies of the pooled product were used as
the input for the second PCR, which was equivalent to 10 paired-end reads per
molecule if 15 million paired-end reads were sequenced. 59-AAT GAT ACG GCG
ACC ACC GAG ATC TA CAC TCT TTC CCT ACA CGA CGC TCT TCC G-39 and
59-CAA GCA GAA GAC GGC ATA CGA GAT CGG TCT CGG CAT TCC TGC

TGA ACC GCT CTT CCG-39 were used as the primers for the second PCR. Products
of the second PCR were submitted for next generation sequencing. The error-
correction technique described in this study shared the same philosophy as described
for detecting rare mutations in human cells18. However, this study included the fine
restraint of limiting the input tagged template copy number and PCR efficiency
during the second step PCR to accurately control the distribution of cluster size in the
sequencing output to a median of 10. Raw sequencing data have been submitted to the
NIH Short Read Archive under accession number: BioProject PRJNA243038.

Data analysis. Sequencing reads were mapped by BWA with a maximum of six
mismatches and no gap46. Amplicons with the same tag were collected to generate a
read cluster. Since each read cluster was originated from the same template, true
mutations were called only if the mutations occurred in 90% of the reads within a read
cluster. We acknowledged that this error-correction approach would only correct
errors that occured during the deep sequencing process but not those that were
introduced during the reverse transcription process. Read clusters with a size below
three reads were filtered out. Read clusters were further conflated into ‘‘error-free’’
reads. Average coverages in terms of ‘‘error-free’’ reads were 177028 per nucleotide in
the plasmid mutant library, 112355 per nucleotide in replicate 1 of passaged viral
mutant library, and 161773 per nucleotide in replicate 2 of passaged viral mutant
library (Fig. S1A). Relative fitness index (RF index) for individual point mutations
was computed by:

occurrence frequency in passaged libraryð Þ= occurrence frequency in plasmid libraryð Þ

For all the downstream analysis, only point mutations covered with $30 tag-
conflated reads (‘‘error-free’’ reads) in the plasmid library were included. This
arbitrary cutoff filtered out mutants with low statistical confidence, which is ,16% of
all possible point mutations (Fig. S1B). In addition, all C R A and G R T mutations
are not included in the reported dataset due to an observed DNA oxidative damage
during library preparation47. The RF index presented in Table S1 was calculated by
averaging all RF indices available for a given amino acid substitution.

Structural analysis. The solvent accessible surface area (SASA) for individual
residues was computed from PyMOL using the default ‘‘get area’’ function. SASA
obtained from the folded structure was then normalized with the SASA calculated
from an unfolded structure to obtain the relative SASA. Secondary structure
assignment was performed by STRIDE48. The structural analysis was based on PDB:
1RUZ49. A two-tailed Student’s t-test was employed to compare the log10 RF indices
in different types of structural elements. Only missense mutations are included in the
analysis unless otherwise stated.
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