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Inspired by the analysis of several empirical online social networks, we propose a simple
reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their
states, influenced by local dynamics and their own intention. It is shown that the model can reproduce the
remarkable properties observed in empirical online social networks; in particular, the assortative
coefficients are neutral or negative, and the power law exponents c are smaller than 2. Moreover, we
demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from
assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in
understanding the formation and evolution of online social networks.

M
assive websites – Facebook, Twitter, MySpace, LinkedIn, Flickr, Orkut, Google1, Weaklink, just to
name a few – are booming in the past few years, where millions of users and their interactions naturally
form the so called online social networks (OSNs)1–3. For OSNs, one important characteristic is the strong

interplay between the user behaviour and the network topology4. On the one hand, the user behaviour is affected
by the topology-dependent information flowing in the networks5–8; on the other hand, the network topology
continually evolves as a natural consequence of network dynamics8–10. Due to this feature, OSNs exhibit certain
correlation patterns during evolution, such as the highly skewed degree distributions11–13, the generalized Gibrat’s
Law14, assortativity/disassortativity11,12, etc, which are of great importance for us to understand the possible
generic laws governing the organization and evolution in networked systems15.

Recently, two interesting phenomena in OSNs have attracted much attention. The first one is related to the
assortativity/disassortativity property of the network, which is an important structural measure characterizing
the degree correlation between pairwise nodes. Mathematically, the assortative coefficient can be defined as the
Pearson correlation coefficient averaged for all pairs of adjacent nodes in the network. As shown in Table I, it is
reported that some OSNs (e.g., Twitter and Cyworld) show negative or neutral assortative coefficients11–13,16–19,
and some OSNs, such as Weaklink11 and Google1 (G1)12, even convert from being assortative to being dis-
assortative during evolution. These findings challenge our traditional knowledge20,21 that biological and technical
networks (e.g., financial networks22) are disassortative, while social networks (e.g., acquaintance networks23) are
assortative. Secondly, the scale-free property is of great importance for a network, which can be characterized by a
power law exponent c as in p(k) , k2c, where k and p(k) are node degree and the distribution of degree,
respectively. Under the thermodynamical limit, i.e., the network size N R ‘, the mean degree of a scale-free
network will diverge when c # 2. Therefore, c 5 2 is an important boundary, and scale-free networks can be
classified into dense (c # 2) and sparse (c . 2) accordingly. Previously, many scale-free networks are found to be
sparse24. However, as shown in Table I, some large OSNs, e.g., YouTube (YT), Digg, and LiveJournal (LJ), turn out
to be dense scale-free networks with c , 213,19,25.

In Table I, the basic statistical properties for 14 popular OSNs are listed. It is found that these OSNs basically
share common properties observed in real world networks, such as power-law distribution of degrees, large
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clustering coefficient, and small average shortest path. However, two
features, i.e., negative or neutral assortative coefficients and c , 2,
also turn out to be typical. In order to obtain insights into the evolu-
tion patterns of real OSNs, it is desirable to set up a dynamical model
which could reproduce the properties and dynamics observed in real
OSNs. Previously, the power law distribution of degrees1–3,26–28 and
the disassortative correlation11,29 have been separately studied in
theoretical models, and in most models the exponents c of degree
distributions are larger than 2 (see Table III of Ref. 1 and the corres-
ponding references). Recently, some theoretical works discussed the
relevant properties of networks with specific functions to determine
the degree distribution of the nodes30–32. However, attentions have
not been paid to the dynamical origin of dense and/or disassortative
OSNs, especially the transition from assortative to disassortative
during the evolution of real networks.

Recently, we proposed a dynamical model based on empirical
analysis of real OSNs such as Flickr and Epinions. It is shown that
this simple reaction-diffusion-like model can reproduce statistical
properties consistent with real data33. In this present paper we invest-
igate, through modeling and simulations, the two remarkable obser-
vations that some OSNs are dense and/or disassortative. Specifically,
based on extensive empirical analysis of real network data, including
Flickr, FriendFeed (FF), ANobii, and Epinions, we set up an evolu-
tion model, aiming at reproducing the above properties observed in
OSNs. In the model, we characterize the user behaviour (local
dynamics) in the OSNs by a state function. By considering a mech-
anism of local interplay generating new links, i.e., the formation of
triadic closure, we are able to describe the network evolution as a
reaction-diffusion-like process, in which the network dynamics and
topology evolve simultaneously and interdependently. As a natural
consequence of the coevolution, the resulting networks exhibit the
typical properties observed in real OSNs. Specifically, we show that
the network is capable of making the transition from being sparse to
dense, and from being assortative to disassortative during the evolu-
tion. We also offer some heuristic explanation for the above beha-
viour of the OSNs in our model.

Although the current model shares the same framework as in Ref.
33, i.e, based on the reaction-diffusion-like local interaction pattern,
we emphasize that there are differences between them. Firstly, the
modeling in Ref. 33 deals with typical dual-component networks
consisting of users and items, while in this work, we only consider
the social network, i.e, the user connections in the OSNs. Secondly,
Ref. 33 mainly investigated how the user connections, i.e., the social
network, influence the formation of cross links (connections between
users and items), and the dynamical correlations and patterns among

different types of degrees. In this paper, we focus on the dynamical
origin of the transition from assortative to disassortative, and from
sparse to dense in the OSNs characteristics. In addition, in the cur-
rent model, we introduce the general Fermi function to simulate the
diversity of user dynamics, which should be more reasonable than
the random connection in Ref. 33.

Results
Empirical analysis. The mechanism of link formation is the central
dynamical process during network evolution. In the seminal work,
Barabási and Albert proposed a general rule governing the growth of
networks, the preferential attachment (PA), which can explain the
scale-free properties observed in many real world networks1–3. Since
then, much attention has been paid to the investigation of possible
microscopic mechanisms underlying the PA phenomenon1–3. So far,
this important question is still open and challenging. In this paper,
we first carry out empirical study on four typical OSNs, including
Flickr34,35, FF36,37, aNobii38, and Epinions39 (see Methods for data
description). Our particular interest is on the patterns of link
creation during network evolution.

To facilitate the analysis, we divide the new links into two mutu-
ally-exclusive types: the balance links and the distant links based on
the topological distance40. If a new link is formed between a user and
one of his second neighbours, i.e., the user who is two hops apart
from him in the network, it is regarded as a balance link40. Otherwise,
it belongs to the distant links. Obviously, generating a balance link
always contributes a triangle in the network. By distinguishing
between these two types of new links, we can investigate the depend-
ence of new links on the topological distance.

The main method we use to analyze the pattern of link growth is to
measure the conditional probability that nodes acquire (create) new
links with respect to their existing in-degree (out-degree)41,42 (see
Methods for details). The main empirical results for the four OSNs
are summarized in Table II and illustrated in Fig. 1. Interestingly, the
relative probabilities of acquiring or creating new links satisfy a
power law with respect to the existing degrees, indicating that the
users with larger out-degree (in-degree) are more likely to create
(acquire) new links. Moreover, it is found that the exponents a for
the balance links are significantly larger than that for the distant
links, as shown in Figs. 1(a) and 1(b). This suggests that the balance
links depend on the local topological structure more than the distant
links. We attribute this preferential formation of balance links in the
OSNs to the locality of information in such networks, i.e., usually
users within a neighbourhood tend to influence each other.

Table I | Properties of typical OSNs, including the number of nodes N, the average degree Ækæ, the average shortest path Ædæ, the exponent
of power law for out-degree (in-degree) cout (cin), the average clustering coefficient Æcæ, and the assortative coefficient r, which is defined
as the correlation between out-degree and in-degree as the links in OSNs are directional. The empirical data sets analyzed in this paper
are also listed here, i.e., Flickr, FriendFeed (FF), aNobii, and Epinions

Network N Ækæ Ædæ cout(cin) Æcæ r

Flickr 2302925 14.4 5.7 1.75(1.74) 0.11 0.02
FF 204458 20.6 4.0 2.29(2.17) 0.19 20.10
aNobii 94238 8.07 5.3 2.71(2.70) 0.13 20.05
Epinions 114467 5.63 4.9 1.75(1.72) 0.08 20.06
Twitter16 470040 87.1 - 2.42(2.85) 0.11 20.26
Cyworld17 12048186 31.7 3.2 - 0.17 20.13
Nioki18 50259 8.07 4.1 2.2(2.4) 0.01 20.10
Wealink11 223482 2.53 - 2.91 - 20.07
YT13 1157827 4.29 5.1 1.63(1.99) 0.14 20.03
Digg19 685719 9.8 5.6 1.6(1.5) - 20.03
G112 30000000 16 6.9 - 0.25 20.02
Tianya25 411554 - - 1.66 0.07 0.03
Orkut13 3072441 106 4.3 1.50(1.50) 0.17 0.07
LJ13 5284457 17 5.6 1.59(1.65) 0.33 0.18
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To further examine the micro-dynamics in the process of link
formation, we measure the probability of forming balance links with
respect to the number of common neighbours between the source
node and the destination node. As shown in Table II and Fig. 1(c), the
probability is (approximately) linearly proportional to the number of
common neighbours. Thus the preferential formation of balance
links can be understood as a two-step random walk in the network.
Here, by carefully examining the four OSNs mentioned above, we
obtain empirical evidence that the preferential formation of triadic
closure, i.e., the formation of balance links, can be one possible
micro-dynamical process leading to the PA phenomenon in OSNs.

Modelling. The above empirical analysis has shown that in the OSNs
studied, user behaviour is essentially influenced by each other within
the neighbourhood, and such an interplay in turn regulates the global
evolution of the network. This suggests that local dynamics plays a
leading role in the formation of new links during evolution. Based on
this finding, in the following we set up a coevolving model, which is
only driven by local interactions at the microscopic level, i.e.,
preferential formation of triadic closures43–45 and influence within
neighbourhood. For simplicity, we neglect the link directions in the
modelling, i.e., we only consider an undirected network.

In order to describe the dynamics of the users, we introduce a state
function w(i, t) for each user in the network. Here i and t denote the
nodes and time, respectively. The values of the state functions
describe the willingness of the users to create links. For each user
in the network, we assume that his state function satisfies the follow-
ing reaction-diffusion-like equation:

w i,tz1ð Þ{w i,tð Þ~w0zm
XN

j

aij kj tz1ð Þ{kj tð Þ
� �

, ð1Þ

where two parameters m and w0 are constants; kj(t) is the degree of
user j at time t. The LHS of the equation is the change of state
function with time, which is driven by two ‘‘forces’’: reaction and
diffusion. The first term on the RHS, i.e., w0, is a source term denoting
the reaction, which means that a user can change his state on his
own. The second term describes the diffusion process, i.e., how the

interplay in the neighbourhood of the user i changes his state func-
tion. Basically, if the neighbours of user i build new links, his state
function will be increased as a result of this influence. We set a
threshold H for the state function of each user. If the state function
exceeds the threshold, the user will be activated, and has a probability
F(ki) to actively create a new link. Once a user has built a new link or
his state function has exceeded the threshold, his state w(i, t) is reset
to zero at the next time step. Essentially, the model simulates the user
logins and activities in the OSNs in terms of the state functions.

As shown in Fig. 1(b), users with more friends, i.e., with larger
degrees, turn out to be more active in generating new links. To
characterize the diversity of users’ activities, we adopt a general
Fermi function, which has been extensively used in evolutionary
games models as the adaptive acceptance probability for each acti-
vated user45,46:

F kið Þ~
1

1z20e{0:001 ki{ kh ið Þ : ð2Þ

Here ki is the degree of user i, Ækæ 5 2(m 1 1) is determined by the
parameter m in the model, representing the average degree of the
whole network, and 0.001 denotes the intensity of selection. F(ki)
monotonically saturates to 1 with the increase of ki, modulating the
acceptance probability of nodes with different degrees. The para-
meter values (20 and 0.001) do not affect the qualitative behaviour
of the model. In this paper, we choose the parameter values to allow
the assortative coefficient vary in a relatively wide range. We
emphasize that the acceptance probability F(k) may take other forms
as long as it has similar behavior as the Fermi function.

Specifically, the algorithm to realize the model works as follows:
(1) At the very beginning, the initial network consists of a few users
(N0), forming a small connected random network. The state func-
tions of users in the network evolve according to Eq. (1). (2) Adding
users: at every time step, one new user is added to the network and
randomly connects to an existing user. (3) Adding links: at each time
step, m users are randomly selected from the activated users with the
acceptance probability F(ki) (Eq. (2)), and each connects to one of his
second neighbours if they are not connected. If the number of acti-
vated users is less than m, the remaining users are randomly chosen

Table II | Exponents a for empirical networks, characterizing the dependence of balance links and distant links (in the parentheses) on the
degree and the number of common neighbours, i.e., k(x) , xa11. Here aA for PA, aC for preferential creation, and aN for common
neighbours. For comparison, exponents a for balance links in the model networks are also listed in the brackets

Exponents Flickr FF aNobii Epinions

aA 1.0 (0.48)[0.98] 0.97 (0.5)[0.99] 1.13 (0.70)[0.96] 1.22 (0.84)[0.97]
aC 1.0 (0.5)[1.19] 0.9 (0.55)[0.96] 1.11 (0.73)[0.94] 1.13 (0.56)[1.11]
aN 0.9 [1.14] 1.12 [1.13] 1.0 [0.95] 0.95 [1.13]

Figure 1 | The influence of the current topological status on the formation of balance links and distant links in the aNobii and FF (in the insets)
networks. (a) The cumulative functions of the relative probability kin(kin) for PA versus the in-degree of the destination nodes; (b) kout(kout) for

preferential creation versus the out-degree of the source nodes; (c) The cumulative functions of the relative probability k(u) for a pair of users to build a

social link given that they have already shared u common neighbours for all balance links. The exponents are obtained by fitting the curves of k(k)

averaged over different initial snapshots. The straight lines are guide to the eye throughout this paper.

www.nature.com/scientificreports
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from the network. The above procedure is schematically illustrated in
Fig. 2, where the states and the topology coevolve for one step driven
by the local dynamics. As shown in Figs. 2(d)–2(f), with the increase
of k, the period of the state w(i, t) for a user could become smaller,
indicating that the users with larger degrees are more frequently
activated.

Verifications. In our model, although we consider only simple local
rules as the force driving network evolution, numerical experiments
have shown that the model can exhibit the main properties observed
in empirical OSNs, such as the large clustering coefficient, small aver-
age shortest path, and the power-law distributions of degrees, etc. In
order to verify our model, we first compare the degree distributions
of the model network with that of the empirical networks in Fig. 3. It
is found that the distributions are qualitatively consistent with each
other under appropriate parameters. In empirical networks, the
probability to build a new link depends on the existing degrees, as
shown in Fig. 1 and Table II. To compare the dynamics of our model
with that of the empirical networks, we also applied the same analysis
to the model under the same parameters of Fig. 3 and summarized
the results in Table II (in the brackets). It is seen that the charac-
teristic exponents a are qualitatively consistent with the empirical
ones.

We now focus on the two major properties of the model network:
the power-law exponent c and the assortative coefficient r. First, we

investigate how the exponent c varies with respect to the model
parameter m. In this work, the best power-law exponents c are cal-
culated using the maximum likelihood method47. As shown in Fig. 4
(a), for small parameter m, the distribution of degrees follows a
stretched power law with the exponents c larger than 2; while for
large m, the exponent c turns out to be smaller than 2. As we know,
many real world OSNs are characterized by c , 2. The present model
can produce this important feature in flexible parameter regimes. In
Fig. 4 (a), we show the degree distributions for different network
sizes. It is found that they are almost the same, indicating that the
statistical properties of the model network are stable after long time
evolution. We further find that, as parameter m increases, the expo-
nents c go down across 2, as shown in Figs. 4(b) and 4(c), indicating
that the generated network makes a transition from a sparse scale-
free network to a dense network24. To justify the power law fitting, we
compute the p-value for the power law model, which measures how
good the power law fitting is suitable for the data47. As shown in the
insets of Figs. 4(b) and 4(c), the p-values are generally larger than
0.25 and the averages are 0.60 and 0.63, respectively, indicating the
power law model is a plausible fit to the data.

We then investigate the assortative coefficient r in the model21.
Since the links in the model are undirected, the assortative coefficient
r is defined as the correlation between degrees of pairwise nodes. As
shown in Figs. 5(a) and 5(b), with the increase of parameter m,
r changes from positive to negative, indicating that the model

Figure 2 | Schematic illustration of the coevolution of both topology (a–c), and dynamical states (d–f) in the model. The numeric tags are the values of

the state functions. (a) The network at time t, when some users (solid) are activated according to their states. (b) One step updating of the network

topology: New user U16 joins and randomly connects to user U11; Some activated users connect to their second neighbours according to the acceptance

probability F(k), e.g., U2 to U13 and U12 to U3. The arrows represent the diffusion process. (c) At time t 1 1, the states of users are updated according to

equation (1). The states of activated users (U9 and U10) and those users building new links (U2, U13, U3, U14, U11, U16) at time t are reset to 0, but some

nodes are activated again according to their states at time t 1 1. (d)–(f) Illustrating the evolution of the degree and the state function for a specific user

during certain time period in the model. (d) Evolution of the degree k(t). (e) The activities of the user. The solid lines indicate the moments when the user

initially increases his social degree (e.g., U2 to U13 in (b)), and the dotted lines represent the moments when the user passively increases his social degree

(e.g., U3 was connected by U12 in (b)), respectively. (f) Evolution of the state function w(t). Parameters for the model: m 5 10, m 5 1, w0 5 0.1, H 5 100.

www.nature.com/scientificreports
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networks convert from being assortative to being disassortative.
There are two important points to emphasize. First, as shown in
Fig. 5(a), the change of the sign of r occurs at larger m as parameter
w0 increases. Second, as shown in Fig. 5 (b), the value of H has
significant influence on r.

In the above, we have shown that r in the model could convert
from positive to negative when parameter varies. As reported in Refs.
11, 12, some OSNs convert from being assortative to being disassor-
tative during evolution. How does r in the model behave with the
increase of time in our model? First we note that the final network
size N is proportional to the total evolution time. As shown in
Fig. 5(c), the coefficients r become almost stationary when the model
evolves for sufficiently long time. In particular, in certain parameter
regimes, the generated networks evolve from the initial assortativity
to the subsequent disassortativity with the increase of time.
Therefore, the current model can characterize the distinct dynamical
stages observed in the OSNs such as Weaklink and Google111,12.

The assortative to disassortative change in our model can be heur-
istically understood based on Eq. (1). Basically, it is the result of the
competition between two factors in our model: the reaction factor
denoted by parameter w0, and the diffusion factor denoted by

parameter m. Parameter m is important because it controls the dif-
fusion and thus can change the ratio of these two factors. When m is
small, i.e., the number of new links formed at each time step is small,
the local influence is weak due to the small average degree, i.e., Ækæ 5

2(m 1 1). In this case, the factor of reaction is relatively more
important, and the user’s own motive plays a dominant role in the
evolution of the state function. Consequently, the activation prob-
ability of a user is almost independent of the degree. Users thus have
almost equal chance to be activated and connect to others, leading to
the assortative mixing pattern. This may correspond to the situations
in some OSNs where users tend to establish links with people they
know in real life, resulting in assortativity in the acquaintance net-
work during the initial stage. On the other hand, when m is large,
according to Eq. (1), the local influence, i.e., the diffusion, then plays
a dominant role in the evolution of state function. In this case, users
with larger degrees have more chance to be activated and connect to
others, leading to the disassortative mixing pattern. In real situations,
this may correspond to certain OSNs where the celebrities attract
their fans to connect to them.

To further illustrate how parameter m regulates the assortative
mixing pattern in the model network, we calculate the average

Figure 3 | Comparing the degree distributions of the empirical networks with that of the model network. Since the model network is undirected, we

ignored the direction of links in the empirical networks for comparison. (a) Flickr, where the parameters of the model are m 5 25, N 5 500, 000,

m 5 1, w0 5 0.01, H 5 100. (b) FriendFeed, where the parameters of the model are m 5 8, N 5 200, 000, m 5 1, w0 5 0.02, H 5 200. (c) aNobii, where

the parameters of the model are m 5 7, N 5 100, 000, m 5 1, w0 5 0.02, H 5 180. (d) Epinions, where the parameters of the model are m 5 25,

N 5 100, 000, m 5 1, w0 5 0.01, H 5 100.

Figure 4 | Transition from sparse to dense in the model network. (a) Degree distribution for m 5 3 and m 5 25 with different size N. (b)–(c) Power law

exponents c with respect to parameter m for different values of w0 (b), and for different values of H (c). The insets are the p-values from the maximum

likelihood method. If not specified, the parameters in our simulations are N 5 500, 000, m 5 1, w0 5 0.1, H 5 100 throughout the paper. Results

are averaged over 10 realizations.

www.nature.com/scientificreports
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nearest neighbours’ degree knn(k) in the generated networks23. As
shown in Fig. 6, it is seen that knn(k) increases with respect to degree
k for small m, corresponding to positive assortativity in model net-
works. This is consistent with the situation in acquaintance net-
works23. However, for larger m, knn(k) increases first, and then
decreases when the degree is large enough, corresponding to neutral
and negative assortativity, as in some real OSNs12,13,19. Similarly, the
above analysis can also explain the results shown in Fig. 5(a), where a
larger m is required for the transition of r when w0 increases. Since w0

represents the reaction factor, to overcome the outcome of increasing
w0 in the model, the diffusion factor needs to increase too. As a result
of this competition, we observe that the transition occurs at a larger
value of m.

In the evolution of real OSNs, generally the average degree
increases with time12,48. This roughly corresponds to the increase of
m in the present model due to Ækæ 5 2(m 1 1). As shown by our
model in Fig. 5(c), this will cause the diffusion factor gradually to be
dominant, and the network may convert from being assortative to
being disassortative with the increase of time. Similarly, the decrease
of parameter H is equivalent to the increase of parameter m, and the
behaviour of the model in Fig. 5(c) can also be explained from the
viewpoint of competition between reaction and diffusion factors.

To support our argument above, we apply empirical analysis to the
aNobii network. Specifically, we regard it as a hybrid of a real world
social network and a virtual online network. The former subnetwork
consists of the acquaintance links connecting users knowing each
other in real life, e.g., their family members and friends, such as
‘‘Acquaintances’’ in Google1 and ‘‘Friendship’’ in aNobii; and the

latter comprises the stranger links connecting their online virtual
friends, such as ‘‘Following’’ in Google1 and ‘‘Neighbourhood’’ in
aNobii. In terms of the reaction-diffusion process, the generation of
these two types of links is mainly due to the reaction factor (i.e., user’s
personal desire) and the diffusion factor (i.e., the local influence)
respectively. Interestingly, we find that the subnetwork consisting
of the acquaintance links is assortative with r 5 0.06, like real world
social networks. On the contrary, the subnetwork consisting of the
stranger links is disassortative with r 5 20.09. As shown in Fig. 7, the
relative probabilities forming stranger links are significantly larger
than that forming acquaintance links, implying that the diffusion
factor is dominant in aNobii. As a result, the aNobii network as a
whole turns out to be disassortative with r 5 20.05. The above
results provide empirical evidence that the competition between dif-
fusion and reaction might determine the mixing pattern of degrees in
an OSN. Reasonably, during the evolution of the OSNs, if the dif-
fusion factor dominates over the reaction factor, a transition from
assortativity to disassortativity could be expected as in Weaklink11

and Google112.

Discussion
In this work, based on some empirical analysis of four typical OSNs,
we set up a reaction-diffusion-like model, in which the evolution of
the network is governed by both the users’ personal motives and the
influence within neighbourhood. As a natural consequence of the
coevolution of dynamics and topology, the model is able to qualita-
tively reproduce the major properties observed in real world OSNs.
In particular, the generated networks can convert from being sparse
to dense, and from being assortative to dissassortative with appro-
priate parameters. The model provides explanations of these two
important features in real world OSNs in terms of the competition
between reaction and diffusion factors in network evolution.

We believe that the current work is enlightening in modeling the
evolution of the OSNs as well as of other real world networks. For
example, other mechanisms of link formation, such as collective
action and the structural hole mechanism, etc40, can be readily for-
mulated and investigated. The idea of the model might be applicable
to a wide range of social networks, and can be easily generalized to
treat multi-layer networks, weighted networks, and social-attribute
networks, etc. For example, recently, we have carried out a modeling
for Flickr, with a typical dual-component and dual-connection OSN,
and obtained satisfactory results33.

Methods
Data description and notations. Flickr is one of the most famous websites sharing
photos. The data set for our study is collected by daily crawling the Flickr network
over 2.3 million users from Nov 2, 2006 to Dec 3, 2006, and again daily from Feb 3,
2007 to May 18, 2007. In total, there are 104 days in the time window of data
collection34,35 (http://socialnetworks.mpisws.org/). There are more than 2.3 million
users and 33 million directed links among them. FriendFeed (FF) is a content
aggregation site where users discover and discuss the interesting contents found on

Figure 5 | Transition from assortativity to disassortativity in the model. (a)–(b) The assortative coefficient r with respect to the parameters m for

different values of w0 (a), and for different values of H (b). The coefficients r are calculated at the final stage in the model when N 5 500, 000. (c) The

temporal evolution of the assortative coefficient r(N) for different m at H 5 100, and for different values of H at m 5 9. The error bar is the standard

deviation.

Figure 6 | Characterizing the average nearest neighbours’ degree knn(k)
for different values of the parameter m. The corresponding assortative

coefficients are 0.21, 0.15, 0.12, 0.09, 0.07, 0.007, 20.10, 20.23, and 20.41

for increasing m, respectively.
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the web by their friends. The data set is collected by crawling the FriendFeed network
once within every five days between Feb 26 and May 6, 200936,37. There are 14
snapshots or 70 days in the time window. More than 200 thousand users were found
and about 4 million directed links among them were identified. ANobii is a website
where readers can rate, review and discuss books with others. The data set is collected
by crawling the neighbourhood (stranger in real life) and friendship (acquaintance in
real life) networks of aNobii. Six snapshots of the network, 15 days apart, are collected
starting from Sep 11, 200938. Users connect to each other through two mutually-
exclusive types of ties: friendship and neighbourhood links. At last, the aNobii
network includes 86,800 users, 429,482 stranger links and 268,655 acquaintance links.
Epinions is a consumer review website where users can write reviews of products and
also ‘‘trust’’ or ‘‘distrust’’ each other. The data set contains the trusted relationships
among users before Aug 12, 200339 (http://www.trustlet.org/wiki/Extended_
Epinions_dataset), including 114,467 users and 717,667 trusted relations.
Mathematically, we can use the adjacency matrix AN3N to characterize the topology
of the online social networks, where aij 5 1 if user i declares user j as friend, otherwise
0. Since the links among users are directional in these four networks, we accordingly
define two types of degrees: the out-degree kout ið Þ~

X
j
aij , i.e., the number of

friends claimed by user i, and the in-degree kin jð Þ~
X

i
aij , i.e., the number of users

who claim user j as friend. The statistical properties of these four data sets are listed in
Table I.

Measuring preferential attachment. In Refs. 41, 42, a numerical method is used to
measure the preferential attachment (PA) growth of a network. Given that we know
the temporal order in which the nodes join the network, the essential idea of the
method is to monitor to which existing node the new nodes connect, as a function of
the degree of the old node. We take an example to briefly explain the method as
follows: (1) At time t0, we mark the nodes with kout out-degree as ‘‘t0 nodes’’, denoting
their number as C(kout). (2) After the evolution of a period Dt, the out-degrees of the
‘‘t0 nodes’’ have increased due to the evolution of the network (of course, the in-
degrees also change). We count the out-degree created by the ‘‘t0 nodes’’ as A(kout).
Since we divide the newly generated links into two types, i.e., the balance and the
distant, we have A(kout) 5 AB(kout) 1 AD(kout), where the subscripts B and D denote
the two types, respectively. (3) The histogram providing the number of out-degree
acquired by the ‘‘t0 nodes’’ with exact kout out-degree, after normalization, defines a
function:

Pout
i koutð Þ~Ai koutð Þ

C koutð Þ

,X
k0out

A k0out

� �
C k0outð Þ , ð3Þ

where, i can be either B or D. It has been proven that if PA mechanism exists, the
conditional probability with which the out-degree grows with respect to the existing
out-degree follows a power law, namely Pout

i koutð Þ!ka
out . Numerically, it is

convenient to examine the cumulative function of Pout
i koutð Þ, which will also follow a

power law, i.e.,

kout
i koutð Þ~

ðkout

0
Pout

i k0out

� �
dk0out!kaz1

out : ð4Þ

Similarly, the above numerical method can be applied to the calculation of the
probability for acquiring new links with respect to in-degrees kin, and the treatment of
the acquaintance and stranger links is straightforward.
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