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We have often observed unexpected state transitions of complex systems. We are thus interested in how to
steer a complex system from an unexpected state to a desired state. Here we introduce the concept of
transittability of complex networks, and derive a new sufficient and necessary condition for state
transittability which can be efficiently verified. We define the steering kernel as a minimal set of steering
nodes to which control signals must directly be applied for transition between two specific states of a
network, and propose a graph-theoretic algorithm to identify the steering kernel of a network for transition
between two specific states. We applied our algorithm to 27 real complex networks, finding that sizes of
steering kernels required for transittability are much less than those for complete controllability.
Furthermore, applications to regulatory biomolecular networks not only validated our method but also
identified the steering kernel for their phenotype transitions.

M
any complex systems of scientific interest can be represented as directed networks in which a set of nodes
are connected in pairs by directed edges or arcs1–10. Because of the interactions among nodes in a
network, perturbing some nodes can affect other nodes, which may cause the state transition of a

network. In reality, we have often observed some unexpected state transitions of a complex system (for example,
from a normal sate to an abnormal state)11,12. Here we are interested in how to effectively steer the system from an
unexpected state to a desired state by applying suitable input control signals. The main purpose of this work is to
provide a theoretical framework that addresses such an issue for complex networks, especially, regulatory
biomolecular networks.

A regulatory biomolecular network is orchestrated by the interactions of many molecules in a cell13,14. A living
cell should stay at a normal (at least, healthy) phenotype. However, by some unknown perturbation or stimuli, a
regulatory biomolecular network can be transited from a normal phenotype to a disease phenotype. It thus is
desirable to steer the regulatory network to transit from the abnormal phenotype to a healthy phenotype. To study
the phenotype transitions, a regulatory biomolecular network is represented by a directed network in which
molecules are represented by nodes and the interactions between molecules are represented by arcs2–6,15–17. As a
result, cellular phenotypes can be defined by the network states that represent all the molecular expressions in the
network collectively while a phenotypic change or cellular behavior change can be described as a dynamic
transition between two states of the network, such as a complex disease progression11,12, p53-mediated DNA
damage response network18, T helper cells differentiation19, and epithelial to mesenchymal transition20.

The empirical studies in the cellular reprogramming field have indicated that one phenotype can be transited to
another by overexpressing a few transcription factors21–26 (steering nodes). In the field of the network-based
methodologies for drug designs2,6,17, trial-and-error-based methods according to the researcher’s experiences
have found that a few drug targets are enough to achieve a transition from a disease state to a healthy state for
many complex diseases15,17. For example, acute promyelocytic leukemia (APL), a subtype of acute myeloid
leukemia (AML), has been successfully treated with therapy which utilizes all-trans-retinoic acid (ATRA).
However, among patients with non-APL AML, ATRA-based treatment has not been effective. Based on the
literature and experimental verifications, Schenk et al27 have concluded that ATRA plus tranylcypromine (TCP)

OPEN

SUBJECT AREAS:
INFORMATION
TECHNOLOGY

NETWORK TOPOLOGY

COMPUTATIONAL BIOLOGY AND
BIOINFORMATICS

Received
28 October 2013

Accepted
9 April 2014

Published
28 April 2014

Correspondence and
requests for materials

should be addressed to
F.-X.W. (faw341@

mail.usask.ca) or
L.N.C. (lnchen@sibs.

ac.cn)

SCIENTIFIC REPORTS | 4 : 4819 | DOI: 10.1038/srep04819 1



can effectively treat non-APL AML. From the viewpoint of dynamic
systems control theory, the cellular network in charge of APL AML
cell line can be transited from the abnormal state to a healthy state
through the targets of ATRA while the cellular network in charge of
non-APL AML cell line cannot be transited from the abnormal state
to a healthy state through only the targets of ATRA. However, cur-
rent researches in these fields have little or no control theory involved
although control theory has been successfully applied to study the
state transition of engineering systems.

Although the concept of controllability of dynamic linear sys-
tems28 can be applied to complex networks29, most of their para-
meters are either unknown or known only approximately and are
time dependent7. In addition, even if all the parameters are available,
the determination of controllability is computationally prohibitive
even for moderate-size networks. Nevertheless, Liu, et al7 have
recently applied the concept of structural controllability30–32 to study
the controllability of directed complex networks, and derived the
theoretical result of complete controllability, i.e., the transition
between any two states of a network (rather than two specific states).
According to their result, the minimum number of driver nodes is
80% of nodes in a regulatory biomolecular network in order to have
complete controllability, which seems to contradict some empirical
findings in cellular reprogramming field33. In order to reduce the
number of driver nodes, Nepusz and Vicsek8 have studied the com-
plete controllability of complex networks in terms of edge dynamics
instead of node dynamics. In addition, with a strong assumption that
each driver node can control its outgoing edges independently7–9,
Nacher and Akutsu have studied the complete controllability of
bipartite networks9. In fact, a phenotype can be considered as a
high-dimensional attractor of the complex network34. The transition
between two specific phenotypes (rather than any two phenotypes)
stems from the change of states of some (not all) nodes in a subspace
of the full state space35. In addition, complete controllability often
requires more steering nodes and affects the full state space in the
network (Figure 1b). Therefore, it is asking for too much to have
complete controllability in studying the transition between two spe-
cific states.

Differently from complete controllability between any two states,
here we aim to develop a theoretic framework for studying transi-
tions between two specific states of directed complex networks by
introducing a new concept of transittability, and further apply our
theoretical results for identifying the steering kernels of 27 real com-
plex networks and 4 biomolecular networks. Here, ‘‘real complex
networks’’ mean that the networks are constructed based on math-
ematical models of real systems. Specifically, we first define the con-
cepts of transittability of a complex directed network and develop a
new sufficient and necessary condition for transittability under
which a specific structural state of a complex network can be trans-
ited to another. Our new condition can be efficiently verified by a
graph-theoretic algorithm. We call a node on which an input control
signal is directly acted as a steering node. We then define the steering
kernel as a minimal set of steering nodes to steer the network to
transit from one state to another. Here we stress that the steering
kernel is different from the minimum set of driver nodes in the
paper7. As illustrated in Supplementary Information I, we show that
a network cannot be guaranteed to transit from one specific state to
any other state by acting only on the minimum set of driver nodes
identified by the minimum input theorem7, whereas the steering
kernel defined in this work can ensure such a transition. Further-
more, we develop a graph-theoretic algorithm to identify the steering
kernel for transition between two specific states. We apply our algo-
rithm to 27 real complex networks, finding that the minimum num-
bers of steering nodes required for transittability are much less than
those for complete controllability. In addition, we also apply our
algorithms to several real biomolecular networks, finding that not
only is the number of the identified steering nodes for cellular

phenotype transitions small, but also the identified steering nodes
are consistent with empirical findings in the literature.

Results
Transittability. Although most complex dynamic systems are non-
linear, the controllability of nonlinear systems is in many aspects
structurally similar to that of linear systems7,36,37. Actually, to ultima-
tely develop the control strategies for complex nonlinear networks, a
necessary and fundamental step is to investigate the controllability
(especially structural controllability) of complex networks with
linear dynamics. In this study, we thus consider the linear time-
invariant nodal dynamics of a complex network with n nodes,
where the activity of node i, xi(t), can be described by the following
equations

_xi(t)~
Xn

j~1

aijxj(t)zsiui(t) for i~1,2, . . . ,n ð1Þ

where aij ? 0 if node j directly affects node i, that is, there is an arc
from node j to node i in the network, and otherwise aij 5 0. si 5 1 if
input control signal ui(t) directly acts on node i and otherwise si 5 0.
In this study, we are interested not in the complete controllability7,
but in the transittability of the system (1), which concerns the
transition between two specific states by a suitable choice of input
control signals (Figure 1c). Formally, the system (1) is said to be
transittable between two given specific states x0 and x1 if it can be
transited between x0 and x1 in finite time tf by proper input control
signals u(t) (t[½0,tf �). Note that the system (1) is transittable between
any two states by simply acting one independent input control signal
on each of n nodes. That is, all nodes are steering nodes, then we have

si 5 1 for i 5 1,2,…,n and thus
Xn

i~1

si~n. However in this study we

are interested in finding the minimum set of steering nodes (called
steering kernel) to achieve the state transition between two specific

states, in other worlds, minimizing
Xn

i~1

si while the system (1) is

transittable between two given specific states x0 and x1.
The system (1) can be rewritten in the vector-matrix format as

follows

_x(t)~Ax(t)zBu(t) ð2Þ

where the n-dimensional vector x(t) 5 (x1(t), …, xn(t))T represents
the state of the network with n nodes at time t. The n 3 n matrix A 5

(aij) describes the interaction relationship and strength between
nodes. The n 3 p matrix B is called the input control matrix that
corresponds to the steering nodes. The p-dimensional vector u(t) 5

(u1(t), …, up(t))T represents the input control signals. As in many
situations10,21–26, one controller cannot produce multiple independ-
ent input control signals. Here we assume that one controller can
produce only one independent input control signal. Therefore, all
elements in the j-th column of matrix B are all zeroes except for the s-
th element if the j-th input control signal directly acts on node s. Our
theoretical result (Supplementary Information Section II) shows that
the system (2) is transittable between states x0 and x1 if and only if
there exists a positive number tf such that

eAtf x0{x1[span(C) ð3Þ

C~½B,AB,:::,An{1B� ð4Þ

where span(C) represents the subspace spanned by the column vec-
tors of matrix C and is called the controllable subspace. Now finding
the steering kernel to steer the system (2) from state x0 to x1 can be
formulated as a problem to find the matrix B with the minimum
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Figure 1 | Illustration of network transittability. (a) Considering the transittability of the network between two specific states x0 and x1 as shown here and

finding the steering kernel for such a state transition. Nodes with the same color at two states (e.g., v4, v5, v6) indicates that they are unchanged while nodes

with different colors (e.g., v2, v1, v3) indicates that they are unchanged at two states. ‘‘*’’ in the structure matrix A of the network represents the free

parameters while ‘‘0’’ represents the fixed parameters. ‘‘*’’ in two states x0 and x1 represents the value of corresponding nodes different while ‘‘0’’

represents the value of corresponding nodes indifferent at two states. (b) From the concept of complete controllability, two input control signals should be

directly applied to two steering nodes v6 and v5 to transit the network between any two states, including two specific states x0 and x1. One can see that (1)

more steering nodes than necessary are needed and (2) the full state space with six dimensions is affected for such a state transition, which may cause side

effects. (c) From our new concept of transittability and new theorems, only one steering node v3 is needed for the transition between two specific states x0

and x1. (d) This is the traditional sufficient and necessary condition for transittability of two specific states x0 and x1 which is actually intractable. (e) Using

our new sufficient and necessary condition for transittability of two specific states x0 and x1, we can identify the steering kernel by solving an optimal

assignment of weighted bipartite graphs via an efficient graph-theoretic algorithm.
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number of columns such that condition (3) is true. However, the
calculation of either eAtf is complicated and condition (3) is compu-
tationally intractable (Figure 1d). Next, we state our first key result,
i.e., we prove (see Supplementary Information Section II) that the
system (2) is transittable between two specific states x0 and x1 with
either belonging to span(C) if and only if

rank(�C)~rank(C) ð5Þ

�C~½�B,A�B,:::,An{1�B� ð6Þ

where �B~½x0{x1,B�. The transittability is typically considered
between two stable states or one stable state and another state. Let
us say that x1 is a stable state, we can always assume that x1 5 0 (the
origin) without loss of generality, i.e., we can replace x0 with x0 – x1 if
x1 ? 0, which does not affect the result. Then we have that the system
(2) is transittable between a specific states x0 and the origin if and
only if

rank(C0)~rank(C) ð7Þ

C0~½B0,AB0,:::,An{1B0� ð8Þ

where B0 5 [x0, B]. Although the condition (7) is much easier to be
verified than the condition (3), the calculation of either rank(C0) or
rank(C0) is still prohibitive because of the large size n of a complex
network, the uncertainty, time dependence of the entries in matrices
A and/or vector x0. Note that the transittability is not only to control
a state to the origin, but also to control a state from the origin to other
specific states.

Identifying the steering kernel. To overcome the computational
impedance in verifying condition (7), we further introduce the
structural transittability via the concepts of structural matrix and
generic dimension of controllable subspace. M is said to be a
structural matrix if its entries are either fixed zeros or independent
free parameters. ~M is called admissible (with respect to M) if it can be
obtained by fixing the free parameters of M at some specific values. If
A and B are structural matrices, system (2) is called a structural
system and is denoted by (A, B). Associated with a structural
system (A, B), a directed graph G(A, B) 5 (V, E) can be defined
with the set of nodes V 5 VAUVB, where VA 5 {x1,…, xn}: 5 {v1,…,
vn} is the set of state vertices, corresponding to the n state compo-
nents while VB 5 {u1,…, up}: 5 {vn11,…, vn1p} is the set of input
vertices, corresponding to the p inputs, and the set of arcs E 5

EAUEB, where EA 5 {(xj, xi) 5 (vj, vi) j aij ? 0} is the set of
directed edges between state vertices while EB 5 {(uj, xi) 5 (vn1j,
vi) j bij ? 0} is the set of directed edges between input vertices and
state vertices. We can also define a directed network G(A) 5 (VA, EA)
with respect to a structural matrix A (Figure 1a). In a directed graph,
an elementary path is a sequence of arcs f(vi0?vi1),(vi1?vi2), � � � ,
(vik{1?vik)g where all vertices {vi0, vi1, …, vik} are different, and
when vi0 5 vik, it is called an elementary cycle. A stem is an
elementary path originating from an input vertex in VB.

A structural system (A, B) is reducible if there exists a permutation
matrix P such that

PAP{1~
A1 A3

0 A2

� �
, PB~

B1

0

� �
ð9Þ

with A1[Rn1|n1 , A2[Rn2|n2 , and B2[Rn2|r , 1 # n1 # n and n1 1 n2

5 n. Otherwise (A, B) is said to be irreducible.
The dimension of the controllable subspace of structural system

(A, B) varies as a function of free parameters in structural matrices A
and B. That is, for different admissible systems (~A,~B), the dimensions

of their controllable subspaces might be different. As the maximum
rank of matrix C is at most n, the dimension of controllable subspace
of structural system (A, B) can reach the maximum value. We define
this maximum value as the generic dimension of the controllable
subspace of structure system (A, B) and denote it by GDCS(A,B).
The GDCS(A,B) is a generic property31,32,38 in the sense that for
almost all admissible systems (~A,~B) (with respect to (A, B)) the
dimension of their controllable subspaces takes a constant which is
GDCS(A,B). Hosoe has proved38 that if (A, B) is irreducible. Then

GDCS(A,B)~ max
G[G�
f E(G)j jg ð10Þ

where G* denotes the set of subgraphs of G(A, B), which is defined as

G�~
G5G(A,B)jG consists of elementary cycles and at most p stems in G(A,B):

The elementary cycles and stems have no node in common:

� �

E(G)j j denotes the number of edges in G. Applying equations (7) to
the structural system (A,B), identifying the steering kernel by which
the network G(A) can be transited between a state x0 and the origin
becomes finding a structural control matrix B with the minimum
number of columns such that

GDCS(A,B)~GDCS(A,B0): ð11Þ

Our second key result is that we develop a graph-theoretic algo-
rithm39 to identify the steering kernel by solving an optimal assign-
ment problem of a weighted bipartite graph (Figure 1e). For details,
see the Materials and Methods and the Supplementary Information
III.

Transittability of complex networks. We apply our algorithm to 27
complex networks to determine their steering kernels and the results
are summarized in Table 1. These 27 networks are a portion of 38
complex networks in ref. 7,8 and the number of their nodes ranges
from 32 to 27772 while the number of edges ranges from 96 to
352807. The phenotypes of complex networks are typically defined
by a small portion of nodes40,41. For examples, the number of
molecules (such as genes or proteins) significantly involved in a
specific human disease is only a small portion of all molecules in a
network4,5,11,12. Therefore, this study assumes that a transition
between two specific states has 20% or 50% of nodes whose state
values are changed, that is, x0 in (7) and (8) has 20% or 50% of
nonzero elements. The fraction of steering nodes is defined as the
ratio of the size of steering kernel to the total number of nodes in the
networks. Columns 5–8 in Table 1 are the average results of 1000
randomly defined transitions of each network. Columns 7 and
8 respectively list the average fraction of steering nodes for
transittability of 20% and 50% of nodes which are differently
expressed at two states while Column 9 lists the fraction of driver
nodes from Liu et al7. Comparing Columns 7 and 8 to Column 9
concludes that the minimum numbers of steering nodes required for
transittability is much less than those for complete controllability.
For complete controllability, the generic dimension of controllable
space is the number of nodes in the networks listed in Column 3.
Columns 5 and 6 respectively list the average generic dimension of
controllable space for transittability of 20% and 50% of nodes which
are differently expressed at two states. Comparing Columns 5 and 6
to Column 3 concludes that the controllable spaces for transittability
are much smaller than those for complete controllability.

Applications to regulatory biomolecular networks. We employ
four different biological systems with different phenotypes in order
to demonstrate the applicability of our method, as well as validate our
theoretical results. These four examples are p53-mediated DNA
damage response network18 (three phenotypes), T helper differentia-
tion cellular network19 (three phenotypes), yeast cell cycle network42

(three phenotypes), and epithelial to mesenchymal transition
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network (two phenotypes)20. Table 2 shows the identified steering
kernels for transition between two phenotypes.

p53-mediated DNA damage response network. This network,
consisting of 17 molecules and 40 interactions as shown in
Figure 2 and Table S1, responds to cell stresses such as DNA
damage and can stay at three phenotypes18. If there is no DNA
damage, the ATM is inactive (ATM2). The level of phosphorylated
monomer (ATM*) is low, then the p53 remains inactive. The DNA
damage can lead to two different cellular phenotypes: cell cycle arrest
and apoptosis18. At the cell cycle arrest phenotype, ATM is activated
by DNA damage through auto-phosphorylation and transited from
inactive dimer (ATM2) to ATM*. Subsequently, p53 is activated by
ATM* and transited to p53*(p53 arrester). The expression levels
of molecules represented by those green nodes in Figure 2 are
oscillating18. The p21 is the product of this state which induces cell
arrest. In total, the expression values of 9 nodes are significantly
changed when the normal phenotype is transited to the arrest
phenotype. At the apoptosis phenotype, ATM* still activates p53
to p53*, but most p53* are in form of p53 killer. P53AIP1 is

activated by p53 killer and finally activates Casp3 which induces
cell apoptosis. At this state, PTEN contributes to full activation of
p53. In total, the expression values of 12 nodes are significantly
changed when the normal phenotype is transited to the apoptosis
phenotype. In addition, comparing the arrest phenotype and the
apoptosis phenotype, the expression values of all 17 nodes are
significantly changed. Applying our methods to this network yields
the steering kernel consisting of PTEN and p53DINP1 for the
transition between normal and apoptosis phenotypes; the steering
kernel consisting of Wip1 and p53DINP1 for the transition between
normal and cell cycle arrest phenotypes; and the steering kernel
consisting of Wip1, PTEN and p53DINP1 for the transition
between apoptosis and cell cycle arrest phenotypes. These results
are in great agreement with Zhang et al’s results18 where PTEN
and Wip1 are identified as key players for transitions of different
states. On the other hand, if the complete controllability7 is applied to
this network (Figure S5), the minimum number of driver nodes is 3
while the driver nodes are not unique. For example, one minimum
set of driver nodes consists of Wip1, PTEN and p53DINP1, which are
the same as the steering nodes for transition between apoptosis and

Table 1 | Comparison of transittability and complete controllability of complex networks

Types Network Nodes Edges GDCS20% GDCS50% n20%
D n50%

D nLiu
D

Regulatory TRN-yeast-1 4441 12873 1014.05 2359.94 0.200 0.499 0.965
TRN-yeast-2 688 1079 171.25 396.513 0.191 0.465 0.821
TRN-EC-1 1858 4123 407.11 1008.55 0.199 0.494 0.891
TRN-EC-2 418 519 105.32 236.61 0.185 0.434 0.751
OwnershipUSCorp 7253 6726 1619.58 3758.57 0.190 0.460 0.820

Trust CollegeStu 32 96 29.44 31.911 0.133 0.186 0.188
PrisonIn 67 182 50.66 56.769 0.055 0.087 0.134
Wiki-Vote 7115 103689 3013.03 4401.63 0.144 0.290 0.666

Food web GrassLand 88 137 31.94 65.68 0.147 0.346 0.523
LittleRock 183 2484 80.55 129.72 0.138 0.313 0.541
SeaGrass 49 226 28.1 43.17 0.161 0.257 0.265
Ythan 135 601 60.05 106.51 0.189 0.381 0.511

Metabolic C.elegans 1173 2864 896.86 1057.42 0.114 0.233 0.302
E.coli 2275 5763 1579.91 1955.38 0.129 0.276 0.382
S.cerevisiae 1511 3833 1134.62 1352.12 0.119 0.248 0.329

Electronic circuit S208 122 189 75.033 103.05 0.085 0.157 0.238
S420 252 399 161.01 213.89 0.080 0.151 0.234
S838 512 819 325.05 433.43 0.076 0.147 0.232

Citation HepTh 27772 352807 19374.67 23329.95 0.085 0.134 0.216
Internet p2p-1 10876 39994 6534.15 9501.12 0.180 0.433 0.552

p2p-2 8846 31839 5032.99 7572.36 0.183 0.446 0.578
p2p-3 8717 31525 5011.69 7515.04 0.185 0.451 0.577

Intra-organization Consulting 46 879 46 46 0.043 0.043 0.043
Freemans1 34 6995 34 34 0.029 0.029 0.029
Freemans2 34 830 34 34 0.029 0.029 0.029
Manufacturing 77 2228 77 77 0.013 0.013 0.013

Social UCIOnline 1899 20296 1338.29 1516.42 0.043 0.133 0.323

Notations are as follows: The average generic dimension of controllable space (GDCS20% and GDCS50%) for 20% and 50% of nodes changed between two specific states, respectively; the average fractions
of steering nodes (n20%

D and n50%
D ) from our methods for 20% and 50% of nodes changed between two specific states, respectively; and fraction of driver nodes (nLiu

D ) from Liu’s paper7

Table 2 | The number of molecules, interactions and steering nodes

Network Nodes Edges Phenotype Transitions # of steering Nodes

p53- mediated DNA damage response
network

17 39 1 1(self-loop) normal-arrest 2(Wip1, p53DINP1)
normal-apoptosis 2 (PTEN, p53DINP1)
arrest-apoptosis 3(Wip1, PTEN, p53DINP1)

T helper differentiation cellular network 17 25 1 2(self-loops) Th0-Th1 2(SOCS1,T-bet)
Th0-Th2 2 (IL-4, GATA3)
Th1-Th2 2(T-bet, GATA3)

Yeast cell cycle network 11 29 1 5(self-loops) Phenotype 1–2 1 (SBF)
Phenotype 1–3 1(MBF)
Phenotype 2–3 1(SBF)

EMT network 6 15 epithelial - mesenchymal 1 (any node except for CDH1)
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cell cycle arrest phenotypes. However, this set of nodes for other two
transitions is redundant. Furthermore, the complete control strategy
with these three driver nodes will affect the full state space during
the phenotype transition as shown in Table 2, which is clearly
undesirable in practice (see Discussion).

T helper differentiation cellular network. T helper cells (Th cells)
are a sub-group of lymphocytes, a type of white blood cells, which
play an important role in the immune system, particularly in the
adaptive immune system. They help the activity of other immune
cells by releasing T cell cytokines43–45. Matured Th cells express the
surface protein CD4 and are referred to as CD41T cells which can be
classified as Th0 (precursor), Th1 and Th2 (effector) cells. Previously
published experiments43,44 suggest that T-bet and GATA3 can induce
both transitions from Th0 to TH1 and from Th0 to Th2. To deeply
understand the mechanism of transitions among these phenotypes,
Mendoza19 constructs a core network in charge of the differentiation
of Th cells, which contains 17 nodes with 27 interactions as shown in
Figure 3 and Table S2. Comparing among these three phenotypes,
one can see that 5, 4, and 9 molecules are significantly differentially
expressed, between Th0 and Th1 phenotypes, between Th0 and Th2
phenotypes, and between Th1 and Th2 phenotypes, respectively.
Applying our methods to the T helper differential cellular
network19, we identify the steering nodes SOCS1 and T-bet for the

transition between Th0 and Th1 and the steering nodes IL-4 and
GATA3 for the transition between Th0 and Th2, which is in
agreement with existing results43,44. We also identify the steering
nodes T-bet and GATA3 for the transition between Th1 and Th2,
which is completely in agreement with the experimental data43,45.
However, if the complete controllability7 is applied to this network
(see Figure S6), the minimum number of driver nodes is three and the
three driver nodes are IL-12, IL-18 and IFN-b. Actually, without any
one of these three nodes, this network cannot be completely
controlled. Although it has been reported that IL-12 and IL-18
together can make the transition from Th0 to Th1, this complete
control strategy will affect the full state space during the transition as
shown in Table 2, which is undesirable in practice (see Discussion).

Yeast cell cycle network. The cell-cycle process is a vital biological
process by which one cell grows to divide into two daughter cells. To
study this process, Li, et al42 have established a molecular network
consisting of 11essential molecules with 34 interactions as shown in
Figure 4 and Table S3. Applying the logic-like operations and using
the exhaustive search, they have found seven stationary states
(attractors), each corresponding a stable phenotype. The attractor
with the largest basin size corresponds to the G1 stationary state of
the cell (denoted by phenotype 1). The next two largest attractors
may represent some common disorder states of the cell (denoted by
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phenotypes 2 and 3). As other four attractors have small basin sizes,
we do not consider them in this study. Comparing among these three
phenotypes, we can see that 4, 1, and 5 nodes are significantly diffe-
rentially expressed, between phenotypes 1 and 2, between pheno-
types 1 and 3, and between phenotypes 2 and 3, respectively. On the
one hand, the result by applying complete controllability7 to this
network is that the minimum number of driver nodes is 1 which
could be Cln3, MBF or SBF (Figure S7). However, via either MBF or
SBF this network cannot be completely controlled as either of them
does not regulate node Cln3 from Figure 4. Although via Cln3 the
network can be completely controlled, the full state space will be
affected as shown in Table 2, which is undesirable (see Discus-
sion). On the other hand, we apply our methods to this network
for studying the transitions among those three phenotypes. We
found a single steering node MBF for the transition between
phenotypes 1 and 3, and a single steering node SBF for both the
transition between phenotypes 1 and 2 and the transition between
phenotypes 2 and 3, which suggests that SFB and MBF play an
important role for the transitions among these three phenotypes in
the cell-cycle process.

Epithelial to Mesenchymal Transition (EMT) network. EMT is a
phenomenon that cells change their genetic and transcriptional
program leading to the alteration of phenotypes and functions.

This change starts the metastatic dissemination which causes most
human cancer deaths20. To study EMT, Moes et al20 have constructed
an EMT network consisting of 6 nodes and 15 interactions as shown
in Figure 5 and Table S4. The expressions of MIR203, MIR200 and
CDH1 are high and ZEB2, SNAI1 and ZEB1 are low at the epithelial
phenotype while all are reversed at mesenchymal phenotype. There-
fore, for this network, all 6 nodes are significantly differentially
expressed between epithelial and mesenchymal phenotypes. Apply-
ing our algorithm, we can identify node SNAI1 as the steering node
for the transition of these two phenotypes, which is completely in
agreement with the experimental result verified by Moes et al20 that
SNAI1 can activate the transition from epithelial to mesenchymal
phenotype. Actually, by applying our algorithm, we can identify
anyone of all nodes except for CDH1 as the steering node for the
transition of these two phenotypes. From the other recent litera-
ture20,46, MIR203 and MIR200 can also induce the transitions while
leaving ZEB2 and ZEB1 deserving the further investigation about
their function for the transition between these two phenotypes. In
fact, controlling the transition between these two phenotypes is
complete control of the network. When the minimum input
theorem7 is applied to this network (Figure S8), anyone of six
nodes could be the driver node to steer the network from one
phenotype to any other phenotype. However, acting input control
signals on CDH1 cannot make the transition between these two

Figure 3 | T helper differentiation cellular network and its phenotype transitions. A red-filled node means high level expression and an empty node

means low level expression. The steering kernels are labelled for different transitions.
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phenotypes as CDH1 does not regulate any nodes in the network
from Figure 5.

Discussion
Transittability is at the heart of understanding state transitions of
complex dynamic systems, especially cellular processes such as the
cellular reprogramming and genetic disorder progressions. Besides
the empirical studies20–26, recently control theory for dynamical sys-
tems28,29 has been applied to complex systems. As indicated in dis-

cussions33,35,47 and Supplementary Information I, complete controll-
ability of complex networks7 generally needs more steering nodes
and its control affects the full state space (Figure 1b), and thus are not
suitable to study the transittability and to identify the steering kernel
for state transitions. Although the recently developed control strat-
egy of nonlinear systems10 is applicable to study the transittability, it
needs to know the exact expression of nonlinear functions and para-
meters in the model of complex systems, which is generally unavail-
able in practice7.

Instead of steering a directed network from any initial state to any
desired state with the concept of complete controllability, transitt-
ability concerns the ability to steer a directed network from one
specific state to another specific state. Obviously if a directed network
is completely controllable, it can be steered from one specific state to
another specific state, which indicates that complete controllability is
sufficient for transittability. However, complete controllability is not
necessary for transittability and should even be avoided in practice.
For example, when considering the transition from a disease pheno-
type to a healthy phenotype, we expect to affect as a small state
subspace as possible because side effects might be caused by unne-
cessarily changing some nodes in a large state subspace. The state
subspace affected by a control law can be measured by the generic
dimension of controllable (sub) space. The GDCS for complete con-
trollability is always the full dimensional state space while the GDCS
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expression. One of steering kernels is labelled for the transition.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4819 | DOI: 10.1038/srep04819 8



for two state transittability is generally a small subspace of the full
state space (see Tables 1 and 3). Therefore, in principle the control
law based on the complete controllability affects states more than the
one based on the transittability. In addition, as discussed in
Supplementary Information I, a network cannot be guaranteed to
transit from one specific state to any other state by acting the input
control signals on only the minimum set of driver nodes identified by
the minimum input theorem7. Furthermore, although theoretically
the steering kernel could be a subset of the minimum driver nodes7,
the minimum input theorem7 cannot be applied for efficiently find-
ing the minimum number of steering nodes. Firstly, although the
minimum number of driver nodes identified by minimum input
theorem7 is unique, the maximum matching for a given network is
not unique. Actually finding all maximum matchings for a given
network is an NP-hard problem. This means that there is no efficient
way to find all possible sets of driver nodes. Secondly, by the min-
imum input theorem7, the minimum number of driver nodes is about
0.8 n for regulatory networks with n nodes. All possible combina-
tions of 0.8 n driver nodes is at least 20.8n, and thus it is computa-
tionally prohibitive to exhaustively check all of them.

In this paper, we have systematically studied the transittability of
directed networks and proposed an algorithm to identify the steering
kernel for transitions between two specific states. To bypass the needs
of knowing the exact expression of nonlinear functions and para-
meters in the complex systems, we have studied the transittability of
directed networks with the concepts of structural linear systems and
structural transittability. Our theoretical results provide the suf-
ficient and necessary condition for determining the transittability,
which is to check whether or not two GDCSs are equal. Although our
theorems have been developed with continuous time-invariant linear
systems, they can be directly applied to discrete time-invariant linear
systems. Therefore, similar to the theorems48, our results remain
unchanged even if the free parameters in a linear system are allowed
to vary with time. That is, our theoretical results are applicable to
time-varying linear systems.

To identify the steering nodes for the transition between two
states, we have developed a graph-theoretic algorithm by solving
an optimal assignment problem of a weighted bipartite graph39.
Applying our algorithms to 27 complex networks we have found that
the minimum numbers of steering nodes for transiting two states are
less than those for complete controllability and the controllable
spaces for transittability are smaller than those for complete controll-
ability. Furthermore we have applied our algorithm to 4 regulatory
biomolecular networks and found that the numbers of steering nodes
for transiting two cellular phenotypes are small, which is greatly in
agreement with empirical studies on these networks. In addition,
majority of steering nodes found by our method have been already
reported in existing empirical studies while other new steering nodes
are potentially important in corresponding cellular phenotype tran-
sitions. Therefore, we believe that our results also provide some
fundamentals for understanding the mechanism of cellular pheno-
type transitions, and as such, are expected to have implications for

network-based drug design. As can be seen, the theorems we
developed in this study can directly be applied to any other complex
networks, for example, social networks, power grids, food webs, the
Internet, and electronic circuits7,8, just named a few. In this paper, we
mainly focused on studying transittability with suitable input signals,
and the implementation or design of the control input signals as well
as analysis of the dependence between the size of steering kernel and
the degree distribution of networks could be one direction of future
work.

Methods
Network construction. The T helper differentiation cellular network, the EMT
network, and the yeast cell cycle network are directly from the published
references19,20,42 without any change, respectively. The P53 mediated DNA damage
response network are constructed from the differential equations in the
supplementary material of the paper18. In such a construction, each variable in the
differential equations corresponds to a node in the network. Node i regulates node j if
the variable corresponding to node i appears in the right-handed side of the
differential equation corresponding to node j. All self-loops corresponding to the
degradations are excluded in the constructed network as their weights may not be free
parameters.

Calculating the GDCS and the size of the steering kernel. For a network G(A) and
structural state x0, assume that the structure system (A, x0) is irreducible. Let S be a
subset of nodes corresponding to non-zero components in x0. Let us define a weighted
graph G9(A) as follows: 1) associate the weight we 5 1 with every edge e of G(A); 2)
add the edge e 5 vivj and associate the weight we 5 e if e 5 vivj is not in G(A) for vj[S;
3) add the loop e 5 vivi and associate the weight we 5 0 if e 5 vivi is not in G(A) for
vi=[S, where e is a small positive number and less than 1/n for a network with n nodes.
For simplicity, e can take the value of 0.001, 0.0001, 0.00001 or the like. By solving an
optimal assignment of a weighted bipartite graph representation of G9(A), we can find
the maximum weight circle partition of G9(A). Assume that the weight of the
maximum circle partition is r 1 s*e, where r and s are integers and s*e , 1. Let t be the
number of source strong connected components of G(A). Then, from Supplementary
Information III.C, we have GDCS(A, B) 5 GDCS(A, B0) 5 r 1 s and the size of
steering kernel is s 1 t. Note that the computational complexity of solving an optimal
assignment of a weighted bipartite graph is O(n3) according to reference39 for the
worst cases in which a network is a complete graph. For the sparse networks which are
true in most cases, our computational complexity is less than O(n3). Actually Table S5
and Figure S9 show that the our computational complexity is approximately O(n2.35)
for real complex networks with the number of nodes from 32 to 27772.
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