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Time-periodic perturbation can be used to modify the transport properties of the surface states of
topological insulators, specifically their chiral tunneling property. Using the scattering matrix method, we
study the tunneling transmission of the surface states of a topological insulator under the influence of a
time-dependent potential and finite gate bias voltage. It is found that perfect transmission is obtained for
electrons which are injected normally into the time-periodic potential region in the absence of any bias
voltage. However, this signature of Klein tunneling is destroyed when a bias voltage is applied, with the
transmission probability of normally incident electrons decreasing with increasing gate bias voltage.
Likewise, the overall conductance of the system decreases significantly when a gate bias voltage is applied.
The characteristic left-handed helicity of the transmitted spin polarization is also broken by the finite gate
bias voltage. In addition, the time-dependent potential modifies the large-angle transmission profile, which
exhibits an oscillatory or resonance-like behavior. Finally, time-dependent transport modes (with
oscillating potential in the THz frequency) can result in enhanced overall conductance, irrespective of the
presence or absence of the gate bias voltage.

T
opological insulators (TI) form a new class of quantum matter possessing insulating bulk and metallic edge
or surface states1,2. The surface states of TIs have an odd number of massless Dirac cones3, which are
protected against time-reversal-invariant perturbations such as non-magnetic impurities, defects, and

reconstruction. This promising characteristic motivates significant interest in the fundamental physics of trans-
port in TIs4–9. Due to the robustness of the surface states against time-reversal symmetric perturbations, TIs are
expected to be good candidates for the design of spintronics devices10. TI is also a good candidate for fault-tolerant
quantum computing11 because of the formation of Majorana bound state induced by the superconducting
proximity effect12.

To realize the practical TI-based devices, one major task is to effectively control and adjust the transport
properties of the surface states. Correspondingly, some interesting effects, such as finite-size effects13,14, ferromag-
netic coupling15,16, and quantum confinement17,18 have been utilized to achieve this goal. In semiconductors one
can confine electrons quantum mechanically using electrostatic barriers, e.g. a quantum well. However, such
electrostatic barriers cannot provide electron confinement in graphene and TI systems, due to chiral tunneling of
Dirac fermions, a phenomenon which has been extensively studied recently19–25. The chirality of electron’s
wavefunction in graphene gives rise to perfect quantum tunneling for electrons incident in the normal direction
of a potential barrier23. The chiral nature of Dirac fermions also suppresses the backscattering of quasiparticles
leading to high charge carrier mobility, which can be utilized in some novel nanodevices26,27. Similarly, the surface
states of TIs can also mimic Dirac fermions in quantum electrodynamics (QED). Naturally, it is meaningful to
study the chiral tunneling of quasiparticles when a potential barrier is applied to the topological surface states. In
recent years, much attention is paid to optical response of the topological surface states28–33. Applying a time-
dependent perturbation can provide an alternative and efficient way to control spectrum and transport prop-
erties, e.g., inducing a topological state in a semiconductor quantum well34 and a conventional insulator35,
resulting in Floquet-Bloch bands due to the hybridization of bulk states and topological surface states36.
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However, relatively few studies have been conducted on the chiral
tunneling of surface states under the influence of a time-dependent
potential, or under nonequilibrium condition, i.e., in the presence of
a gate bias voltage.

In this work, we consider a conducting channel consisting of
topological surface states influenced by a time-periodic potential,
shown schematically in Fig. 1. It is found that in general, a time-
dependent potential modifies the large-angle transmission of the
device, which exhibits oscillatory or resonance-like behaviors. On
the other hand, the presence of a gate bias voltage can significantly
affect the transmission probability of normally-incident electrons,
and destroys the perfect transmission for normally-incident elec-
trons, which is a signature of the Klein tunneling effect23. The char-
acteristic left-handed helicity of the transmitted spin polarization is
also destroyed by the finite gate bias voltage. However, the zero-angle
spin polarization is robust against the time-dependent potential and
the gate bias voltage. Finally, by applying the scattering matrix
method, we numerically study the amplitude and frequency depend-
ence on the transmission probability, and describe the time-depend-
ent response of the systems conductance in the presence or absence
of a gate bias voltage.

This paper is organized as follows. In section Model and formula-
tion, we consider the Dirac equation governing the topological
surface states of the system in the presence of the time-periodic
potential in the central region and a gate bias voltage across the left
and right portions of the conducting channel. By solving the Dirac
equation, we obtain the analytic solution of the time-dependent
wavefunction. We employ the scattering matrix method to calculate
the transmission probability and the device conductance. In section
Numerical results and discussion, we analyze the dependence of the
transmission probability on the electron injection-angle and the fre-
quency dependence of both the transmission probability and the
overall conductance. We summarize the main results in section
Summary.

Model and formulation
In this section, we investigate the transport property of a conducting
channel proposed of topological surface states, as illustrated in Fig. 1,
modulated by a time-dependent potential, which arises from a small
ac signal V(t) applied to the gate voltage in the central region.

At low energies, the surface states can be described by the effective
Hamiltonian3

H~vF pysx{pxsy
� �

, ð1Þ

where vF is the velocity of the surface states, vF^5|105m=s for the
typical topological insulator Bi2Se3. The wavefunction of the time-
dependent system satisfies the following Dirac equation

{i�hvF
0 LyziLx

Ly{iLx 0

� �
yi{m xð Þyi~i�hLtyi, ð2Þ

where i 5 1, 2, 3 are the notations of three different regions,

yi~ y:,y;

� �T

i
is the two-component wavefunction with ", # being

spin indexes. The potential function m(x) is written as

m xð Þ~
mL, xv{L=2,

{u0 cos vtð Þ, {L=2ƒxƒL=2,

mR, xwL=2:

8><
>: ð3Þ

This potential profile of the conducting channel can be envisaged by
applying top-gate and back-gate voltages37–40, where ma5L,R describe
the relative shift of Dirac points of region I and III with respect to
region II, V 5 (mL 2 mR)/e is defined as the gate bias voltage, and u0

and v are the amplitude and frequency of the time-dependent
potential.

Firstly, we try to find the solution of Eq. (2) for the central region.
The wavefunction can be constructed as41

y2 r,tð Þ~y20 rð Þe{i evtzu0 sin vtð Þ=�hv

~
X?

m~{?

Jm
u0

�hv

� �
y20 rð Þe{i ezm�hvð Þt=�h,

ð4Þ

where y20(r) is also a two-component wavefunction, whose explicit
form is given below, and Jm refers to the mth-order Bessel function.
Substituting Eq. (4) into Eq. (2), we can obtain the equation satisfied
by y20(r)

{i�hvF
0 LyziLx

Ly{iLx 0

� �
y20 rð Þ~ey20 rð Þ: ð5Þ

Thus the solution of the two-component wavefunction can be
expressed as

y20,+ rð Þ~ 1ffiffiffi
2
p cei p

2{hð Þ

1

 !
ei kx xzkyyð Þ, ð6Þ

where k~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xzk2
y

q
is the amplitude of the wave vector,

h~arcsin(�hvF ky
	

ej j), kx(e)~ ej jcosh= �hvFð Þ, and c(e) 5 sgn(e) 5

61 corresponding to electronlike and holelike cases, respectively.
Correspondingly, the wavefunctions y1,3(r, t), in the regions jxj .

L/2, obey similar formulas to Eq. (5), and the solution of which can be
written as

y1,3,+ r,tð Þ~ 1ffiffiffi
2
p c0ei p

2{h0ð Þ

1

 !
ei qx xzqyyð Þe{iet=�h, ð7Þ

where q~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

xzq2
y

q
is also the amplitude of the wave vector,

h0,a~arcsin �hvFqy
	

ezmaj j
� �

, qx,a eð Þ~ ezmaj jcosh0,a= �hvFð Þ, and
c0,a(e) 5 sgn(e 1 ma) 5 61.

Thus for a charge particle with an energy e which is injected from
region I into the center region, the wavefunctions in the three regions
can be written as

y1 r,tð Þ~ e{iet=�hffiffiffi
2
p f

c0,L eð Þei p
2{h0,Lð Þ

1

 !
ei qx,L eð Þxzqy0y½ �z

X?
m~{?

rm eð Þ

|
c0,L ezm�hvð Þei h m,0ð Þ,L{

p
2ð Þ

1

 !

|ei {qx,L ezm�hvð Þxzqy0y½ �e{imvtg, xv{L=2,

ð8Þ

Figure 1 | Schematic of the conducting channel with time-periodic
potential comprising of topological surface states.
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y2 r,tð Þ~
X
m0,n

Jn
u0

�hv

� �
e{i ez m0znð Þ�hv½ �t=�h eiqy0yffiffiffi

2
p fA m0ð Þ

c ezm0�hvð Þei p
2{hð Þ

1

 !
eikx ezm0�hvð Þx

zB m0ð Þ
c ezm0�hvð Þei h{p

2ð Þ

1

 !
e{ikx ezm0�hvð Þxg,

{L=2ƒxƒL=2,

ð9Þ

y3 r,tð Þ~ e{iet=�hffiffiffi
2
p

X?
m~{?

tm eð Þ
c0,R ezm�hvð Þei p

2{h m,0ð Þ,Rð Þ

1

 !(

ei qx,R ezm�hvð Þxzqy0y½ �e{imvt
o

,

xwL=2:

ð10Þ

Imposing the boundary conditions for the wavefunctions yi(r, t),
which must be continuous at the interfaces of x 5 6L/2, we can
obtain the equations relating A(m9) and B(m9) utilizing the ortho-
gonality of {e2imvt}. After some algebra, we obtain the coefficients
A(m9) and B(m9), and substitute them into the following equation to
calculate the transmission coefficients

tm eð Þ~e{iqxR ezm�hvð ÞL=2
X

m0
A m0ð Þeikx ezm0�hvð ÞL=2
h

zB m0ð Þe{ikx ezm0�hvð ÞL=2
i

Jm{m0
u0

�hv

� �
:

ð11Þ

After these quantities are obtained, we can study the quantum trans-
port property of the considered system using the scattering matrix
method42–44. Correspondingly, we can obtain the total transmission
probability

T~
X

m

qxR ezm�hvð Þ
qxL eð Þ tm eð Þj j2: ð12Þ

Consider an electron incident from region I with a fixed Fermi energy
EF. The electron can be injected into the central region at various
incidence angle h, associated with different y-component wavevector
qy0. We can calculate the transmission probability for a fixed qy0 or h,
i.e., T(h, EF). The overall zero-temperature conductance G can be
calculated by integration of Eq. (12) over the y-component wavevec-
tor19,45, which can be written as

G~
2e2

h
W

2p�h

ð
dpyT py

� �
~G0

ðp=2

{p=2
dh cos hT h,EFð Þ, ð13Þ

where the factor 2 accounts for the twofold spin degeneracy, W is the
transverse dimension of the interface and G0 5 e2kFW/(ph) is the
unit of conductance.

It is well known that the electron spin is locked in the surface plane
for a purely 2D system6,15,16. Naturally, it is interesting to study
whether this spin-locking characteristic can be maintained in the
presence of the time-periodic potential and the gate bias voltage.
Based on the wavefunctions in Eqs. (8) to (10), we can calculate
the spin polarization averaged over spin-space, i.e., P‘ tð Þ~
�h=2 y s

‘
j jyh i, with , 5 x, y, z. The time average of the spin polariza-

tion is then defined as �P‘~v

ð2p=v

0
dtP‘ tð Þ=2p.

Numerical results and discussion
In this section, we numerically study the transport property of the
topological surface states modulated by a time-dependent potential

for varying gate bias potential. We first analyze the total transmission
T(h, EF) as a function of the electron injection-angle h for different
amplitudes and frequencies of the time-dependent potential, as
shown in Fig. 2. In our numerical calculations, the following para-
meter values are assumed: Fermi energy of EF 5 100 meV, Fermi
velocity of vF 5 5 3 105 m/s, and length of central region (where the
time-dependent potential is applied) of L 5 60 nm, which provides a
sufficiently thick barrier for electrons with a Fermi wave length lF <
20 nm. Under zero shift of the Dirac points in region I and III, i.e.,
mL 5 mR 5 0, virtually perfect transmission (T < 1) of electrons
through the time-dependent central region occurs for incidence
angles hj j 700, (see Fig. 2 (a)). Such perfect transmission of normally
incident electrons is a well-known feature of Klein tunneling of Dirac
fermions23–25. One can understand the perfect transmission as arising
from the perfect matching between the electron wavefunctions of the
three different regions (see Eq. (6), (7)). In the presence of a time-
dependent potential, the large-angle transmission of electron is
modulated, and the modulation becomes more obvious at larger
amplitude, e.g., u0~3�hv represented by the black curve. This phe-
nomenon can be ascribed to the time-dependent potential, as there
exists no other potential barrier over the entire surface of the device.
In Fig. 2 (b), we applied gate voltage of the same sign to the left and
right parts of the conducting channel, i.e., mL 5 mR 5 50 meV. In this
case, the large-angle transmission is suppressed, and electron trans-
mission is mainly confined to a smaller range of incident angles of
hj j 400. However, perfect transmission is still observed at normal

incidence, i.e., at h 5 0. The effect of the time-dependent potential on
the transmission probability is relatively minor and confined to some
oscillations at h close to 40u. When the applied gate voltage is
increased, i.e., to mL 5 mR 5 200 meV, the transmission is further
confined to a smaller range of h, as shown in Fig. 2(c). Perfect trans-
mission, however, still persists at normal incidence.

It is interesting to note perfect transmission of normally incident
electrons no longer occur when a finite gate bias voltage is applied.
Even a small bias voltage, e.g., V 5 10 meV, can result in the dis-
appearance of the perfect normal tunneling (see Fig. 2(d).) When an
electron is injected normally from region I, and transmits through
the central region into the region III, the asymmetry in the gate
potentials of region I and III destroys the perfect matching of the
electron wavefunctions in the three regions, resulting in a finite
reflection and hence imperfect transmission process. This phenom-
enon is a striking result in this paper. In addition, the transmission
profile is slightly modulated by the time-dependent potential, espe-
cially near the threshold values of h where there is a sharp drop in the
transmission probability. The effect of the time-dependent potential
becomes weaker with increasing gate bias voltage. As shown in
Fig. 2(e), when V 5 100 meV, the modulation due to the time-
dependent potential is hardly visible. Next, we study the effect of
the frequency of the time-dependent potential on the transmission
profile. The transmission T(h, EF) is plotted for different frequencies
with a fixed value of u0=�hv~1:5 (see Fig. 2(f)). It is observed that
high-frequency potential induces a stronger modulation of the large-
angle transmission, as reflected by the larger oscillations in the trans-
mission profile.

To further analyze the effect of the time-dependent potential, we
investigate the transmission probability as a function of the fre-
quency for different amplitudes with a fixed incident angle, as shown
in Fig. 3(a). Under equal gate voltage and no bias condition of mL 5

mR 5 50 meV, the transmission shows oscillations with frequency,
with the oscillatory behavior becoming more pronounced with
increasing amplitude of the time-dependent potential. Next, we con-
sider the asymmetrical case, mL 5 2mR 5 50 meV, as shown in
Fig. 3(b). As in the previous case, the time-dependent potential
induces an oscillatory behavior in the transmission with respect to
frequency. However, the transmission probability is significantly
smaller than that in the equal voltage case, and drops to almost zero
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Figure 2 | The total transmission T(h, EF) plotted as a function of the electron injection-angle h, for (a) mL 5 mR 5 0, (b) 50 meV, and (c) 200 meV,

for (d) mL 5 2mR 5 5 meV, (e) mL 5 2mR 5 50 meV. Green, blue, red and black curves correspond to u0 5 0, 0.5, 1.5, 3 �hv with v 5 3.05 THz.

Especially, in the subgraph (f), mL 5 2mR 5 5 meV, and Green, blue, red and black curves correspond to v 5 3.05, 6.1, 9.15, 12.2 THz with u0 5 1.5 �hv.

The Fermi energy is chosen to be EF 5 100 meV and the Fermi velocity is vF 5 5 3 105 m/s.

ω ω

ω

ω ω

ω

Figure 3 | Transmission probability T as a function of the frequency of the time-dependent potential for (a) mL 5 mR 5 50 meV and (b) mL 5 2mR 5
50 meV. The frequency unit v0 is 1.525 THz and the incident angle is h 5 30u. Other parameters are the same as those in Fig. 2.
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at certain range of frequencies, e.g., 21v0 v 25v0. We also find
that the transmission probability increases with increasing amplitude
of the time-dependent potential. By contrast, in the equal-voltage
case, the reverse trend occurs, i.e., the transmission probability is
lowered as the potential amplitude u0 is increased for the incident
angle h 5 30u. For smaller incident angles of jhj, p/10, the trend of
increasing T with increasing u0 remains. Since the bulk of the trans-
mission occurs with electrons having small incident angles of jhj ,
p/10, the overall conductance increases with increasing u0 in the
equal-voltage case.

In Fig. 3, we analyze the transport behaviors only for a specific
incident angle. Next, we consider the effect of the time-dependent
potential on the overall zero-temperature conductance G, which
comprises of contribution of all electrons incident within the angular
range of {p=2 h p=2. In Fig. 4, G is plotted as a function of
frequency v for different potential amplitudes u0. One can see that
the conductance G is significantly higher in the equal-voltage case
(Fig. 4(a)), compared to the asymmetrical case (Fig. 4(b)). However,
for both cases, the conductance G increases with the potential ampli-
tude u0. Thus, one can surmise that time-dependent transport modes

(with oscillating potential in the THz frequency) can result in
enhanced overall conductance, irrespective of the presence or
absence of gate bias voltage.

To analyze the spin-locking characteristic of the spin polarization,
we investigate the time-averaged spin polarization �P~�Pxêxz�Pyêyz
�Pzêz at x 5 L/2, as a function of the electron injection-angle h for
different gate bias voltages, as shown in Fig. 5. The length of the
arrows denotes the amplitude of the spin polarization, while a dot
represents zero spin polarization. In the numerical calculation, the
Fermi energy is set to EF 5 100 meV, the frequency and the ampli-
tude are fixed to be v 5 3.05 THz and u0~2�hv. It is found that the
z-component spin polarization is zero, �Pz~0, i.e., the spin polariza-
tion is still locked to the x-y plane. When there is no shift of Dirac
points in region I and III, i.e., mL 5 mR 5 0, �P has a left-handed
helicity and is always perpendicular to the wavevector q0 of the
incident electrons. For this case, the spin polarization exists over a
large angular range, h 700, which is consistent with the large-angle
perfect transmission in Fig. 2. Under the equal-voltage case, e.g., mL 5

mR 5 50, 200 meV, �P is still perpendicular to the wavevector q0, but
the angular range of the spin polarization decreases with increasing
gate potential. Thus, one can adjust the spin polarization and confine
it to the small-angle region by changing the gate voltages of the left
and right portions of the conducting channel. Interestingly, we also
observe that the characteristic left-handed helicity of the transmitted
electrons is also broken in the presence of a finite gate bias. The
deviation from the helical spin orientation becomes more pro-
nounced as the bias voltage is increased (as can be observed by the
green arrows corresponding to the largest applied bias). In addition,
we found that the deviation from the left-handed helicity is greater
for large-angle transmission. For the zero-angle transmission, the
spin polarization is robust with respect to the applied bias voltage
and time-dependent potential. In terms of the definition of the spin
polarization, when h 5 0u, we find that Px=y tð Þ!

P
m,m0 t�m eð Þtm0 e0ð Þ

fm c0,R ezm0�hvð Þ+c0,R ezm�hvð Þ

 �

, where fm is an exponential
function including m and m9. Basically, the condition
c0,R ezm0�hvð Þ{c0,R ezm�hvð Þ~0 can be satisfied for the small
values of m and m9 in the above five cases, while the transmission
coefficients tm will become zero for larger values of m. Thus for the
special case of h 5 0u, Px(t) becomes zero and this results in the
robustness of the spin polarization.

Summary
In the above, we present a theoretical study of the influence of time-
dependent potential and gate bias voltage on the chiral tunneling for
topological surface states. Utilizing the scattering matrix method, we
numerical analyze the effect of the time-dependent potential on the

ω ω ω ω

Figure 4 | The conductance G as a function of the frequency of the time-dependent potential for (a) mL 5 mR 5 50 meV and (b) mL 5 2mR 5 50 meV.
The frequency unit v0 is 1.525 THz. Other parameters are the same as those in Fig. 2.

Figure 5 | The time-averaged spin polarization �P plotted as a function of
the electron injection-angle h for v 5 3.05 THz and u0~2�hv. Other

parameters are the same as those in Fig. 2.
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transmission probability, the conductance and the spin polarization.
We find that, under the equal-voltage case (where the gate potentials
of region I and III are identical), perfect transmission occurs for
electrons which are injected normally to the interfaces. The spin
polarization retains its left-handed helicity, but the angle range of
the spin polarization decrease with increasing gate voltage. However,
in the presence of an asymmetrical gate voltage two signature char-
acteristics of Klein tunneling no longer hold. Firstly, normally incid-
ent electrons no longer experience perfect transmission-the
transmission probability of such electrons diminishes with increas-
ing gate bias voltage. Secondly, the left-handed helicity of the spin
polarization of transmitted electrons is also broken by the finite gate
bias. As for the time-dependent potential, its influence is prominent
only for large-angle transmission, where it induces oscillatory or
resonance-like behavior in the transmission. The overall conduc-
tance of the device is significantly reduced upon application of a gate
bias voltage. Finally, the presence of time-dependent transport
modes which give rise to time-dependent potential, would enhance
the device conductance, irrespective of the presence or absence of
gate bias voltage.
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