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Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications
across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale
precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely
with total measurement time sB / 1/T (Heisenberg scaling) rather than as the inverse of the square root of
T, with sB~1

� ffiffiffiffi
T
p

the Shot-Noise limit. This scaling can be achieved by means of phase estimation
algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of
applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear
Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing
them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in
frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We
show that CS can provide for precision scaling approximately as sB < 1/T, as well as for a 5-fold increase in
sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We
illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning
conditions.

P
recision sensing of weak electric and magnetic fields with atomic scale resolution is a pinnacle of measure-
ment science that delivers novel insights and finds immense use from fundamental sciences to biomedical
applications. Single Nitrogen-Vacancy (NV) center in diamond is proving to be a sensor of choice for needs

that demand high precision measurements and nanoscale spatial resolution. The sensor is atomic sized and could
fully operate under ambient conditions and also seamlessly perform measurements at cryogenic and extreme
conditions. Nano-scale magnetometry experiments in solids have been demonstrated using single nitrogen-
vacancy centres (NV) toward the realization of highly sensitive field sensors operating at room temperature
and with atomic resolution (Fig. 1 (a)). The experiments achieved detection sensitivity of very weak magnetic
fields (B < 3 nT) with spatial resolution of a few nanometers1,2. These field magnitudes corresponds to those
produced by approximately 10 statistically polarized Hydrogen spins at a distance of about 10 nm from the NV
defect. These unique prospects of the NV sensors stimulates researchers to develop nanoscale Nuclear Magnetic
Resonance and Magnetic Resonant Imaging (NMR/MRI) benefitting structural biology3,4. For realistic applica-
tions, like those for NMR, there is an indispensable need to sense multiple frequencies interacting simultaneously
with the NV spin. Here we present an efficient method to sense frequency multiplexed signal using a compressed
sensing (CS) approach. Further, we show that by employing CS technique we could enhance the precision of the
measurement (phase estimation) to scale better with the acquisition time reaching the idealistic Heisenberg limit.

The standard magnetometry protocol using a single NV is as follows. The NV is optically initialized into the ms

5 0 state by shining a green laser for about 3 ms. Following this, resonant microwaves makes the spin undergo a
state transition from j0æ) j21æ. For sensing alternating external fields the NV spin is put into a superposition

state by applying a
p

2
pulse. The spin precesses along the equatorial plane in a Bloch sphere for a time t then the

spin in flipped by a p pulse and made to undergo the precession in the opposite direction for the same time t. A
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non interacting NV spin will not yield any net phase change. If the
spin interacts with a time dependent dipole-dipole interaction then
there would be some net phase difference. The sensitivity of the
quantum sensor is given by the maximum value of the first derivative
of phase accumulation with respect to the magnetic field. This quant-
ity is proportional to the interrogation time, which is limited by the
NV spin-coherence time, and which can be enhanced using isotopi-
cally engineered diamond5 or by using dynamical decoupling tech-
niques6. The precision of the technique is given as a measure of its
capacity to unambiguously estimate the phase accumulated by an
NV spin as a result of the external oscillating field or interactions. In
order to find any practical uses pertaining to nanoscale NMR the
sensor should have both high sensitivity and good precision to
identify closely spaced frequencies. This is very important as we rely
on spin signals that are statistically polarized hence novel strategies
that could boost the signal-to-noise ratio makes decisive step towards
practical application of the diamond sensing technique.

Standard magnetometry precision is limited by statistical fluctua-
tions in the measurements, the so-called Shot-Noise limit

sB~1
. ffiffiffiffi

T
p

7, where T is the total measurement time required to

estimate the magnetic field. This scaling is due to the fact that in a
standard measurement n 5 T/t independent measurements are per-
formed over a short time-interval t, yielding a magnetic field pre-

cision sB<1
. ffiffiffiffiffiffi

tT
p

. Therefore, it should in principle be possible to

achieve precision scaling as sB < 1/T, if one were to perform a single
measurement over the entire period (t 5 T). This is the maximum
precision possible for a phase measurement, and is referred to as the
Heisenberg limit8–10. It is very desirable to realize a measurement
scheme that follows this Heisenberg limited scaling as SNR of the
spin signal is crucial for the nanoscale NMR applications we
envision.

Notwidthstanding, there are at least two problems hindering
Heisenberg-limited precision in solid state spin magnetometry.
The first is spin relaxation which precludes measurements longer

than the dephasing time. The second is that performing measure-
ments over long periods usually results in ambiguities. A solution to
eliminate the phase-ambiguity problem is the implementation of
quantum phase estimation algorithms (QPEAs)11,12. QPEAs are
based on applying the inverse Quantum Fourier Transform
(QFT)13, which can be implemented using local measurements and
control. The problem with just using QPEA is that it produces a
probability distribution with large tails, with precision far from the
Heisenberg limit. This additional problem can in turn be overcome
by applying feedback schemes to achieve 1/T scaling14. A remarkable
approach to achieving Heisenberg-like precision scaling based on a
phase estimation algorithm (PEA) without adaptive feedback, was
proposed in Ref. 15, and successfully implemented in Ref. 16, in
combination with single-shot read-out techniques17. In order to pre-
vent ambiguities, the maximum magnetic field range is [2DBmax,
DBmax), which limits the longest accumulation time to:

t0v
p

2cDBmax
, ð1Þ

where the phase accumulation during a Larmor precession can be
expressed w(t) 5 vt, with v 5 cB the Zeeman shift (Fig. 1 (b)). PEAs
have been applied to several other problems of interest, such as
reference-frame alignment18, clock synchronization19, frequency20

and position measurements7, in addition to electric field sensing21.
However, a basic conditions for the implementation of PEAs is the
assumption that the signal is composed of a single frequency. This
can be a significant limiting factor in the presence of temporal fluc-
tuations, or for frequency multiplexed signals where more than one
characteristic Larmor frequency may be involved. This scenario is
very relevant to nanoscale NMR applications or other involving
multiple frequency interactions. In such situation, the standard
approach is to repeat n independent Ramsey measurements at
equally distributed times (nt0) up to the dephasing time, thus scaling

as 1
. ffiffiffiffi

T
p

.

Figure 1 | (a) Scheme of NV structure in diamond lattice. (b) Bloch sphere illustration of Larmor precession w(t) 5 vt around magnetic field DB. (c)

Top: Original signal given by Larmor precession typically obtained by Ramsey interferometry16. The total time N 5 600 determines the dimension of the

basis for compressed sensing; (c) Bottom: Recovered signal by compressive sensing after applying a measurement operator A(K3 N) using a subset of K 5

N/2 random data points with a uniform distribution. (d) Top: Discrete Fourier Transform (DFT) of original signal displaying the frequency sparsity of the

input. The appearance of a second peak located at N 2 v is a numerical effect due to the periodicity of the DFT; (d) Bottom: Recovered signal via

compressive sensing in frequency domain.
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Motivated by this relevant yet complex scenario, we present an
alternative approach for multifrequency magnetometry involving
compressive sensing (CS) techniques. CS algorithms are extensively
employed in the context of signal processing to recover sparse vectors
from a reduced number of measurements. Here sparsity refers to a
few non-zero components in a given N-dimensional basis (Fig. 1 (d)
top), and the measurement constraints, defined by a suitable mea-
surement operator A, are linear functions of the inputs. When the
measurements are chosen at random, the original signal (Fig. 1 (c)
top) can be uniquely determined from a small number of measure-
ments (K , N) via efficient convex optimization routines (Fig. 1 (c)
bottom, and 1 (d) bottom). CS is therefore a highly suitable tool for
magnetometry - a sparse problem in frequency - since it satisfies all
the above mentioned criteria. CS algorithms have been readily suc-
cessfully applied to computational biology22 and graphics23, medical
imaging24, communication theory25, in addition to quantum state
tomography31 and quantum process tomography32 of fairly pure
density matrices and low rank quantum operators. As long as the
signal is sparse in the frequency domain, sampling using Ramsey
scheme provides good reconstruction. Having said this, relaxing
the sparsity criteria imposes severe limitations on the validity of
the CS reconstruction method. This consequence could be a limiting
factor for CS approach in NV-NMR sensing. In order to address this
limitations, we propose to use magic angle spinning tailored to the
NV sensing experiments3. In this case, spinning the external mag-
netic field at the magic angle will result in sharper and fewer lines
satisfying the sparsity condition for effective CS reconstruction. The
goal of the current work is to show how CS techniques could be used
efficiently for NV based magnetic sensing. We have demonstrated
this using parameters taken from NV based single molecule NMR
methods. We choose Glycine molecule because it seems to be an ideal
material of choice for first experiments as the NMR spectrum is
simple. As a point of reference, we note that there are other compet-
ing powerful methods besides compressive sensing, such as super-
resolution26–28 and filter diagonalization29, which can allow for
smoother solutions of the sampling problem, and which have proved
to be sucessful in the context of NMR information processing,
molecular spectroscopy, computational chemestry and computa-
tional physics30.

Nitrogen-Vacancy sensors seem to be method of choice for single
molecule NMR applications. Our CS scheme presents a method to
efficiently sense frequency multiplexed signals using a single NV,
which is indeed the case for any realistic magnetic field sensing
applications. The NMR signals arising from molecules is complicated
and contains chemical-shifts producing mixture of frequencies. The
CS scheme described here also paves ways to realize multi-dimen-
sional NMR of organic molecules using single NV defect. We first
present our result comparing the CS scheme to the PEA scheme and
validate the performance of our CS scheme for sensing single fre-
quencies. Then we proceed to apply the current CS scheme to multi-
frequency signals resembling realistic case of Glycine molecule and
show that CS scheme is suited for performing solid state NMR using
diamonds. Furthermore, we show that compressive sensing recon-
structions can provide for Heisenberg-like precision scaling, both for
the case of single-frequency and multi-frequency magnetometry,
thus extending their range of applicability beyond the scope of
PEAs, in addition to providing for a 5-fold increase in sensitivity
over bandwidth gain as compared with standard measurements.
Moreover, we show CS can reduce the total number of resources
subject to the complexity of the input signal.

Single-frequency magnetometry via compressive
sensing
In order to compare the performance of CS with PEAs in the case of
single-frequency magnetometry we consider an analogous Ramsey
signal (~f tð Þ) to the one previously analyzed by Waldherr et al.16

(Fig. 1 (c) Top). We transform this signal to the frequency domain
by means of a Discrete Fourier Transform (DFT) algorithm obtain-
ing~fv (Fig. 1 (d) Top), in order to perform random spectral data
sampling. We fix the spectral resolution to Dv 5 1/N throughout the
search, so that all the points in the frequency domain contain
information about the full input signal, even though the spectral
resolution could be modified adaptively, as discussed below. The
maximal detectable frequency is set to 1/t0, with t0 given by the
upper bound in Eq. (1). The number of sampling points in the fre-
quency domain for the CS algorithms are increased exponentially in
the form nk 5 n02k, where k 5 0, 1, …, K (K 5 10), with n0 5 N/2K,
resulting in experimental result vectors ~wexp

k , with nk independent
elements following Ref. 16. The compressive sensing algorithm is
implemented by way of defining A(k,N) (k 5 0, …, K) measurement
operators consisting of nk random raws of the identity matrix (IN3 N),
and searching for the most probable vector~f est

w , which satisfies the
measurement constraints A k,Nð Þf

~est
w ~~wexp

k . Since A(k,N) is not a square
matrix for nk , N, it is non-invertible and the set of linear constraints
is underdetermined. The key to the reconstruction is to impose non-
linear regularization involving l1-norm minimization33,34. The search
can thus be casted into a convex optimization problem of the form:

minimize ~f est
w

��� ���
1
, s:t: A k,Nð Þ~f

est
w ~~wexp

k , ð2Þ

where we choose a flat distribution as the initial guess (~f0w
est).

Numerical results for the output of the convex search are shown in
Fig. 2. The phase w(t) 5 vt is normalized to the Zeeman shift (v)
and is proportional to the time index (t). Since the phase search is
casted into a convex optimization problem, a clear unambiguous
peak (i.e., no local maxima) is present even for small number of
random sampling points, thus confirming that CS can reduce
resource requirements.

We are interested in the scaling of the variance (s2
B) of the esti-

mated vector on the total measurement time (T), corresponding to

the square of the magnetic field sensitivity defined as dB~

ffiffiffiffiffiffiffiffiffi
s2

BT
q

16.

Where the variance is defined as the square of the norm-2 between
the estimated vector (~f est

w ) and the vector of experimental results

(~wexp
k ), i.e., sB~ A~f est

w {~wexp
k

��� ���
2
. Numerical results for the scaling

of precision (s2
BT) vs. total number of resources (T), and for the

dependence of sensitivity dB~

ffiffiffiffiffiffiffiffiffi
s2

BT
q

vs. dynamic range 1/t0 are

displayed in Fig. 3. Figure 3 (a) shows the Heisenberg limit (black
line) and a fit to the numerical points obtained via CS, revealing
Heisenberg-like scaling < 1/T for phase estimation via CS tech-
niques. Red dots correspond to the Shot-Noise limit (1/T0.5), set by
the variance in the standard measurement. CS gives a maximum
precision gain as compared to the standard measurement for k 5

7, which represents less than 16% of the total resources (N 5 600).
The number of resources required for a maximum precision gain
could be further reduced by means of adaptive techniques, as dis-
cussed below. The dependence of the total number of resources on
the sharpness of the signal remains to be inspected. The overhead in
Fig. 3 (a) is determined by the tolerance of the l1-norm minimiza-
tion35. We note that the absolute precision yielded by the CS inver-
sion is somewhat arbitrary, we are therefore interested in the scaling
of the precision with the total number of resources. Figure 3 (b)
displays the sensitivity (dB) of the recovered phase via CS (red dots),
for different maximum frequency over magnetic field values (i.e.,
dynamic range 1/t0) obtained by increasing DBmax, such that t0 5
0.036, 0.072, 0.144, 0.288, 0.576. The selected range of t0 permits to
increase the dynamic range by 4 bits (from K 5 10 to K 5 14). This is
compared with the standard measurement scheme (black rhombus)
showing a 5-fold increase in sensitivity over dynamic range gain, via
CS data recovery. We note that the main advantage of our approach

www.nature.com/scientificreports
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is the increase in dynamic range (i.e. bandwidth) without loss of
sensitivity, as readily expalined in detail in previous works16. The
results presented in Fig. 2 and Fig. 3 confirm that CS techniques
can provide for a similar performance as compared with PEAs16,
for a reduced number of resources (i.e., total measurement data
points) for the case of single-frequency signals. Below we present
an application of CS techniques in situations where PEAs are not
applicable.

NMR signal - frequency multiplexed magnetometry
via compressive sensing
We now present the main result of the paper which consists of
applying CS recovery techniques to frequency multiplexed signals.
Frequency multiplexed magnetometry can be considered as a very
simple case of waveform estimation. In our simple example we only
reconstruct two fixed parameters (i.e., two frequencies) but arbitrary
waveforms with time-dependent parameters can also be efficiently
reconstructed in the context of quantum metrology36. Frequency
multiplexed magnetometry can arise, for instance, when the NV
sensor is coupled to a spin bath, so that hyperfine coupling results
in different Zeeman splittings and different frequencies for Larmor
precessions, thus resulting in effective nutations. This scenario is
clearly prohibitive for the use of PEAs, however it is clearly amenable
for the use of CS approaches. We note that significant literature exists
on CS techniques linked to NMR37–39. The main novelty of this work
is the use of CS approaches for high-bandwith presicion magneto-
metry in the case multifrequency signals. In order to present a real-
istic example of frequency-multiplexed signals, we consider the solid
state NMR spectrum of a simple amino-acid Glycine molecule. The
13C spins of a-Carbon and the carboxyl group contributes to homo-
nuclear dipolar interactions. In a typical solid state spectrum the
anisotropic interactions cause significant broadening masking the
features. In order to revive the isotropic spectral features the sample
is spun at an angle of 54.7 degrees to the external magnetic field to
perform Magic Angle Spinning (MAS)40. In this example we have
chosen data corresponding to Glycine MAS spectrum at 20 kHz, this
condition gives two distinct peaks separated by about 10 kHz41,
whose magnetization is given by the sum of two Fourier components
with Zeeman splitting Dv 5 v1 2 v2 5 10 kHz41, of the explicit

form f tð Þ~sin
2pv1

N
t

� �
zsin

2pv2

N
t

� �
, with N 5 1000 (Fig. 4

(a)).
Moreover, we consider the same amplitude and off-set phase for

the two Fourier components, although this is not a necessary require-
ment. Indeed, CS can also be used to determine the unknown ampli-
tude relation and off-set phase of the components. We increase the
number of random sample data points in the same exponential
manner nk 5 n02k with k 5 0, 1, …, 10, keeping (1/t0) fixed. The
recovered phase for different values of k is shown in Fig. 4 (b), dis-
playing two unambiguous peaks, corresponding to the multiple
Larmor frequencies v1,2 even for small number of random sampling
points, thus confirming that CS can reduce resource requirements
also for signals consisting of multiple frequencies.

Figure 4 (c) shows the precision scaling (s2
BT) vs. total time

resources (T) for CS data inversion in the case of frequency multi-
plexed signals. The numerical data points are fit to < 1/T0.8, with a
precision overhead given by the tolerance in the l1-norm minimiza-
tion algorithm. The Heisenberg limit is indicated with a black line.
Red dots correspond to the Shot-Noise limit (1/T0.5), set by the vari-
ance in the standard measurement. Even though the precision scaling
is slightly lower in the frequency-multiplexed case, the overhead is
also reduced under the assumption of ideal measurements, showing
that CS techniques can outperform standard measurements even for
the smallest number of resources. Furthermore, CS gives a maximum
precision gain as compared to the standard measurement for k 5 6,
which represents less than 10% of the total resources (N 5 1000). The
number of resources required for a maximum precision gain could be
further reduced by means of adaptive techniques, as discussed below.
We stress that in this approach we only consider the waveform
reconstruction error, without considering the error in estimating
the result at each step. The latter error should scale at the Standard
Quantum Limit. In this realization we considered a fixed spectral
resolution Dv 5 1/N throughout the convex search, such that each
point in the frequency domain contains information about the full
signal in the time domain. As a future step we will consider hybrid
approaches, by increasing adaptively the spectral resolution Dvk,
starting the search with a broad distribution (Dvk 5 0 . 1/N), and
narrowing down the frequency window iteratively, while increasing

Figure 2 | Typical probability distribution for the estimated phase w via compressive sensing techniques. Probabilities in different grey tones

correspond to increased number of random sample points given by nk 5 n02k, with k 5 0, 1, …, 10. Since the phase search is casted into a convex

optimization problem there is no ambiguity (i.e., no local maxima) for a sufficient number of measurements.

www.nature.com/scientificreports
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the number of sample points (k). Other relevant hybrid approaches
could be implemented by combining structured random measure-
ment operators31.

Conclusions
We reported on a novel approach to frequency multiplexed magne-
tometry via compressive sensing (CS) techniques. We numerically
showed that CS data recovery can provide for Heisenberg-like pre-
cision scaling (<1/T) in situations where phase estimation algo-
rithms (PEAs) are not applicable, in addition to providing for a
5-fold increase in sensitivity over dynamic-range gain, and a reduc-
tion in the total time-resource requirements, subject to the complex-
ity of the input signal. In our example, we considered a simple sum of
a few Fourier components. A less favourable scaling is to be expected
for more complex waveforms, with increased number of independ-
ent parameters. Moreover, since non-adptive CS uses random sam-
pling the signal recovery is probabilistic, and the success rate
becomes exponentially smaller for fewer data points. Nevertheless,
this limitation can be overcome be means of adaptive sampling tech-
niques. Our results pave the way for potential applications of CS in
efficient quantum parameter estimation, quantum sensing, and mag-
netometry involving time-varying42, and frequency multiplexed

signals. In particular the reported CS technique paves efficient ways
to achieve sensitive NMR detection of solid samples at nanoscale
volume and even perform multidimensional spectrum of biomole-
cules.
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