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Coherent destruction of tunneling (CDT) has been one seminal result of quantum dynamics control.
Traditionally, CDT is understood as destructive interference between two intermediate transition paths
near the level crossing. CDT near the level anti-crossings, especially the ‘‘locking’’, has not been thoroughly
explored so far. Taking chaotic microcavity as an example, here we study the inhibition of the tunneling via
the strong couplings of three resonances. While the tunneling rate is only slightly affected by each strong
coupling between two modes, the destructive interference between two strong couplings can dramatically
improve the inhibition of the tunneling. A ‘‘locking’’ point, where dynamical tunneling is completely
suppressed, has even been observed. We believe our finding will shed light on researches on micro- &
nano-photonics.

T
he coherent control of quantum dynamics has attracted considerable research attentions due to their
important applications in nano-scale solid state physics1, trapped atoms in Bose-Einstein condensation2,
localized spins in molecular magnets3, and Copper pairs in Josephon qubits4. Within all these studies, CDT

has been one of the remarkable results. In 1991, Grossmann et al. theoretically predicted the suppression and even
complete suppression of the tunneling for the first time5. The latter case is also known as ‘‘locking’’. Soon after,
CDT has been experimentally observed in several experiments involving cold atoms in double-well potentials6

and Mott-superfluid transition in ultracold systems7. To date, CDT has been widely applied in a variety of
research areas in solid state physics.

The conventional understanding of the CDT lies in the destructive interference between the transition paths for
repeated Landau-Zener level crossings5,8–10. Very recently, with the developing of cavity quantum electrody-
namics (cQED) in superconductor circuits11,12, CDT has also been predicted for the case with ultrastrong coupling
and extreme driving13. However, the CDT, especially the ‘‘locking’’ that is formed by strong coupling with
moderate coupling strength, has not been thoroughly studied. Such kind of study is highly in demand and closely
relates to many research areas such as modulating the emissions of semiconductor microcavity and the coupling
in plasmonics. The former one will be discussed below. One example of the latter one is the local field enhance-
ment in photonic dimer, where strong coupling with moderate coupling strength usually happens14. In general,
the field enhancement of photonic dimer increases dramatically with the decreasing of separation distance w.
Recent developments show that such enhancement has a quantum limit due to tunneling effect when the
separation distance is below a critical value w , wc

14. Therefore, suppressing or inhibiting such quantum
tunneling can be a necessary way to further improve the local field enhancement and will boost the whole
research direction. Below, we will take chaotic cavities as examples to discuss the possibility to inhibit the
tunneling around anti-crossings with moderate coupling strength.

Results
The physical model for mode coupling. Before moving to the real system, we would like to briefly introduce a
simple model of avoided resonance crossings. Quantum mechanically, when two states approach each other, their
interaction can be descried by a 2 3 2 matrix15,16
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where Ei is the energy of state whose imaginary part determines the
lifetime of quasibound state (t 5 1/jIm(Ei)j), and VW is the coupling
constant. The eigenvalues of Eq. (1) can be written as
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Depending on the coupling strength VW, two scenarios can be
identified. One is weak coupling with level crossing in Re(E). The
other one is strong coupling with level anticrossing in Re(E). From
Eq. (2), it is easy to get that the lifetime of quasibound state can be
influenced by the complex valued VW (external coupling) in both
scenarios16–18. Below we will focus on the strong coupling with
moderate coupling strength. One example with VW 5 0.001 1

0.001118i is shown as open symbols in Fig. 1(a) and (b). Around
the anti-crossings in Re(E), the maximum of Im(E) in Fig. 1(b) is only
slightly larger than Im(E1), giving a small enhancement factor in
lifetime only about 2. Suppressing Im(Ei) to 0 is do possible but
requires larger coupling constant that is hard to be fulfilled in
practical applications. For a given moderate coupling strength,
finding a new method that improves the suppression of Im(E)
turns to be very essential.

For most of complex systems, there are usually more than two
states in an interesting energy range. Then one state has the possibil-
ity to interact with multiple states at different energies, and these
mode couplings have the possibility to interact with each other via
interference. Such interference gives a new method to tailor Im(Ei).
For simplicity, we only consider a three-state model as schematically

illustrated in the inset of Fig. 1(c), where state-1 couples to state-2
and state-3 individually. The coupling between states -2 and -3 is
neglected by assuming two states are well separated in frequency.
Then the interactions within three states in open systems can be
understood in term of a 3 3 3 non-Hermitian Hamiltonian

H~
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V1 E2 0

V2 0 E3
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B@
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where Ei is the complex energies of states 1–3, V1W1 and V2W2 are
the coupling constants between states 1,2 and states 1,3, respectively.
Then the eigenvalues of Eq. (3) can be simply calculated.

When the separation distance d is much larger thanX ffiffiffiffiffiffiffiffiffiffiffi
ViWi
p
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16, the three-state model

can be simplified into two two-state models with
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. Taking V1W1 5 0.001

1 0.001118i and V2W2 5 0.001 2 0.001118i as an example, the
behaviors of the eigenvalues of Eq. (3) with d 5 1.75 can be barely
resembled by two 2 3 2 matrices. The enhancement in lifetime
(defined as max(Im(E1)/Im(Ei))) by the 3 3 3 matrix is also around
2. This value is similar to the effect of individual strong coupling and
indicates the weak interaction between two strong couplings at larger
separation distance.

Once the separation parameter d is small enough, e.g. d 5 0.225,
the behaviors of the three-state model becomes quite different. In
additional to the anti-crossings in real parts (see Fig. 1(c)), the ima-
ginary part of state-2 has been dramatically increased to , 0 around
D 5 d/2. The corresponding lifetime enhancement factor is more
than 104. The inset in Fig. 1(d) summarizes the influence of d on the

Figure 1 | The real (a) and imaginary (b) parts of the eigenvalues of Eq. (3) as a function of D. Here V1W1 5 0.001 1 0.001118i, V2W2 5 0.001 2
0.001118i, E1 5 D 2 0.01i, E2 5 20.05i, E3 5 E2 1 d 5 d 2 0.05i, and d 5 1.75. The symbols aroundD5 0 andD5 1.75 are the eigenvalues of two-state

model in Eq. (1) with VW 5 0.001 1 0.001118i and 0.001 2 0.001118i, respectively. For clear view, the anti-crossing of two state model around D 5 0 is

plotted as inset in Fig. 1(a). (c) and (d) are the same as (a) and (b) except for d 5 0.225. Inset in (c)is the schematic picture of three states without coupling.

And the inset in (d) summarizes the dependence of enhancement in lifetime on the separation distance d. Here we set d $ 0.2, which is 2 times larger than

| Im(E2) | 1 | Im(E3) | and makes states -2 and -3 to be well separated in frequency.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4858 | DOI: 10.1038/srep04858 2



enhancement factor, where the enhancement in lifetime can be
improved by several orders of magnitude (with Im(E) R 0).
Therefore, we know that the interaction between strong couplings
can dramatically amplify their influences on lifetime although the
individual effect of strong coupling is weak.

CDT in chaotic microcavity. We then test our analysis with optical
microcavities, whose resonances and frequencies play the roles of
states and their energies in quantum systems17,20–23. Chaotic cavi-
ties are selected here due to their mixed phase space struc-
tures17,18,20–24. When the cavity shapes are not largely deformed,
there are usually several regular states such as stable islands that
are surrounded by the chaotic sea. The leakages of long-lived
resonances within these regular states consist of direct tunneling
and dynamical tunneling, which is also known as chaotic assisted
tunneling (CAT). By comparing the computed Q factors and the
estimations of direct tunneling and CAT, the latter has been
pointed out to be the main channel to dominate the decay of chao-
tic microcavities25,26. In 2010, Shinohara et al have experimentally
verified such dominance24 by measuring the far field laser emissions
along the unstable manifolds27,28. All these researches give very clear
relationship between Q factors and tunneling rate19. The changes in
tunneling rate closely relate to the leakages and thus can be
monitored by Q factors. Therefore, chaotic microcavities can be
nice platforms to test and apply Eq. (3) in tunneling problems.

The cavity shape studied in this letter is schematically shown in
Fig. 2(a). It is a well-known oval shape24, which is defined in polar
coordinates as r(w) 5 R(1 1 e1cos2w 1 e2cos4w 1 e3cos6w), where R
and ei are the size and deformation parameters. Below, without spe-
cific explanation, all the deformation parameters are e1 5 0.1, e2 5

0.01, e3 5 0.011. The ray dynamics within such cavity has been
thoroughly studied before and only a period-4 stable islands remains
above the critical line18,24. Due to the wave-ray correspondence, the
long-lived resonances along stable islands are the rectangle modes as
schematically shown in Fig. 2(a)24,25.

We then numerically calculated the transverse electric polarized
(TE, E is in plane) resonances in the cavity by using the finite element
method29. Here we set the refractive index n 5 3.4. The calculated
results are shown as open squares in Fig. 2(b). Within a wide range of
kR, we can find a set of long-lived resonances with equal mode
spacing. Most of the quality (Q, Q , vt, where v is angular fre-
quency) factors are around the 105–107. Only the resonance at kR ,
59.16 have extremely high Q factors more than 109, which is orders of
magnitude higher than the others. While the dynamical tunneling
can vary with the nkR, such a difference is still surprisingly high.

From the field patterns, we know that the mode at kR , 59.16 and
the other high Q resonances in Fig. 2(b) are confined along the same
rectangle orbit (see an example in Fig. 2(a)), which corresponds to
the period-4 stable island above the critical line18,24. Then the emis-
sions of such long-lived resonances are supposed to be similar too.
According to previous researches24, two types of decay channels
relate to the rectangle modes along stable islands. One is the direct
tunneling to critical line and the other one is the CAT24. Due to the
small tunneling distance between stable islands and the surrounding
chaotic sea, the main leakage is dominated by the CAT. Then the
outputs of such high Q modes are supposed to follow the refractive
escapes along the same set of unstable manifolds24,27 and form bi-
directional emissions along wFF 5 690u18,24.

To qualitatively characterize the directional outputs (relates to the

CAT), we define a measure U~

Ð
I wFFð Þcos4wFFdwFFÐ

I wFFð ÞdwFF
. The results

are plotted as open circles in Fig. 2(b) too. We can see that most of the
long-lived resonances have positive U, which relates the emissions
along the wFF 5 690u (see an example in Fig. 2(d)) and is consistent
with the prediction of universal emissions24. Again, the drastic
change is found at kR , 59.16. The U factor of the resonance with
extremely high Q dramatically reduces to negative value , 20.33.
The corresponding far field pattern in Fig. 3(a) shows that it mainly
consists of four emission peaks wFF 5 645u, 135u. The conventional

Figure 2 | (a) The schematic picture of the oval shaped microcavity. The solid and dashed arrows correspond to the refractive escape along unstable

manifolds and the evanescent tunneling along the tangential lines24, respectively. (b) The Q factor (open squares) and directionality U (open circles) as a

function of kR. (c) and (d) are the Husimi map and far field pattern of the resonance at kR , 58.13.
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bi-directional emissions along wFF 5 690u have been nearly com-
pletely suppressed.

Discussion
The coincident changes in Q factors and far field patterns at kR ,
59.16 are similar to the ‘‘locking’’ effect near level crossings, which is
the complete suppression of tunneling in CDT18. For the long-lived
resonances within stable islands, the direct tunneling will dominate
the decay channel if the CAT is suppressed significantly. Due to the
larger barriers of direct tunneling, the light confinement (and Q
factors) will be dramatically improved as Fig. 2(b). Most importantly,
the far field emissions generated by the direct tunneling should fol-
low the evanescent escape along the tangential lines. As the dashed
lines depicted in Fig. 2(a), such evanescent escapes give four dir-
ectional outputs along wFF 5 645u, 135u, agreeing Fig. 3(a) very well.

The above picture can be further confirmed by the Husimi map,
which is a projection of wave functions on the cavity boundary into
the phase space by using the Husimi Functions30,31. The Husimi maps
give more detail information of resonances in terms of incident angle
and positions, which correspond to the vertical and horizontal axes,
respectively. For most of the resonances, we can see that their main
field distributions are localized in the period-4 stable islands and
their emissions along the unstable manifolds reach the critical line
at w 5 0, p (see the marker I, II in Fig. 2(c) as an example). All these
results are consistent with the rectangle orbit (Fig. 2(a)) and emis-
sions along wFF 5 690u very well (see Fig. 2(d)). However, the
Husimi projection of the mode at kR , 59.16 gives quite different
results (Fig. 3(b)). While the resonance is still confined within the
period-4 islands, its leakages below the critical line are significantly
different from Fig. 2(c). Four peaks in Husimi map (marked by the
vertical arrows) can be observed right below the stable islands and the
emissions at w 5 0, and w 5 p (along the unstable manifolds) in
Fig. 2(c) are suppressed to almost zero. Such changes in Husimi maps
below the critical lines match the far field patterns well and clearly
demonstrate the transition from CAT to direct tunneling. As the
CAT is usually orders of magnitude larger than direct tunneling25,26,
we thus can conclude that the dynamical tunneling (or CAT) is
nearly completely suppressed, similar to the locking in CDT.

Now the intriguing question is how the locking is formed. Besides
the light confinement along the rectangle orbit, the field pattern of
mode at kR , 59.16 also shows additional distributions along the
cavity boundary (see inset in Fig. 4(b)). Then an intuitive picture is
that the CAT is fully suppressed by the CDT around level crossing as
Ref. 10, 18. We then study the nearby low Q resonances around the
high Q mode at kR , 59.16 to verify this hypothesis. Two sets of low
Q resonances have been found around the extremely high Q res-
onance. Their field distributions (see inset I and II in Fig. 4(a)) indi-
cate that they are the chaotic modes formed by the wave localizations.
Such chaotic modes have different mode spacing from the rectangle

resonance and approach the rectangle mode individually, indicating
the possibility of mode coupling too.

To get the inside view of mode interactions, we have studied their
resonant frequencies and Q factors as a function of shape deforma-
tion. The results are summarized in Fig. 4 (a) and (b). With the
decreasing of deformation parameter e3 from 0.011 to 0.0106 (the
other parameters are the same as above), we can see that mode-1 and
mode-2 approach each other and then repel at e3 , 0.01085. And
their imaginary parts show an obvious crossing. Meanwhile, we have
observed the exchange in field distribution before and after anti-
crossing point, confirming the occurrence of strong coupling instead
of weak coupling10. Similarly, strong coupling is also observed
between mode-2 and mode-3 at e3 , 0.01115, indicating the pos-
sibility of new mechanism for CDT and ‘‘locking’’.

Prior to the three-state model, we first test the influence of indi-
vidual anti-crossing on CAT. We switch the normalized frequency
from kR 5 59.19 to kR 5 59.49, where mode-1 and mode-2 couple
with each other and mode-3 is separated far away. Figure 4 (c) and
(d) show the dependencies of kR and Q factors on the shape
deformation e3. Distinguishing characteristics of strong coupling
can be observed in Fig. 4(c) and (d). Interestingly, while the changes
of Q factors on the left side of anti-crossing is similar to the inter-
action between mode-1 and mode-2 in Fig. 4(b), their behaviors on
the right side of anti-crossing point (with De3 , 0.0003) are quite
different. The Q factors of long-lived resonances are only slightly
enhanced in Fig. 4(d). The further calculations in far field patterns
also confirm that no locking happens around the anti-crossing. all
these infomration also hold true for the strong coupling between
mode-1 and mode-3. Thus we know that the locking around e3 5

0.011 in Fig. 4(b) should not be attributed to the two-state strong
coupling.

From the combination of highest Q mode and its Husimi pattern
(see Fig. 3(b)), we know that the locking happens at the center
between two anti-crossings, bearing strong similarity with the beha-
viors in Fig. 1(c) and (d). Then the inhibition of chaotic assisted
tunneling becomes understandable after taking the interaction
between two strong couplings. While the tunneling is slightly influ-
enced by two individual strong coupling, the tunneled light along
different chaotic orbits can have interaction at the center of two anti-
crossings due to the spectral overlap. Meanwhile, the universal emis-
sion along the same sets of unstable manifolds24,27 ensures the spatial
overlapping. Thus the relative phases turn to be essential. Once the
leakages along unstable manifolds interfere destructively, the emis-
sion along this decay channel will be suppressed. Then the tunneling
from stable islands to chaotic sea and its reversed process will reach a
balance and the distribution within the chaotic sea is almost frozen
like the locking in CDT. Interestingly, the light cannot be trapped
infinitely inside the open system. Once one decay channel is blocked,
the main leakage will shift from to another one. In oval shaped cavity,
such change is consistent with the transition from bi-directional

Figure 3 | The far field pattern (a) and Husimi map (b) of the resonance at kR , 59.16. Different from the nearby resonance, here the far field pattern

contains four directional beams formed by the direct tunneling.
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emissions (Fig. 2(d)) to four directional emissions (Fig. 3(a))in far
field pattern, giving a new criterion to observe complete suppression
of CAT experimentally24.

It is worth to note the difference between this mechanism and
dynamical localization in optical microcavities32. While both of them
rely on the destructive interference along different paths33, three-
state anti-crossings model can reach the locking point, where the
dynamical tunneling is fully suppressed. Thus the Q factor can be
orders of magnitude higher and the far field emissions are switched.
Moreover, compared with unpredictable multi-paths in dynamical
tunneling, the properties of three resonant modes are all known and
much easier to predict and design.

In summary, we have studied the impacts of anti-crossings on the
CDT. In additional to the conventional CDT around the level cross-
ings in a two-state model, we show that the CDT can also be formed
by the anti-crossings in a three-state model. While the individual
influences of strong couplings on the tunneling are negligible due
to their moderate coupling constant, the interactions between two
strong couplings can significantly suppress the tunneling. In an oval-
shaped microcavity, we show that the dynamical tunneling is full
inhibited by the destructive interference between two strong cou-
plings. Our results are not limited in the research of semiconductor
microcavities, they can also find their applications in the coherent
control of quantum tunneling in other open systems e.g. coherent
population trapping34, non-absorption resonance35, cavity QED11,
and dark states36.

Methods
As the thicknesses of microdisks are much smaller than their in-plane dimensions,
microdisks are usually treated as two-dimensional objects by applying effective
refractive indices n. Then the wave equations for transverse electric (TE, E is in plane)
polarized modes Hz(x, y, t) 5 y(x, y)e2ivt can be replaced by the scalar wave equation

{+2y~n2 x,yð Þv
2

c2
y, ð4Þ

with angular frequency v and speed of light in vacuum c. We numerically computed
the TE polarized resonances by solving above equation with the RF module in
COMSOL Myultiphysics 3.5a. The cavity shape is defined with AutoCAD and
imported to the software. And the Q factor is determined by Q 5 Re(v)/2jIm(v)j.
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