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The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour.
A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the
ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we
quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees
of ultrametricity on the absorbing state of both a simple and extended model. Unlike the simple model,
ultrametricity alone is not sufficient to sustain long-term diversity in the extended Axelrod model; rather,
the initial conditions must also have sufficiently large variance in intervector distances. Further, we find that
a scheme for evolving synthetic opinion vectors from cultural “prototypes” shows the same behaviour as real
opinion data in maintaining cultural diversity in the extended model; whereas neutral evolution of cultural
vectors does not.

n enduring question of cultural dynamics is the convergence or divergence of cultures over time. Does
increasing global communication and intercultural contact reduce cultural diversity? Axelrod’s simple, but
powerful model of cultural diffusion’ has been used to explore this question®. Some recent extensions
explored the effects of introducing stochastic®*%, complex network’, and thermodynamic quantities® into the system.
Others have investigated more specifically social mechanisms that facilitate or hamper the persistence of cultural
diversity, including the use of social (that is, interactions between more than two actors) rather than dyadic
influence’, social network reshaping controlled by intolerance', the effect of mass media modelled as an external
field'"*, as well as others (e.g. Klemm et al. [3], Centola et al. [15], Greig [16], Klemm et al. [17], Pfau et al. [18]).

Much less explored are the effects of characteristics of the cultural space itself on cultural dynamics. This
relative neglect has persisted despite Axelrod’s initial investigation, which as discussed below showed that a
characteristic of the cultural space is critical for cultural diversity. Valori et al.'* addressed this gap by pointing to
the critical role of the ultrametricity® of cultural space. This article is based on the insights of that work. We
confirm that ultrametricity is important, but show that, in the extended Axelrod model of Pfau et al. [18], it is not
sufficient to sustain long term diversity.

Axelrod conceptualised cultural space largely in line with the contemporary empirical research on cultural
diversity, where cultures are typically represented as configurations or profiles of responses to a variety of cultural
issues (for example Kashima [21], Triandis [22]). The cultural issues vary a great deal depending on the domain of
cultural activities; people’s attitudes towards science and technology (for example Valori et al. [19], which we also
use here), personal values or moral domains such as freedom, loyalty, and purity (for example Schwartz [23],
Graham et al. [24]). A range of responses can exist for each issue. Assuming that there are F dimensions and g
possible responses, the cultural space is defined by the ¢" points. In Axelrod’s model, each agent is assumed to
possess a profile of cultural traits represented as a point in this space.

The Axelrod model is essentially a cellular automaton. At each step, a random agent and one of its neighbours is
chosen. With probability proportional to their cultural similarity, they interact. Cultural similarity between two
agents can be measured by the number of traits they have in common (that is, the number of corresponding
elements in each agent’s vector which have the same value). An interaction consists of a randomly chosen trait in
one agent being changed to become identical to that trait of the other. This is repeated until convergence, at which
point any two neighbouring agents have either identical or completely distinct culture vectors. Axelrod’s invest-
igation showed that ¢ is critical for the persistence of cultural diversity — while keeping F constant, the greater is g,
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the more likely cultural diversity persists. Axelrod called this factor
the scope of cultural possibilities. The greater the number of cultural
profiles possible in the cultural space, the more likely that cultural
diversity will persist.

Although subsequent research has shown that the effect of g on
cultural diversity is robust under different conditions (e.g. Pfau et al.
[18]), there is a limitation in this line of work. The initial culture
vectors are typically set by randomly selecting culture vectors from a
uniform distribution over the cultural space. Going beyond this lim-
itation, Valori et al'® used empirical responses to a large scale
European public opinion survey as initial culture vectors. They used
the bounded confidence variant of the Axelrod model, in which a
threshold 0 is defined, such that agents can only interact when their
cultural similarity is greater than or equal to 0. If 0 = 0 then this is
equivalent to the model without bounded confidence. The rationale
is that agents need a minimum level of “common ground” to interact
at all. The threshold 0 can be used to define the culture graph. In this
graph any two agents are adjacent when their cultural similarity is
greater than or equal to 0. Each connected component in the culture
graph is then a set of agents that can possibly interact with each other
in the Axelrod model with bounded confidence threshold 0.

Based on their simulation results, Valori ef al. argued that ultrame-
tricity of the distribution of culture vectors is critical for the mainten-
ance of cultural diversity. Specifically, they compared the absorbing
state of the Axelrod model using as initial states (1) the real culture
vectors based on opinion data, (2) random culture vectors, and (3)
permuted culture vectors, which were generated by shuffling real data
(each trait’s values permuted among individuals so as to destroy cor-
relations between responses by the same individual). First of all, they
noted the clear differences between the ultrametric structure of the real
data relative to the random and permuted data. This was done by
inspection of the hierarchical clustering dendrogram, where they
argued it was apparent “by eye” that the real data are “more ultra-
metric” than the shuffled or random data. They also reported that, for
a given number of initial connected components in the culture graph,
it is the real (ultrametric) culture vectors that lead to the greatest
number of surviving culturesValori et al. (SI Text) [19].

Intriguingly, however, they measured inter-opinion correlations
and noted that real data also have greater variance in intervector
distances than random or permuted data Valori et al. (SI Text)
[19]. Variance in intervector distances is conceptually related to
scope of cultural possibilities in Axelrod’s original investigation. A
greater variance implies that, when the mean of intervector distances
is constant, culture vectors can differ in many traits, and therefore a
greater diversity of cultures is possible. It follows that cultural divers-
ity persisted in Valori et al.’s real culture vectors more than in the
random or permuted ones potentially due to ultrametricity as well as
greater variance in intervector distances.

In the present paper, we extend Valori et al.’s investigation in three
respects. First, we show that the observed distribution of culture
vectors is not only characterised by ultrametricity, but also by a large
scope of cultural possibilities, and that ultrametricity differs from the
latter - it is possible to vary ultrametricity while keeping scope of
cultural possibilities relatively constant. Second, we show that a large
scope of cultural possibilities is a precondition for ultrametric culture

vectors to maintain long-term cultural diversity in an extended
Axelrod model (the model described originally in Pfau et al. [18]).
Only when the scope of cultural possibilities is sufficiently large, can
ultrametric culture vectors sustain greater cultural diversity in the
extended model. This is in contrast to the simple Axelrod model (as
used in Valori et al. [19]), in which ultrametricity is sufficient. Finally,
we propose a simple method called prototype evolution, which allows
us to evolve a set of ultrametric culture vectors with a large scope of
cultural possibilities. We show that the initial culture vectors simu-
lated with this method can reproduce the pattern of cultural
dynamics observed with the real culture vectors in the extended
Axelrod model, suggesting a possibility that cultural representations
can be construed in terms of prototypes and their variants. This fits
with prominent social science prototype theories as discussed below.

Results
We investigate the effects of ultrametricity and variance in intervec-
tor distances on cultural diversity in two steps. First, we quantify the
degree of ultrametricity and examine the properties of real culture
vectors in two different data sets: Eurobarometer data that Valori
et al. used, and General Social Survey data from the USA. We confirm
Valori et al.’s observation that the distribution of real culture vectors
is characterised by ultrametricity and large variance in intervector
distances. Second, we describe the neutral evolution, prototype evolu-
tion, and trivial ultrametric methods, three methods by which ultra-
metrically distributed culture vectors can be simulated. The neutral
evolution method enables us to vary ultrametricity while keeping the
mean and variance of intervector distances relatively constant,
whereas the prototype evolution method generates culture vectors
that vary ultrametricity and variance in intervector distances at the
same time, which mimic the pattern only observable in real culture
vectors. The trivial ultrametric method allows us to vary ultrametri-
city and mean of intervector distances, while variance remains low. If
ultrametricity is the critical factor for cultural diversity, the neutral
evolution and trivial ultrametric methods should be able to repro-
duce the pattern of cultural dynamics observable with real data,
whereas the prototype evolution method should reproduce the cul-
tural dynamics based on the real culture vectors if the combination of
ultrametricity and a large variance in intervector distances is neces-
sary. Details of the schemes are given in the Methods section.
Table 1 shows the mean and standard deviation of inter-vector
distances in Eurobarometer data (real, shuffled, random and simu-
lated), as well as the degree of ultrametricity as measured by the
cophenetic correlation coefficient and ultrametric triangle fraction
(defined in Methods). As a second empirical data set for initial opin-
ion vectors, we use the same approach as for the Eurobarometer data,
applied to the General Social Survey (GSS) 1993 data®. Table 2 shows
the statistics for this data. The real opinion data is more ultrametric
(higher cophenetic correlation coefficient) and has larger standard
deviation of intervector distances than permuted or random data. It
is notable that the cophenetic correlation coefficient largely accords
with the intuitive notion, as visualised using dendrograms, that real
data is more ultrametric than permuted or random data, as described
in Valori et al. [19], while ultrametric triangle fraction does not.
Indeed the ultrametric triangle fraction for random data is higher

‘ Table 1 | Statistics of inter-vector distances, and cophenetic correlation coefficients and ultrametric triangle fractions for Eurobarometer
survey data (N = 600), with the split ballot question handled by merging versions so that F= 116

description mean intervector distance  sd of intervector distance  cophenetic corr. coeff. ultrametric tri. frac.
Real 0.585 0.076 0.316 0.066
Permuted 0.585 0.041 0.344 0.095
Random 0.798 0.037 0.028 0.099
Simulated 0.909 0.030 0.093 0.128
Simulated permuted 0.909 0.027 0.034 0.137
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Table 2 | Statistics of inter-vector distances, and cophenetic correlation coefficients and ultrametric triangle fractions for GSS survey data (N
= 600), merging split ballots so that F = 58

description mean infervector distance  sd of intervector distance  cophenetic corr. coeff. ultrametric fri. frac.
Real 0.717 0.114 0.695 0.109

Permuted 0.717 0.057 0.296 0.134

Random 0.858 0.046 0.031 0.160
Simulated 0.889 0.051 0.123 0.160
Simulated permuted 0.889 0.041 0.028 0.178

than for real data, and is in all cases small. For this reason, and the
sensitivity of this direct, or “literal”, measurement of ultrametricity
to even small perturbations in the data®, that we will use the cophe-
netic correlation coefficient as our measurement of ultrametricity,
and only include the values of the ultrametric triangle fraction for
comparison. Details of the data sets and the measurement of ultra-
metricity are given in the Methods section.

We use two different versions of the Axelrod model. The first,
which we will refer to as the simple Axelrod model, is similar to that
used in Valori et al.”®. The second, which we will refer to as the
extended Axelrod model, is the model from Pfau et al'®. Details
are given in the Methods section and Supplementary Information.

Fig. 1 shows results in the simple Axelrod model, reproducing
the results described in Valori et al. (ST Text) [19] that the real
data (for both Eurobarometer and GSS, as well as their simulated

versions) has the largest number of cultures at the absorbing state
for a given number of initially compatible agents. Fig. 2, for the
extended Axelrod model, shows that, for a given number of ini-
tially compatible agents, real data again has the largest number of
cultures at the absorbing state. Although the modified Axelrod
model we use, incorporating social ties and geographical migra-
tion, with discrete values of cultural traits, is quite different from
the simpler model used in Valori et al. [19], our result here is
similar in this respect, although the effect is much smaller. We
note that the real Eurobarometer data has a larger number of
cultures at the absorbing state than the permuted and random
data for a given number of initial connected cultural components,
even though it has a smaller cophenetic correlation coefficient
than the permuted data. It does, however, have a larger standard
deviation of intervector distances (Table 1).
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Figure 1| Number of cultures at the absorbing state (y axis) in the simple Axelrod model versus number of initial connected culture components
(xaxis) for Eurobarometer and GSS data (N = 600), both real and simulated using random values with the same covariance as the real data. The value of
0 is varied to obtain different numbers of initial connected components in the culture graphs along the x axis and the corresponding numbers of cultures
(normalised to lie between 0 and 1 by dividing by N) at the absorbing state on the y axis.
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Figure 2 | Number of cultures at the absorbing state (y axis) in the extended Axelrod model versus number of initial connected culture
components (x axis) for Eurobarometer and GSS data (N = 600), both real and simulated using random values with the same covariance as
the real data. The value of 0 is varied to obtain different numbers of initial connected components in the culture graphs along the x axis and the
corresponding numbers of cultures (normalised to lie between 0 and 1 by dividing by N) at the absorbing state on the y axis.

Another point to note is that in the extended model (Fig. 2), the
data points mostly occupy the upper, rather than the lower, triangle of
the graph. This is an unexpected result if we consider the discussion in
Valori et al. (SI Text) [19], that the diagonal on these graphs represents
the “largest possible” number of cultures at the absorbing state, and
that, further, results due to properties of the initial conditions are
surprisingly robust to differences between various modifications of
the dynamic rules of the Axelrod model. Our extended Axelrod model
would appear to fit within the scenarios reduced to equivalence with
the simple model in Valori et al. (SI Text) [19]; different interaction
probabilities (as an increasing function of cultural similarity; mediated
in our model by geographical migration and social link weight), and
social networks co-evolving with opinions. However, as we will show
later, curves on these graphs above the diagonal (occupying the upper
triangle) are possible even in the simple Axelrod model.

Fig. 1 and Fig. 2 also show the results for the GSS data. As with the
Eurobarometer data, real data has the largest number of cultures at
the absorbing state for a given number of initially compatible agents.
Hence this result is not specific to European data and is also robust to
certain other differences in the data; the GSS data has a considerably
smaller value of F (see Supplementary Information), and, unlike the
Eurobarometer data which we have sampled so that there are (an
equal number of) samples from each of the 12 European countries in
the data, all the samples are from the same country.

The simulated data has the same covariance structure as the real
data, but, as is evident from Table 1 and Table 2, a much lower

cophenetic correlation coefficient. Like the real data, the simulated
GSS data has a greater number of cultures at the absorbing state for a
given number of initial connected components in the culture graph
in both models, however this is not the case for the simulated
Eurobarometer data in the extended Axelrod model (Fig. 2).
Table 1 shows that the simulated Eurobarometer data, despite having
a higher cophenetic correlation coefficient than its permuted form
and random data, in fact has a smaller standard deviation of inter-
vector distance than random data; this, rather than only the degree of
ultrametricity (as measured by cophenetic correlation coefficient),
may be causing these effects in the Eurobarometer data.

Investigating the effects of ultrametricity and intervector dis-
tance. We investigate the effects of ultrametricity and intervector
distance by using three different schemes to generate initial culture
vectors. We can achieve this by first generating ultrametrically
distributed initial culture vectors, and then reducing the degree of
ultrametricity by randomly perturbing each element of each vector
independently with a fixed probability p. As we will show below,
different schemes produce varying degrees of ultrametricity and
intervector distances, such that their effects can be examined
separately. If p = 0 then the data is just the ultrametric data just
created; if p = 1 then the data is uniform random data. Intermediate
values give intermediate degrees of ultrametricity (as measured by
cophenetic correlation coefficient) as shown in Fig. 3. Ultrametricity
also increases with increasing dimension (F) and with increasing
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Figure 3 | Ultrametricity, and mean and standard deviation of intervector distances, generated by the three schemes of generating initial culture

vectors. F = 100, g = 10, N = 125.

sparsity’®?’, as shown in the Supplementary Information. Note that
the ultrametric triangle fraction remains small and approximately
constant (just like the real, perturbed, simulated and random data)
for the neutral evolution and prototype evolution schemes. Only the
trivial ultrametric scheme creates a larger value of ultrametric
triangle fraction, and then only the value 1 when p = 0 (by
construction); any perturbation at all immediately decreases it to a
similar value to the other schemes and random data.

Fig. 3 also shows how statistics of the intervector distances vary
with perturbation probability p in all three schemes. In prototype
evolution, the standard deviation of intervector distance decreases
with decreasing ultrametricity. In neutral evolution, the mean and
standard deviation of the intervector distances remain approxi-
mately constant, and p affects mainly the degree of ultrametricity.
Therefore, using this scheme we can use p as a proxy for the degree of
the ultrametricity of the initial conditions, while with prototype
evolution it also has significant effects on the mean, and, especially,
variance, of intervector distances. In the trivial ultrametric scheme,
the mean intervector distance starts just above zero and increases
smoothly as ultrametricity decreases, while the standard deviation
starts at zero and when perturbed at all increases to a still relatively

small value where it then converges to the value for random data as
ultrametricity decreases.

Fig. 4 shows, for all three schemes in the simple Axelrod model, the
number of cultures at the absorbing state against the number of
connected components in the initial culture graph. Both neutral
evolution and the trivial ultrametric scheme show similar results to
real data in the simple model; the most ultrametric data is approxi-
mately on the diagonal, with the curve further below the diagonal in
the lower triangle as the degree of ultrametricity decreases.
Surprisingly, however, prototype evolution shows the most ultra-
metric curve well above the diagonal in the upper triangle, and the
curves for initial data with lower degrees of ultrametricity succes-
sively beneath it, with the p = 0.4 curve approximately on the diag-
onal. As we previously mentioned, this result may seem impossible if
we believe that the largest possible number of cultures at the absorb-
ing state is along the diagonal. However (as is evident from this
result), given the right distribution of initial culture vectors, curves
above the diagonal are indeed possible, even in the simple model. We
show how this is possible by constructing the simplest case in the
Supplementary Information.

Fig. 5 shows the results in the extended Axelrod model. These
graphs show that, when using neutral evolution or the trivial ultra-
metric scheme to generate initial culture vectors, we do not see a
larger number of cultures at the absorbing state for increasing ultra-
metricity. Only prototype evolution shows the curves in order of
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decreasingly ultrametric initial conditions, showing that the more
ultrametric data has a larger number of cultures at the absorbing
state for a given number of initially culturally compatible agents. It
is particularly significant that neutral evolution does not have this
property, since, as shown in Fig. 3, increasing the perturbation prob-
ability p in this scheme decreases ultrametricity as measured by the
cophenetic correlation coefficient, but leaves the mean and standard
deviation of the intervector distances approximately constant.
However this alone is not enough to show that ultrametricity is
not sufficient for a greater number of surviving cultures, since the
maximum value of the cophenetic correlation coefficient is only
approximately 0.72 for neutral evolution, while it is approximately
0.97 for prototype evolution (Fig. 3), which leaves open the possibil-
ity that it is the greater ultrametricity possible in prototype evolution
that leads to the greater number of cultures. However, the results
from the trivial ultrametric scheme confirm that ultrametricity is not
sufficient for a greater number of cultures, as in this scheme the
maximum cophenetic correlation coefficient is 1 at p = 0 by con-
struction. In addition, neutral evolution with different parameters
can show a higher cophenetic correlation coefficient, further con-
firming this result (see Supplementary Information).

Discussion
In Valori et al. [19], it is shown that an ultrametric distribution of
culture vectors in the initial conditions of an Axelrod model pre-

serves diversity at the absorbing state. We quantified the degree of
ultrametricity of sets of empirical initial culture vectors from survey
data, and also data generated in such a way as to have varying degrees
of ultrametricity. Our results confirm those of Valori et al. [19] in the
simple model, but show ultrametricity itself is not sufficient for this
preservation of diversity in the extended Axelrod model; the initial
vectors must also have sufficiently high scope of cultural possibilities,
as for example measured by the variance in intervector distances (as
used for example in the SI Text of Valori et al. [19]). An ultrametric
distribution of the culture vectors (as measured by cophenetic cor-
relation coefficient), does not necessarily imply a high variance of
this distribution. Real data, however, does have both properties.

In the simple Axelrod model, ultrametricity alone is sufficient to
show behaviour similar to empirical data. However the scheme for
evolving synthetic initial opinion vectors based on “prototypes” shows
even greater preservation of cultural diversity at the absorbing state;
the empirical data and other two schemes for initial conditions do not
result in the greatest possible number of cultures at the absorbing state.
In the extended Axelrod model, only this prototype evolution scheme
for generating initial culture vectors results in the same property that
real data has, of simultaneously having large variance of intervector
distances and being ultrametrically distributed, thereby preserving
diversity at the absorbing state. This suggests that real culture vectors
may arise with the distribution that they have as a result of evolution
from, or clustering around, “prototype” culture vectors.
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Methods

We use two variations of the Axelrod model, which we have referred to as the
“simple” and “extended” Axelrod models. The simple Axelrod model is similar to
that used in Valori et al."”. The differences from the original Axelrod model' are that,
first, the bounded confidence threshold 0 is introduced, and second, rather than only
interacting with their immediate neighbours, an agent can interact with any other
agent (the social network is a complete graph). The extended Axelrod model is the
model of Pfua et al. [18], which extends the Axelrod model by co-evolving social
networks and geographical mobility along with culture. We extend it to include
bounded confidence. In the Pfau et al.'® model, there are N agents on an L* lattice, as in
the original Axelrod model. However, agents can now move on the lattice (geo-
graphical mobility), and there is also a social network, with weighted undirected social
links between agents. The probability of an interaction between two agents depends
on their geographical and social proximity. In addition, interactions can be either
successful or unsuccessful; the probability of an interaction being successful is pro-
portional to the cultural similarity between the agents. A successful interaction results
not only in a cultural trait becoming identical, but also an increase in the weight of the
social link between the two agents. An unsuccessful interaction results in a decrease in
the weight of a social tie, and also potential geographical migration on the lattice
towards another social contact.

For both models, the results are means (with error bars giving one standard
deviation) of running the model to the absorbing state 50 times with the same initial
conditions. Further details are given in the Supplementary Information.

Ultrametricity and intervector distance in real culture vectors. In order to
investigate the effect of ultrametricity, it is necessary to quantify ultrametricity. An
ultrametric space® is a metric space in which the triangle inequality d(x, y) < d(x,z) +
d(z, y) is replaced by the stronger inequality d(x, y) = max{d(x, z), d(z, y)}.
Ultrametricity is a natural property of “hierarchical” or tree-structured data, for
example phylogenetic trees representing distances between species with a constant
rate of evolution Durbin et al. (Ch. 7) [28].

In a particular data set, distances between data points might not be perfectly ultra-
metric, but nevertheless be more or less close to ultrametric. The most direct way of
measuring ultrametricity in a data set is to count the fraction of triples of vectors in the
data that satisfy the ultrametric inequality, which is what we have termed the “ultra-
metric triangle fraction”. This value would then range from 1 for perfectly ultrametric
data, down to 0 for data in which no triples at all satisfy the ultrametric inequality
(although it would be expected in random data to have some number by chance so the
value would be unlikely to ever be exactly 0). Murtagh*”*** introduces a variant of this
technique which uses angles rather than distances in order to avoid lack of invariance
due to the use of distances®; however this technique requires a scalar product in the
vector space, which in the case of our Hamming distances between culture vectors
would require a further step of embedding the data in a Euclidean space”.

An alternative technique to measure the degree of ultrametricity is instead to
measure the deviation of the intervector distances in the data from a constructed
ultrametric, for example a single-linkage clustering (equivalent to the minimum
spanning tree) as is done in Rammal et al. [26] and Rammal et al. [20]. The cophenetic
distance between two data points in a hierarchical clustering (often represented as a
dendrogram) is the intergroup similarity at which they are first combined into a single
cluster. The cophenetic distances created by a hierarchical clustering procedure such
as single-linkage, complete-linkage or UPGMA (average-linkage) are ultrametric.

The degree of ultrametricity of (pairwise distances between) a set of data points can
then be measured by the cophenetic correlation coefficient®*-*: the correlation between
the (ultrametric) cophenetic distances induced by the hierarchical clustering and the
original distances in the data. Other measurements of the degree of ultrametricity
include Rammal’s D, Lerman’s H-classifiability (Lerman et al. [34], as described in
Murtagh [29]) and Murtagh’s y*. In this paper, we measure the degree of ultrame-
tricity of a data set using the cophenetic correlation coefficient with single-linkage
clustering of the data and Pearson’s correlation.

Empirical, permuted, simulated and random data. The first set of empirical data we
use is the Eurobarometer survey data of opinions on science and technology®, as
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used in Valori et al. [19]. Similarly (but not identical) to Valori et al. [19], we used the
survey responses for opinions on science and technology from the Eurobarometer
survey data, as well as shuffled data, in which the answers for each question are
randomly permuted among the individuals, and uniform random responses. The
second set is the General Social Survey (GSS) 1993 data®®, which we process in the
same way. More details are in the Supplementary Information.

In addition, we use random data generated so as to have the same covariance
structure as the real data. This is achieved by using the product of the Cholesky
decomposition of the correlation matrix and a normally distributed random vector,
that is, the matrix-vector product U" z where X = U"U is the Cholesky decomposition
of the correlation matrix X of the original data and z, <; <y ~N(0,1). We also per-
mute this simulated data, in the same manner as the real data.

Generated ultrametric data. The “neutral evolution” scheme starts with an initial
random vector. We then create two children, by changing up to 50% of the traits in
each one to a random value. We do this recursively with the two child vectors, and
stop when enough vectors have been created. This is like the process of neutral
evolution with a constant rate of evolution (“molecular clock”), but with culture
vectors instead of DNA (or protein) sequences. This is exactly the condition under
which UPGMA produces a valid phylogenetic tree (i.e. the leaf sequences/vectors are
ultrametrically distributed).

In the “prototype evolution” scheme, initial culture vectors are evolved from a set
of initial prototype vectors. “Prototype” in this context is akin to an ideal type, or a
profile that is the most typical of a category. A cultural prototype may be provided by
the first person that has articulated a set of ideas and practices, or a classic text that has
founded a set of cultural ideas and practices. Given that cultural information is by
definition socially transmitted from an individual to another and that this trans-
mission is imperfect (for example Kashima [38]), it is theoretically reasonable to
simulate the distribution of individual profiles within a cultural space as a result of
probabilistic deviations from such cultural prototypes. Once a distribution of culture
vectors are generated, the centroid that represents the central tendency of the dis-
tribution can be thought of as the prototype in the sense used by Rosch & Mervis [39].

Therefore k “prototype” vectors are created with random values, and the remaining
N — k vectors are created by choosing at random one of the k prototype vectors, and
creating a new vector by copying the prototype and then changing up to 50% of the
traits, chosen randomly, to a random value. Hence the vectors created in this scheme
form k clusters by construction. We use k = 3 in the results presented here, on the
basis that theories of cultural prototypes tend to be built on three to five prototypes,
for example Triandis [22], Shweder et al. [40], Fiske [41], Fiske [42], Graham [43].

The “trivial ultrametric” scheme generates vectors that are by construction per-
fectly ultrametric. It does so by creating (9 — 1)F vectors, each of which is all zero
apart from the ith element which issettoj, for 1 =i = Fand 1 =j < g (asingleiandj
for each vector). Then N of these vectors are sampled (without replacement) ran-
domly. This creates a set of vectors in which each differs from all the others in exactly
two positions, and therefore the intervector distance between any pair of vectors is the
same. This data is therefore perfectly ultrametric, but in a “trivial” sense, due to all the
intervector distances being equal.

Details of the three schemes are given in the Supplementary Information.
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