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The human brain exhibits a complex structure made of scale-free highly connected modules loosely
interconnected by weaker links to form a small-world network. These features appear in healthy patients
whereas neurological diseases often modify this structure. An important open question concerns the role of
brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal
activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in
experimental data, on a modular network implementing the main statistical features measured in human
brain. We show that on a modular network, regardless the strength of the synaptic connections or the
modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different
modules which results in an activity depression, hindering further avalanche propagation. Critical
behaviour is solely recovered if inter-module connections are added, modifying the modular into a more
random structure.

O
ne of the crucial questions in biology is the relation between structure and function: To what extent the
particular structure of a living system controls the performance in specific functions, or is pathological
behaviour related to deviations from an optimal structure? This question is of remarkable interest for

what concerns the human brain. Modularity is the main feature of the brain, composed of functional areas, whose
existence is well known since more than a century. The brain functional connectivity network has received wide
attention in the literature in recent years. In particular the functional network has been found to exhibit scale free
properties1, i.e., the absence of a typical connectivity degree, and small world features2. Experimental results
indicate that healthy brains exhibit small world features, whereas patients affected by neurological diseases are
characterized by different networks. In particular, schizophrenic patients3 or brain tumor patients4 exhibit a more
random architecture of the underlying network. Within this context, recently Gallos et al5 have developed a
detailed analysis of fMRI data evidencing the complexity of the modular structure of human brain: The functional
network is composed of a set of hierarchically organized modules made of strong links. These modules are self-
similar structures, not small-world. However, modules are connected by weaker ties, which make the network
small world, preserving the well-defined modules. Remarkably, weak ties are strategically organized in order to
maximize information transfer with minimal wiring cost6–8.

Neuronal activity is the fundamental process leading to the complex brain functions. Even in absence of
external stimuli, the brain undergoes a spontaneous activity which represents about 30% of the overall activity.
Spontaneous neuronal activity consists of bursts of firing neurons that can last from a few to several hundreds of
milliseconds and, if analysed at a finer temporal scale, exhibit a complex structure in terms of neuronal ava-
lanches. Indeed, in vitro experiments have recorded avalanche activity9,10 from mature cultures of rat cortex,
whose size and duration distributions follow a power law with exponents, , 21.5 and , 22, respectively. This is
a typical feature of a system acting in a critical state, where large fluctuations are present and the response does not
have a characteristic size. The same critical behavior has been measured in vivo from rat cortical layers11, from the
cortex of awake adult rhesus monkeys12, as well as for dissociated neurons from rat hippocampus13,14 or leech
ganglia13. All these experiments record electro-physiological activity by means of microelectrode arrays, sampling
small areas of the cerebral system. Criticality in brain activity has been also investigated at a larger scale. In
particular, from fMRI recordings of spontaneous activity in healthy subjects15 the activity correlation length scales
with the functional area size. Spontaneous brain activity has been also measured in healthy subjects by magneto-
encephalography (MEG)16 and found to scale with the same exponent of neuronal avalanches. Experimental data
do not exhibit cascades involving the entire brain, as expected in a system acting in a critical state.
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The scaling exponents of neuronal avalanches measured in different
experiments are quite robust which has stimulated a number of theor-
etical studies17,18 and neuronal models have successfully reproduced
the exponents found for neuronal avalanches19–22. Several complex
networks have been implemented, as well as hierarchical modular
networks23. However, an important open issue is to verify the critical
behavior of spontaneous activity on networks reproducing closely the
human brain at a larger scale, as done recently for the role of cortical
columns in neural computation24. This study addresses the question
how the complex human brain structure, and in particular modularity
(Fig. 1), affects spontaneous activity. The problem is of great relevance
since spontaneous activity plays an important role in evoked activity,
i.e., the response of the system to external stimulations.

Results
We implement a neuronal network model19,25–27, able to reproduce
the scaling properties of neuronal avalanches on non-modular com-
plex networks, on a structure that has the main statistical properties
of the functional network measured in human brains5 (see Methods).
The aim is to enlighten the dependence of the critical features of
neuronal activity on the number of modules M, their size Nm and
average connectivity strength within modules, S, and between mod-
ules, W. More precisely, we want to investigate if the response of the
system is really scale-free, namely if avalanches of all sizes are
observed, and to enlighten the role of modularity features.

Previous results19,22,25 have shown that the model generates a crit-
ical avalanche activity, i.e., an avalanche size distribution behaving as
a power law over a size range up to the total number of neurons. This
result is recovered on many non-modular complex network struc-
tures (regular, small world, scale free, fully connected). In order to
investigate the role of modularity and, more precisely, of the module

size on the avalanche activity, we first analyse a system where all
modules have the same number of neurons Nm. On a modular
network the avalanche size distribution exhibits a power law beha-
vior only for avalanche sizes up to the size of a single module fol-
lowed by an exponential decay (Fig. 2) and increasing Nm leads to the
occurrence of larger avalanches. The value of the power law expo-
nent is found to be 1.7 6 0.11 by a Kolmogorov-Smirnov test with a
confidence level 90%. This value is compatible but slightly larger
than the experimental value for spontaneous activity9 and the
numerical value found for this model on a non-modular network19,27.
This could be due to the limited scaling regime which is of the order
of the single module size.

Avalanches are not confined within the module where they start.
Indeed, by direct inspection, we have verified that avalanches can
reach several modules but are able to activate only a few neurons in
the invaded modules. Avalanches are therefore able to carry informa-
tion to different modules but the invasion of more modules results in
a depression of the overall activity: Because of the weaker inter-
module connections, activation of a single neuron in a new module
leads to a limited activity in an environment not previously stimu-
lated by this avalanche. Indeed, by rescaling the avalanche size by the
number of neurons in a module Nm (lower inset Fig. 2), we notice that
the smaller the module size, the higher the probability to involve in
the activity neurons in different modules. The dependence of the
scaling regime on the number of modules is then analysed by increas-
ing M, keeping Nm fixed (upper inset Fig. 2). Interestingly, all dis-
tributions for different numbers of modules M collapse onto a unique
curve: The activity depression effect following the activation of more
modules is solely controlled by the modular size Nm.

Experimental results5 indicate that intra-module connections are
stronger than inter-module ones. We have verified if the average

Figure 1 | Modular structure of the neuronal system. Network with M 5 14 modules in different colors with a number of neurons from Nm 5 20 to 100.

Intra-module connections have a larger average strength (thicker lines) than inter-module connections, i.e. S . W. For the network generation procedure

see Methods.
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connection strengths plays a role in limiting the scaling behavior of
the avalanche distribution by changing S and W, up to W 5 S (Fig. 3).
As expected, at fixed Nm and W, larger avalanches become more
probable for increasing S (blue line and triangles). Conversely, by
progressively increasing W at fixed S we observe that surprisingly the
scaling regime decreases and the distributions extend to smaller
avalanche sizes (curves with symbols). Indeed stronger inter-module
connections make the invasion of different modules more probable,
with a consequent depression of the overall activity as discussed
above. Therefore, confining activity within a single module makes
larger avalanches more probable. However, this effect becomes less
relevant for increasing modular size Nm and avalanches involving the
entire system are never observed even for W 5 S, independently of
their value (black circles and green line), suggesting that the only
relevant parameter is the ratio W/S. For large Nm the exponent value
is independent of S and W and W solely affects the onset of the
exponential cut-off.

In real brains external stimulation often involves more functional
regions. We have monitored the system activity under the simultan-
eous stimulation of several neurons in different modules. By increas-
ing the number of stimulated neurons chosen at random in different
modules, the size of the largest avalanche increases, however activity
is never able to involve all neurons even in the limiting case W 5 S
(Fig. 4). Conversely, under stimulation of several neurons a lack of
small avalanches is observed, which further limits the scaling regime
of the avalanche size distribution. As a final verification, we consider
a network made of modules with different sizes (Fig. 4). The presence
of small and large modules increases the occurrence probability of
large avalanches, i.e., events involving about half system are
observed. However, the scaling regime is again controlled by the size
of the largest module. Interestingly, in all cases the value of the power
law exponent is independent of the features of the modular network.

In order to better investigate the role of modularity on the ava-
lanche activity, we monitor the number of modules m involved in
each avalanche and measure the distribution P(m) (Fig. 5). This
exhibits a power law behavior P(m) , m2m over a scaling range
increasing with the total number of modules in the network M,
followed by an exponential cut-off. In the upper inset we show that
the scaling P(m) 5 m2m f(m/mmax) is satisfied, with the maximum
number, mmax, of modules reached by activity scaling with the num-
ber of modules in the network, mmax / Ms with s 5 0.70 6 0.05. As
expected, for fixed S the probability to invade more modules
increases for larger W and for W *v S avalanches reaching all mod-
ules can be observed. As a consequence the scaling behavior depends
on W for fixed S. More precisely, the power law exponent is solely
dependent on the ratio b 5 W/S (lower inset Fig. 5) and exhibits a
value m 5 3.6 6 0.1 for b . 0.5. The value of the exponents m and s
are obtained by a Kolmogorov-Smirnov test with a confidence level
95%. The distribution crosses over towards an exponential behavior
for smaller b. As observed in real brains, inter-module connections
being slightly, but not significantly, weaker than connections within
modules improve the functional efficiency of the system, since activ-
ity can reach all modules optimizing information transmission.

Results indicate that neither the module size, nor the number of
modules, the stimulation extension or the connection strengths can
make the modular network recover a truly critical behavior for ava-
lanche activity. Modularity in the network is insured by the very
different percentage of intra-module (92%) and inter-module (8%)
connections. Increasing this last percentage would progressively
modify and finally destroy the modular feature of the network.
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Figure 2 | Dependence of the scaling behaviour of the avalanche size
distribution on system size. Avalanche size distribution for 100

configurations of modular networks with M 5 25, W 5 0.2, S 5 0.4 and for

different values of Nm. The dashed line has a slope 1.7. Lower inset: The
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10
1

10
2

10
3

s

10
-6

10
-4

10
-2

10
0

P(s)
exp=1.7
S=0.4  W=0.2  
S=0.6  W=0.2  
S=0.4  W=0.4 
S=0.6  W=0.6  

10 100s

10
-6

10
-4

10
-2

P(s)

S=0.4  W=0.2  
S=0.4  W=0.4  

b)

Figure 3 | Dependence of the scaling behaviour of the avalanche size
distribution on synaptic strengths. Avalanche size distribution for 100

configurations of modular networks with M 5 16, Nm 5 900 and different

values of W, S. The dashed line has a slope 1.7. Inset: Distributions for a

smaller module size Nm 5 200.

10 100 1000s
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P(s)

n
inp

=3

n
inp

=5

n
inp

=7

M=9 
exp=-1.7

Figure 4 | Scaling behaviour for multiple stimulation and different
module size. Avalanche size distribution for 100 configurations of

modular networks where ninp neurons are initially stimulated. Parameter

values are M 5 16, NM 5 400, W 5 S 5 0.4 (symbols). Avalanche size

distribution for networks with different Nm (M 5 9, S 5 0.4, W 5 0.2, Nm

5 100, 400, 900). The dot-dashed line has a slope 1.7.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4312 | DOI: 10.1038/srep04312 3



Indeed, by increasing the number of inter-module connections the
avalanche size distribution finally recovers a power law behavior over
the entire scaling range (Fig. 6) if connections are equally distributed
within and between modules. This effect is observed even more
clearly for longer plastic adaptation, namely for a wider distribution
of synaptic strengths (red straight line). Conversely, for modular
networks (8% of inter-module connections) the distribution is not
affected by the synaptic strengths and the two distributions for dif-
ferent connection strengths collapse (black symbols and grey straight
line). Moreover, for increasing inter-module connections avalanches
have a higher probability to invade more modules (inset of Fig. 6) and
for 50% inter-module connections avalanches invade with equal
probability all modules.

Discussion
Modular organization is a characteristic feature of many biological
systems, especially relevant in systems exhibiting separate functional
units. In neuronal networks, modularity plays a crucial role in net-
work synchronization and affects the synchronization transition
more than long-range connections28. Hierarchical modular structure
has been also found able to sustain scale-free activity in presence of
weak perturbations23. However, how the modular structure affects
the scale free behaviour is an open question which can provide inter-
esting insights in the origin of pathological response in some neur-
onal systems. The present study shows evidence that the modular
structure of the brain, made of highly connected functional areas
loosely inter-connected by weaker links, is a fundamental ingredient
insuring efficient and controlled functioning of healthy brains.
Modularity, at the same time, allows information to reach all areas
but hinders the involvement of the whole system in activity, which
could lead to pathological response. This behaviour is due to an
activity depression resulting from the invasion through weaker links
of modules not stimulated by previous firings, which tend to confine
the response to the modular size. These results are in agreement with
experimental data, since the critical behavior of brain activity is
confirmed at the level of single functional areas, i.e., non-modular
networks with different connectivity properties. At the scale of the
entire brain, conversely, our results explain why critical behaviour
should not be observed, regardless the modular size, the number of
modules and the connectivity strengths. The only way to recover

criticality is to increase inter-modular connectivity, transforming
the modular network and leading to the loss of modularity of the
functional network, which becomes a more random structure, as in
patients with neurological diseases. This suggests that the structure
could be at the origin of such pathologies. Results are in agreement
with a study of the stability of the power grid in US via the sand-pile
model on a two-module network29. Also in this case modularity
mitigates large cascades by diverting load at an optimal percentage
of inter-module connections close to 8%.

Methods
Implementation of the modular network. Here we implement a single level of the
modular network measured in ref. 5 (Fig. 1). We consider N neurons uniformly
distributed in a 2d system. Neurons are organized in M modules each containing Nm

neurons. The simulated values of M are comparable with the number of functional
areas or Brodmann’s area in the brain, under the requirement that Nm is large enough
to provide a satisfactory scaling regime for the size distributions. Both, the case of
modules with the same and different size are analysed. Synaptic connections and
strengths gij are assigned according to ref. 5, with gij ? gji. More precisely, connections
between neurons within the same module form a scale-free network, where the out-
going connectivity degree is distributed as n koutð Þ!k{

out with 5 2.1, and their initial
value gij is assigned at random in the interval [S 2 0.1, S 1 0.1]. The two neurons are
chosen according to a distance dependent probability, p(r) / e2r/5,r., where r is their
spatial distance and ,r. a characteristic distance30. Results do not depend on the
neuronal spatial density or the average connection length ,r.. Since the synaptic
connections between modules represent 8% of the total number of connections5, we
evaluate their number on the basis of the total number of intra-module connections as
Nkinter 5 Nkintra0.08/0.92. We then assign them according to

P ki
out ,k

j
out

� �
* ki

out

� �1{
kj

out

� �{

, where ki
out and kj

out are the number of synapses of

neurons i and j belonging to different modules and ~2:1, according to the
experimental value. This implies that inter-module connections are typically
established between low connectivity neurons and hubs are connected with neurons
within the same module. Each inter-module connection has an initial random
strength gij in [W 20.1, W 10.1], where W , S according to ref. 5. The total out-
connectivity degree distribution is updated during each step of the procedure, to
include both inter-module and intra-module connections. Once the network of
output connections is established, we identify the resulting degree of in-connections,
kin for each neuron.

Neuronal network model. We consider N neurons characterized by their potential vi,
initially assigned at random. The initial distribution is irrelevant in order to obtain
critical avalanche activity. Each neuron can be excitatory or inhibitory, with a
percentage of pin 5 10% inhibitory synapses. This value, lower than the percentage
measured experimentally, is needed in order to observe a sufficient scaling regime in
avalanche size distributions. As it will be shown in the Results section, the scaling
regime is controlled by the single module rather than the entire system size, therefore
a larger pin would require to simulate networks with larger Nm. Moreover, inhibitory
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neurons are chosen among neurons with high connectivity (kout . 50), according to
experimental observations31. Each neuron fires as soon as its potential reaches a
threshold vmax. In order to start activity a small random stimulus (about vmax/10) is
applied to a random neuron. As soon as at a given time the value of the potential at a
neuron i is above threshold, vi $ vmax, the neuron fires modifying the potential of the

kouti connected neurons proportionally to gij
27, vj tz1ð Þ~vj tð Þ+ viki

out

kj
in

gij tð ÞP
k gik tð Þ ,

where the sum over k is over all out-going connections of i and the plus or minus sign

denotes excitatory or inhibitory gij, respectively. The ratio ki
out

.
kj

in makes the

potential variation of neuron j induced by neuron i independent of the connectivity
level of both neurons, as expected for real neurons27. After firing, a neuron is set to a
zero resting potential and in a refractory state lasting one time step (about 10 ms),
during which it is unable to receive or transmit any charge. At the end of an avalanche,
we implement Hebbian plasticity rules: The strength of synapses connecting active
neurons is increased proportionally to the activity of the synapse, i.e., the potential
variation of the post-synaptic neuron, gij(t 1 1) 5 gij(t) 1 (vj(t 1 1) 2 vj(t))/vmax.
Conversely, the strength of all inactive synapses is reduced by the average strength
increase per synapse,Dg~

X
ij,t

dgij tð Þ=Nb , where Nb is the number of synapses. The

same strengthening and weakening rules are applied to both excitatory and inhibitory
synapses. The presence of both strengthening and weakening rules implements a
homeostatic regulatory mechanism for synaptic strengths, which preserves the
average synaptic strength32. An external stimulus then triggers further activity in the
system. We implement plasticity during a finite series of stimuli in order to modify the
synaptic strengths initially assigned at random. However, we verify that plastic
adaptation preserves the average values of the strength distribution, in particular that
inter-module connections are weaker than intra-module ones. Moreover, we limit the
duration of plastic adaptation to avoid pruning of synaptic strengths, which would
modify the network modular structure.
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