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In the Ultimatum Game, two players are offered a chance to win a pie. The proposer suggests how to split the
pie. The responder can either accept or reject the deal. If an agreement is not reached, neither player gets
anything. Both game theory and evolutionary game theory predict the rational solution that the proposer
offers the smallest possible share and the responder accepts it. Fairness thus requires additional mechanisms
for natural selection to favor it. Studies to date assumed that individuals have competed for the fixed size of
pies, in sharp contrast with real situations, where randomness is ubiquitous. Here we study the impact of
random allocation of pies on the evolution of fairness in the Ultimatum Game. Interestingly, we find that the
evolution of fairness can be promoted by the randomness associated with the size of pies, without the
support of any additional evolutionary mechanisms.

T
he Ultimatum Game has become a popular paradigm for investigating and elucidating the evolution of
fairness1. In this simple game, two players, one acting as a proposer and the other as a responder, have to
share a pie. The proposer suggests a split of the pie, and the responder can either accept it or not. If the

responder accepts the offer, the deal is done. If the responder rejects the offer, neither player obtains anything.
Apparently, a rational responder should accept any nonzero offer, or else he will end up with getting nothing, and
thus a selfish proposer should always claim the large majority of the pie, which is known as the subgame perfect
equilibrium in game theory2. This is also the observed outcome for the evolutionary Ultimatum Game in a well-
mixed population3. However, large amount of empirical experiments show that the majority of proposers offer
40% to 50% of the total sum, and about half of responders reject offers below 30%1,4–9, which is obviously at odds
with above analytical reasoning. Then how can we understand the emergence and persistence of fairness in a
population of self-interest individuals?

Recently, considerable efforts have been made to explore the origins of this altruistic behaviour. Some studies
have demonstrated that many people are not only concerned with their own benefits but also influenced by the
payoffs of others, which is usually considered in the definitions of utility functions8,10–13. While others have shown
that the preference of people towards fairness may be due to the repeated interactions in the Ultimatum
Game6,8,13,14. In the context of evolutionary game theory15, theoretical studies indicate that small group size16,
reputation17, empathy18, population structure19–29 and heterogeneity30,31 play a vital role in the evolution of fair-
ness in the Ultimatum Game.

To our knowledge, an important issue, which has so far remained unexplored, is how the random allocation of
pies affects the evolution of fairness in the Ultimatum Game. In hunter-gatherer societies32, the Ultimatum Game
can describe such a situation, where two individuals have to divide in advance the reward of a task which can be
obtained only by jointly effort, such as cooperative hunting, forming an alliance against another group member,
or food sharing. Obviously, there is no reason that the sizes of rewards must be uniform. Let us take cooperative
hunting as an example. It apparently can not be guaranteed that the prey is always the same for each hunting
activity. Actually, it seems more plausible to assume that the sizes of pies are subject to some kind of distribution,
which motivates us to model and study the random allocation scheme of pies in the Ultimatum Game under the
framework of evolutionary game theory (see Model definition in Methods section). Interestingly, we find that
whenever individuals compete for stochastic sizes of pies (introduced by random allocation scheme), evolution
can lead to fairer split, without the support of any additional evolutionary mechanisms. Our results thus dem-
onstrate how the randomness can be crucial for the emergence and maintenance of fairness.
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Results
In this report, we mainly focus on how the amplitude of fluctuation of
the pies, L, influences the evolution of fairness in the Ultimatum
Game. The strategy of a player is given by a vector S 5 [p, q], where p
represents the offer level, i.e., the fraction of the pie offered by the
player when acting as a proposer, and q indicates the acceptance
threshold, i.e., the minimum fraction that the player accepts when
acting as a responder.

We start by studying how local random allocation scheme of pies
affects the evolution of fairness in the spatial Ultimatum Game. It
should be noticed that L 5 0 recovers the original spatial Ultimatum
Game19, wherein uniform allocation scheme of pies is adopted. With
the increment ofL, the allocated pies become increasingly stochastic.
Figure 1 shows the results for the evolution of fairness across the
whole applicable span of L. Comparison between the results on
uniform allocation scheme (i.e., L 5 0) with those on local random
allocation scheme (i.e., 0 , L # 1) reveals the impact of randomness
on the evolution of fairness. For uniform allocation scheme, the
population evolves towards a state deviating from the game-theoretic
prediction, and equilibrates at �p<0:317 and �q<0:297 on spatial net-
works, which is similar to the positive effect of network structure on
facilitating cooperation33–37. As L increases, both �p and �q monoton-
ically increase, and reach their own maximums (i.e., �pmax<0:343 and
�qmax<0:313) at L 5 1.

The time evolution of typical spatial strategy distributions for L 5

0 and L5 1 is depicted in Figs. 2(a) and 2(b), respectively. Generally,
the evolutionary process for the case ofL5 0 can be characterized by
two distinct dynamical phases: local aggregation (from t 5 1 to t 5

10) followed by global expansion (from t 5 10 to t 5 10000). Initially,
self-incompatible strategies (i.e., strategies satisfying p , q) are
extinct after the first few time steps [see t 5 10 for L 5 0 in
Fig. 2(a)]. Such strategies obtain nothing when interacting with
themselves. Consequently, they will disappear in a spatial world.
On the other hand, self-compatible strategies (i.e., strategies satisfy-
ing p $ q), which can be roughly classified into two categories:
generous strategies (i.e., strategies that satisfy the condition that p
is large, while q is small) and quasiempathic strategies (i.e., strategies

that satisfy the condition that p and q are similar with each other.),
gradually form spatial clusters in a self-organized manner [see t 5 10
for L 5 0 in Fig. 2(a)]. Therefore, we can make the macroscopic
observation that the average offer level of the population increases,
while the average acceptance threshold decreases in this stage [see t 5

1 and t 5 10 for L 5 0 in Fig. 2(a)]. Subsequently, the system enters
into the global expansion phase. The more fair quasiempathic strat-
egies can expand into the territories of the less fair quasiempathic and
the generous ones in the form of spatial clusters. We emphasize that
theories related to spatial selection of cooperators in the prisoner’s
dilemma game38 or the public goods game39 do not help explain
fairness in the Ultimatum Game at this stage, as a cluster of indivi-
duals with more fair quasiempathic strategies receives the same aver-
age payoff as a cluster of individuals with less fair quasiempathic
strategies or generous ones. On the contrary, it is the performance
of one strategy against other strategies that determines its own evolu-
tionary fate. With these facts in mind, we can explain the above
phenomenon by considering the following situation: a player with
more fair quasiempathic strategy S2 5 [p2, q2] competes with another
player with less fair quasiempathic strategy S1 5 [p1, q1]. Then the
following two cases should be considered: (a) 0ƒq1ƒq2ƒp1ƒ

p2ƒ
1
2

or 0ƒq2vq1ƒp1ƒp2ƒ
1
2

, and (b) 0ƒq1ƒp1vq2ƒp2ƒ

1
2

. The payoff difference between the player with S2 and the one with

S1 is 2(p1 2 p2) if condition (a) holds, and 1 2 2p2 if condition (b)
holds. Obviously, it is advantageous for players to enhance their
acceptance thresholds. Though it gives a good estimation of the local
competition between players on spatial networks especially if the
connectivity is low, this simple analysis ignores the fact that the
performance of a player depends not merely on one single inter-
action, but on the interactions with players in the whole neighbor-
hood. From this perspective, players are tempted to lower their
acceptance thresholds. Put differently, there is a tradeoff between
rejecting unfair offers (achieving by increasing q) and making more
successful splits (achieving by decreasing q) for players in structured
populations. As a result, we can inspect a sharp increase of the

Figure 1 | Evolution of fairness in the spatial Ultimatum Game. The average offer level �p and the average acceptance threshold �q of the population

as a function of the parameterL, if local random allocation scheme is adopted. Error bars indicate the standard deviation. Other parameters: K 5 0.1 and e

5 0.005.
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average acceptance threshold of the population from a low level at t
5 10 to a moderate level at t 5 100, while a relatively moderate
increase of the average offer level of the population in this stage
[see t 5 10 and t 5 100 for L 5 0 in Fig. 2(a)]. Still, there are a
few small residual clusters of generous strategies embedded in a
spatial world of fair quasiempathic strategies at t 5 100. The offer
level of each player is roughly equal [sp < 0.0328 at t 5 100, see
Fig. 2(a)]. On the other hand, the strategies surviving in the struc-
tured population are self-compatible [see Fig. 2(a)]. Both factors
lead to the result that the payoff of each player is approximately equal
in the population. The strategy evolution is largely controlled by
slowly coarsening dynamics, which is similar to the behaviour of
the voter model40. Since the fraction of fair quasiempathic strategies
is much higher compared to the fraction of generous ones, the fair

quasiempathic strategies will take over the whole population even-
tually [see t 5 100 and t 5 10000 for L 5 0 in Fig. 2(a)]. Regarding
the case of L 5 1, we inspect a very similar evolutionary process as L
5 0 [see Fig. 2(b)].

For the purpose of shedding light on the constructive impact of
local random allocation scheme of pies on the evolutionary success of
fairness in our agent based simulations, we turn to consider a mini
spatial Ultimatum Game17,19,41, in which only two strategies, i.e., S1 5

[p1, q1] and S2 5 [p2, q2] satisfying 0ƒq1ƒp1vq2ƒp2ƒ
1
2

, are

present. It was previously reported that the fate of a random arrange-
ment of two strategies on the two-dimensional grid relies on whether
a 3 3 3 cluster of one strategy can spread or not19,41. We thus invest-
igate how the invasion ability of a 3 3 3 S2 mutant cluster varies with

Figure 2 | Evolutionary process of characteristic spatial strategy distributions emerging for (a) L 5 0 and (b) L 5 1 starting from identical
random initial conditions. (a) t 5 1: �p<0:236 and sp < 0.147, �q<0:237 and sq < 0.148, and p{q<{0:00107 and sp–q < 0.208. t 5 10: �p<0:304 and sp <
0.0828, �q<0:168 and sq < 0.109, and p{q<0:136 and sp–q < 0.103. t 5 100: �p<0:351 and sp < 0.0328, �q<0:320 and sq < 0.0629, and p{q<0:0312 and

sp–q < 0.0492. t 5 10000: �p<0:3274 and sp < 0.0176, �q<0:0306 and sq < 0.0220, and p{q<0:0213 and sp–q < 0.0148. (b) t 5 1: �p<0:236 and

sp < 0.147, �q<0:237 and sq < 0.148, and p{q<{0:00107 and sp–q < 0.208. t 5 10: �p<0:319 and sp < 0.0875, �q<0:171 and sq < 0.110, and p{q<0:149
and sp–q < 0.110. t 5 100: �p<0:362 and sp < 0.0389, �q<0:329 and sq < 0.0637, and p{q<0:0333 and sp–q < 0.0439. t 5 10000: �p<0:348 and sp <
0.0165, �q<0:320 and sq < 0.0230, and p{q<0:0284 and sp–q ,, 0.0187. Other parameters: K 5 0.1 and e 5 0.005.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4534 | DOI: 10.1038/srep04534 3



L in a spatial world of players with strategy S1. In Supplementary
Note, we find that the parameter region, under which the 3 3 3 S2

mutant cluster is expected to expand [i.e., E NS2 tð Þ{NS2 t{1ð Þð Þ
w0], is enlarged when L increases (see Supplementary Fig. S13).
More intriguingly, there exists a intermediate value of L that leads
to the most favorable condition for the evolution of fairness in the
mini spatial Ultimatum Game. Such observation reminds us of the
coherence resonance phenomenon in dynamical systems, where
noise can anticipate the behaviour of the system past a bifurcation
point in a resonant manner42–46. Indeed, results presented in
Supplementary Fig. S13 clearly show that there exists an optimal L
for which the parameter region of E NS2 tð Þ{NS2 t{1ð Þð Þw0 is max-
imal. As a matter of fact, E NS2 tð Þ{NS2 t{1ð Þð Þ can be assumed to
represent the constructive effects of noise on the system, and has
similar meaning as the signal-to-noise ratio in dynamical systems42.
Then we can regard the phase transition as a bifurcation point of a
dynamical system. This conjecture can be strengthened by consider-
ing that the parameter p2 in the noisy regime truly acts as a bifurca-
tion parameter, since increasing its value pushes the system further
away from the transition line, which makes it increasingly difficult
for noise to anticipate the behaviour of the system beyond the
bifurcation (see Supplementary Fig. S13). Extensive computer simu-
lations also show the existence of intermediate optimum L in the full
spatial Ultimatum Game (i.e., with its continuum of strategies) by
expanding L beyond the reasonable range [0, 1], and thus verify our
explanation (see Supplementary Fig. S1).

Figure 3 shows how fairness evolves if the randomness of pies is
extended from local to global in the spatial Ultimatum Game. The
results obtained here are qualitatively identical as the ones for the
case of local random allocation scheme. Namely, as L increases, both
the average offer level �p and the average acceptance threshold �q of the
population increase. Thus together with the results obtained from
Fig. 1, one can conclude that the stochasticity in the sizes of pies
facilitates the evolution of fairness in the spatial Ultimatum Game.

To check the universality of the drawn conclusions, we have tested
various aspects of the model. Considering a well-mixed population, a
small-world network, or a scale-free network does not affect our

qualitative results (see Supplementary Figs. S2, S3 and S4).
Without the aid of ‘‘spatial reciprocity’’19, the well-mixed population
evolves into a considerably unfair state (see Supplementary Fig. S2).
The degree of fairness increases compared with that observed on
square lattices, when individuals interact on small-world networks.
Namely, the small-world effect can further enhance the level of fair-
ness (compare Figs. 1 and 3 with Supplementary Fig. S3). In contrast,
the heterogeneity of the degree distribution disfavors fairness, as the
level of fairness achieved in the scale-free networks is more modest in
comparison with that observed on square lattices (compare Figs. 1
and 3 with Supplementary Fig. S4). This is in sharp contrast with
other theoretical investigations that inhomogeneity of the networks
can result in a remarkable boost in cooperation37,47. Altering the
update rule (employing asynchronous updating rule) results in the
same qualitative outcomes (see Supplementary Fig. S5). Applying
overlapping generations (asynchronous updating) instead of non-
overlapping generations (synchronous updating) can further elevate
the degree of fairness (compare Figs. 1 and 3 with Supplementary Fig.
S5). Moreover, the variation of noise or learning error does not affect
our qualitative outcomes (see Supplementary Figs. S6 and S7).
Moderately adjusting the noise as well as learning error does not
alter the conclusion that random allocation of pies promotes the
evolution of fairness. As a further test of robustness, we investigate
another pattern of Ultimatum Game, in which the game is played
only once between two parties, and roles (proposer or responder) are
randomly assigned to them. Again, we find qualitative equivalent
behaviour (see Supplementary Fig. S8). Moreover, we also test
another widely applied initial strategy distribution setup, in which
the two components p and q of each individual’s strategy vector [p, q]
are initially picked up in the interval [0, 1] randomly and indepen-
dently. We show that such change does not affect the generality of the
reported results (see Supplementary Fig. S9). In addition, when
replacing the uniform distribution of pies with exponential or
power-law distribution, we find qualitatively the same results (see
Supplementary Fig. S10). All the above results have indicated that the
main conclusions are robust against a wide variety of perturbations
of the model.

Figure 3 | Evolution of fairness in the spatial Ultimatum Game. The average offer level �p and the average acceptance threshold �q of the population

as a function of the parameterL, if global random allocation scheme is adopted. Error bars indicate the standard deviation. Other parameters: K 5 0.1 and

e 5 0.005.
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Discussion
In sum, we have studied how random allocation of pies affects the
evolution of fairness in the spatial Ultimatum Game. It was found
that the evolution of fairness can be promoted if randomness is
involved in the allocation of pies. In order to elaborate the underlying
reason for the facilitation of fairness, we have analyzed a mini spatial
Ultimatum Game, and found that the introduced randomness can
favor fairness in a resonant manner, which is similar to coherence
resonance in other dynamical systems36,42. This explanation is further
supported by the observation of the resonant phenomenon made on
the full spatial Ultimatum Game. Moreover, we have demonstrated
that the main findings are robust against numerous variations of the
model, and thus designating the randomness of pies as a universal
mechanism to promote the evolution of fairness.

Lastly, we would like to relate the present work to some other
game-theoretical ones. By using stochastic evolutionary game theory,
Rand et al.48 studied the effect of randomness on the evolution of
fairness in the Ultimatum Game. Interestingly, they found that nat-
ural selection favors fairness, when selection is sufficiently weak or
mutation is sufficiently high. However, such assumptions are not
necessary in our study. Instead, we find that the randomness arising
from the allocation of pies can promote the evolution of fairness in
the Ultimatum Game even if selection is strong and mutation is low
(see Supplementary Fig. S2). Note that it is the errors in social learn-
ing process and the finiteness of the populations that lead to the
randomness in their study. Although the randomness origins from
different aspects for these two works, both of them lead to the con-
clusion that fairness has a better chance to triumph in a random
world.

In fact, the effect of the size of pies on the origin of fair behavior has
also attracted lots of interests from experimental economists. In one
setup of experimental designs49–51, the empirical studies assumed that
the size of the pies to be allocated would decay over rounds until an
agreement is reached. While in our model, the size is randomly
changed during the evolutionary process, and we focus on the one-
round Ultimatum Game. In another pattern52,53, researchers invest-
igate the Ultimatum Game with incomplete information, that is, both
parties have limited information regarding the game (e.g., only pro-
poser knows the size of pie, while the responder is merely informed
about the probability distribution of possible pie sizes when respond-
ing to the proposal52.). In our study, however, players have no
information about their co-players and they have completely no idea
on the size of pies. Our analysis shows that randomness of pies
facilitates the evolution of fairness in the Ultimatum Game even in
such information-deficiency situation.

Methods
Model definition. The strategy of each player can be characterized by a vector S 5 [p,
q]. The value of p denotes the fraction of the pie offered by the player when acting as a
proposer, while the value of q indicates the acceptance threshold, i.e., the minimum
fraction that the player accepts when acting as a responder. Each time step, every
individual plays the Ultimatum Game with each of its neighbors, once in the role of
proposer and once in the role of responder. Let P (Si, Sj) be the payoff that player i with
strategy Si 5 [pi, qi] gets from player j with strategy Sj 5 [pj, qj]. Thus P(Si, Sj) is given
by

P Si,Sj
� �

~

1{pið ÞRizpjRj if pi§qj and pj§qi

1{pið ÞRi if pi§qj and pjvqi

pjRj if pivqj and pj§qi

0 if pivqj and pjvqi

8>>><
>>>:

, ð1Þ

where Ri (Rj) is the pie allocated to the Ultimatum Game, in which player i (j) acts as a
proposer, and j (i) as a responder. As far as we know, previous studies regarding the
Ultimatum Game simply assume the uniform allocation scheme of pies, that is, the
size of pies is constant (i.e., Ri 5 Rj 5 1). In this report, we would like to relax this
assumption, and introduce randomness by considering random allocation scheme of
pies.

Random allocation scheme. For random allocation scheme, pies are randomly allo-
cated to the Ultimatum Games. As the first step to model the random allocation
scheme and for the convenience of analysis, the pies Ri and Rj, which are split between
player i and j, are simply assumed to be Ri 5 1 1 j and Rj 5 1 2 j, where j is a
random variable and subject to uniform distribution ranging from 2L to L [see
Fig. 4(a)]. As the total size of pie Ri 1 Rj 5 2 to be split between i and j is constant, the
randomness of the allocation of pies is merely local in this case. Therefore, we term
this mode of random allocation scheme as local random allocation scheme. Later, we
will also investigate the so called global random allocation scheme, wherein Ri 5 1 1

ji and Rj 5 1 1 jj [see Fig. 4(b)]. Here ji and jj are independent random variables,
and subject to uniform distribution ranging from 2L to L. The parameter L
determines the amplitude of undulation of the pies. For reasonability of the model, we
set 0 # L # 1 for both local and global random allocation schemes, making sure that
Ri $ 0 and Rj $ 0. It is important to note that all the expectations of the above random
variables equal to zero, and thus there is no net contribution of both kinds of random
allocation schemes to the total expected payoff of the population statistically.

Subsequently to the games, players consider updating their strategies. Every player
accumulates the payoff and then would experience the strategy updating synchro-
nously. Particularly, player i adopts the strategy Sj of a randomly selected neighbor j
with the probability

T Pj{Pi
� �

~
1

1zexp { Pj{Pi
� ��

K
� � , ð2Þ

where Pi and Pj are the payoffs of i and j, respectively. The parameter K quantifies the
amplitude of noise36. As the strategies in the Ultimatum Game are continuous, it is
almost impossible to imitate the strategy of the role model precisely. Thus we add a
small perturbation to the process of strategy updating. Namely, after learning from j,
the strategy of i becomes Si 5 [pi 1 e1, qi 1 e2] with e1 and e2 being randomly picked
up from the interval [2e, e]. Both the noise K and the learning error e are used to
create a ‘‘trembling hand’’ effect2. After these updating events have been performed
for all of the individuals in the population, a new time step begins.

Model parameters settings. The simulation results were obtained by applying a
square lattice with the von Neumann neighborhood (i.e., the number of neighbors for
each site is 4), which is of size N 5 100 3 100 and with periodic boundary condition.
Based on rational self-interest, the two components p and q of each individual’s
strategy vector [p, q] are initially picked up in the interval [0, 0.5] randomly and
independently17,26. To evaluate the stationary state, we simulated the model for 3 3

104 generations, calculated the mean value over the last 1 3 104 generations, and
averaged the results of 50 independent initial realizations. We confirm that runs for
longer time periods did not affect the the presented results.
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