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An essential feature of genuine quantum correlation is the simultaneous existence of correlation in
complementary bases. We reveal this feature of quantum correlation by defining measures based on
invariance under a basis change. For a bipartite quantum state, the classical correlation is the maximal
correlation present in a certain optimum basis, while the quantum correlation is characterized as a series of
residual correlations in the mutually unbiased bases. Compared with other approaches to quantify quantum
correlation, our approach gives information-theoretical measures that directly reflect the essential feature of
quantum correlation.

Q
uantum physics differs significantly from classical physics in many aspects. A complete classical descrip-
tion of an object contains information concerning only compatible properties, while a complete
quantum description of an object also contains complementary information concerning incompatible

properties (see Fig. 1). This difference is also present in correlations. A classical correlation in a bipartite system
involves the correlation of only a certain property, while a quantum correlation in a bipartite system also involves
complementary correlations of incompatible properties. The simultaneous existence of complementary correla-
tions together with the freedom to select which one to extract is the most important feature of quantum
correlation (see Fig. 2). Schrödinger introduced the word ‘‘entanglement’’ to describe this peculiar feature, which
was termed ‘‘spooky action at a distance’’ by Einstein1–4.

More recently, entangled states were defined as states that cannot be written as convex sums of product states.
This precise definition is very helpful in terms of both mathematical and physical convenience, and it motivates
the useful definition of the entanglement of formation. However, we now know that entanglement of formation is
just one particular aspect of quantum correlation. Many measures of quantum correlation have been proposed
from different perspectives, and they can be divided into two categories: entanglement measures5–9, and measures
of nonclassical correlation beyond entanglement10–24.

The essential feature of quantum correlation, i.e., the simultaneous existence of complementary correlations in
different bases, is also revealed by the Bell’s inequalities25,26. Bell’s inequalities quantify quantum correlation via
expectation values of local complementary observables. Instead, we shall seek a way to directly reveal the essential
feature of quantum correlation from an information-theoretical perspective. Indeed, there are several previous
entropic measures of quantum correlation (such as quantum discord D, measurement-induced disturbance,
symmetric discord, etc), which are proposed from an information-theoretical perspective. But these measures
are based on the difference between quantum mutual information27 (which is assumed as the total correlation)
and a certain measure of classical correlation. Here, we take a different approach and reveal the essential feature of
quantum correlation directly. The genuine quantum correlation does not vanish under a change of basis, and can
be characterized as the residual correlations remaining in the complementary bases.

Results
The idea. We begin with a comparison between the correlations in two different states:

rc~
1
2

00j i 00h jz 11j i 11h jð Þ, ð1Þ
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EPRj i~ 1ffiffiffi
2
p 01j i{ 10j ið Þ: ð2Þ

The first state has only classical correlation, which can be revealed
when Alice and Bob each measure the observable sz, i.e., project their
qubits onto the basis {j0æ, j1æ}. If they measure a complementary
observable, sx or sy, no correlation between their measurement
results exists. The second state is the Einstein-Podolsky-Rosen
(EPR) state (or the singlet state), which has both classical and
quantum correlations. The classical correlation in the EPR state
can be revealed when Alice and Bob each measure the same
observable, e.g. sz. Moreover, this kind of correlation also exists
simultaneously in complementary bases (actually, in all bases). The
simultaneous existence of correlation in complementary bases is an
essential feature of the genuine quantum correlation. This feature is
illustrated in Fig. 2 and treated in a rigorous manner in the rest of this
article.

Classical and genuine quantum correlations. For any bipartite
quantum state rAB, there are many measures of classical correla-
tion28. Here, we use the one proposed by Henderson and Vedral29,
which is also used in the definition of quantum discord10. Alice
selects a basis aij iA i~1, � � � ,dAj

� �
of her system in a dA-dimen-

sional Hilbert space and performs a measurement projecting her
system onto the basis states. With probability pi 5 trAB((jaiæA

ÆaijflIB)rAB), Alice will obtain the i-th basis state jaiæ, and Bob’s
system will be left in the corre sponding state rB

i ~A ai rABjjh
aiiA

�
pi. The Holevo quantity of the ensemble {pi; rB

i } that is
prepared for Bob by Alice via her local measurement is given by

x rAB aij iA
� ���� �

~x pi; rB
i

� �
:S

X
i
pir

B
i

� �
{
X

i
piS rB

i

	 

, which

denotes the upper bound of Bob’s accessible information about
Alice’s measurement result when Alice projects her system onto
the basis {jaiæA}. The classical correlation in the state rAB is defined
as the maximal Holevo quantity over all local projective
measurements on Alice’s system:

C1 rABð Þ: max
aij iAf g

x rAB aij iA
� ���� �

: ð3Þ

A basis {jaiæA} that achieves the maximum C1(rAB) is called a C1-basis

of rAB, and is denoted as A1
i

�� �
A

i~1, � � � ,dAj
n o

. There could exist

many C1-bases for a state rAB.

We consider another basis a2
j

��� E
A

j~1, � � � ,dAj
n o

, which is mutu-

ally unbiased to the C1-basis A1
i

�� �
A

i~1, � � � ,dAj
n o

in the sense that

A1
i a2

j

���D E��� ���~ 1ffiffiffiffiffi
dA
p , i.e., if the system is in a state of one basis, a

projective measurement onto the mutually unbiased basis (MUB)

will yield each basis state with the same probability. The most essen-
tial feature of quantum correlation is that when Alice performs a

measurement in another basis a2
j

��� E
A

j~1, � � � ,dAj
n o

that is mutually

unbiased to the C1 basis, Bob’s accessible information about Alice’s
results, characterized by the Holevo quantity, does not vanish. This
residual correlation represents genuine quantum correlation and can
be used as a measure of the quantum correlation. Formally, a mea-
sure of quantum correlation Q2(rAB) in the state rAB is defined as the
Holevo quantity of Bob’s accessible information about Alice’s results,
maximized over Alice’s projective measurements in the bases that are

mutually unbiased to a C1-basis A1
i

�� �
A

i~1, � � � ,dAj
n o

, and further

maximized over all possible A1
i

�� �
A

n o
(if not unique), i.e.,

Q2 rABð Þ: max
A1

ij iAf g
max

a2
j

�� �
Af g

x rAB a2
j

��� E
A

n o���n o
: ð4Þ

where a2
j

��� E
A

j~1, � � � ,dAj
n o

is any basis mutually unbiased to the

basis A1
i

�� �
A

i~1, � � � ,dAj
n o

. A basis a2
j

��� E
A

n o
that achieves the max-

imum quantum correlation Q2 in (4) is called a Q2-basis, and is

denoted as A2
j

��� E
A

j~1, � � � ,dAj
n o

. If there is only one C1-basis, the

second maximization over the C1-bases A1
i

�� �
A

n o
in (4) is not neces-

sary. If there is more than one C1-basis, and not all of them achieve
the maximum in (4), then we redefine the C1-bases as those that also
achieve the maximum in (4). In other words, the bases (if any) that
achieve the maximum in (3) but do not achieve the maximum in (4)

will not be considered as A1
i

�� �
A

n o
any more. After this redefinition,

if A1
i

�� �
A

n o
is still not unique, then A2

j

��� E
A

n o
depends on the choice

of A1
i

�� �
A

n o
. It is also obvious that A2

j

��� E
A

n o
is mutually unbiased to

A1
i

�� �
A

n o
.

Similar to the case of characterizing entanglement, a single quant-
ity is not sufficient to describe the full property of quantum correla-
tion because there could be many types of quantum correlation.
Following the same line of reasoning, we can define the residual
correlation in a third MUB as

Q3 rABð Þ: max
A1

ij iAf g
max
A2

jj iAf g
max
a3

kj iAf g
x rAB a3

k

�� �
A

n o���n o
, ð5Þ

where a3
k

�� �
A

k~1, � � � ,dAj
n o

is any basis mutually unbiased to both

A1
i

�� �
A

n o
and A2

j

��� E
A

n o
. An optimum basis a3

k

�� �
A

n o
to achieve the

maximum in (5) is called a Q3-basis, and is denoted as A3
k

�� �
A k~j

n
1, � � � ,dA:g. Similarly, we redefine the Q2-bases A2

j

��� E
A

n o
as those

that are optimum in both (4) and (5), and further redefine the C1-

bases A1
i

�� �
A

n o
as those that are optimum in (3), (4) and (5).
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Figure 1 | (a) A complete classical description of a classical object (a

giraffe) is a simple collection of information about compatible properties,

such as color, height, weight, position and velocity (the photo was taken by

S.W. in Hefei animal zoo). (b) A complete quantum description (a

quantum state | yæ) of a quantum system (e.g. a spin-1/2 particle) contains

information about incompatible properties (sx, sy, sz) in an intrinsic way:

information about incompatible properties exists simultaneously even

though only a single property can be measured at a time; and we can freely

select which property to measure.
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Figure 2 | (a) Classical correlation in a bipartite state reaches the

maximum in a certain basis and vanishes in any complementary basis.

(b) However, quantum correlation in a bipartite state contains correlations

in complementary bases simultaneously; and one can freely select with

which basis to read out the correlation.
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Suppose in this manner that we can define M quantities for the
measures of correlation, which are conveniently written as a single
correlation vector ~C: C1,Q2,Q3, � � � ,QMð Þ for the state rAB. The
number M cannot be greater than the number of MUBs that exist
in the dA-dimensional Hilbert space. The first quantity C1 denotes
the maximal classical correlation present in the state rAB, which can
be revealed when Alice performs a measurement of her system in a

C1-basis A1
i

�� �
A

i~1, � � � ,dAj
n o

. As classical correlation will vanish

when measured in a mutually unbiased basis, all of the other quant-
ities describe genuine quantum types of correlation. The second
quantity Q2 denotes the maximal genuine quantum correlation,

and A2
j

��� E
A

j~1, � � � ,dAj
n o

denotes an optimum basis to reveal this

correlation. The third quantity Q3 denotes another type of genuine

quantum correlation, and A3
k

�� �
A

j~1, � � � ,dAj
n o

denotes a basis to

reveal the second type of quantum correlation.
The splitting of the correlation vector as a single classical com-

ponent (C1) and several quantum components (Q2, � � � , QM) is not
artificial, in fact, this splitting captures the essential difference
between classical correlation and quantum correlation. The quantity
C1 represents the maximal amount of correlation available in a single

basis A1
i

�� �
A

n o� �
. The quantity Q2 represents the maximal amount

of correlation that is available not only in the first basis A1
i

�� �
A

n o
but

also in a second complementary basis A2
j

��� E
A

n o
(we know

C1§Q2§Q3§ � � � from the definition of these quantities). And
Q3 represents the maximal amount of correlation available not only

in A1
i

�� �
A

n o
and A2

j

��� E
A

n o
, but also in a third MUB A3

k

�� �
A

n o
. The

amount Q3 of correlation exists in 3 MUBs while the amount Q2 of
correlation may only exist in 2 MUBs. Thus, Q3 represents the
amount of correlation with a higher level of quantumness than that
of Q2, and may have more practical advantages when 3 MUBs are
necessarily used (e.g. entanglement-based QKD via 6-state protocol).

It should be pointed out that the maximum number of MUBs that
exist in a dA-dimensional Hilbert space is not known for the general
case. When dA is a power of a prime number, a full set of dA 1 1
MUBs exists; for other cases, there may not exist dA 1 1 MUBs. For
example, when dA 5 6, only 3 MUBs have been found yet, while 3 is
much less than dA 1 1 5 7. Many interesting works can be found on
the existence of MUBs in the literature30–34. Since there exist at least
3 MUBs for any integer dA $ 2, the quantities C1, Q2, and Q3 are well-
defined for any dA $ 2. In many cases, we are interested in combined
systems of qubits with dA being a power of 2, thus, dA 1 1 MUBs exist
and quantities C1,Q2, � � � ,QdAz1 are all well-defined. For an arbitrary
dA-dimensional Hilbert space, we don’t make assumptions about the
maximal number of MUBs that exist, we only assume that M MUBs
are available, where M is less or equal to the maximal number of
MUBs that exist. In many cases, we only discuss the first 3 elements
(C1, Q2, and Q3) of the correlation vector for simplicity.

Examples. Now, we shall calculate the correlation vector for several
families of bipartite states, and see how these measures in terms of
MUBs are well justified as measures of classical and genuine
quantum correlations.

For a bipartite pure state written in the Schmidt basis,

yj iAB~
X

i

ffiffiffiffi
li

p
aij i bij i, the maximal classical correlation can be

revealed when Alice performs her measurement onto her Schmidt
basis {jaiæ}; thus, one immediately has C1~S rBð Þ~

X
i
{li log2 li.

If Alice chooses another basis a’ij if g, whenever she obtains a par-
ticular measurement result, Bob will be left with a pure state.
Therefore, one can easily obtain the maximal true quantum correla-
tion Q2 5 S(rB) 5 C1; any other basis will yield the same amount of

quantum correlation. Therefore, the correlation vector for a bipartite
pure state jyæAB is given as ~C~ S rBð Þ,S rBð Þ, � � � ,S rBð Þð Þ. The cor-
relation vector exhibits a unique feature of the correlations in a pure
state: the classical correlation is equal to the quantum correlation
revealed in any basis, and both values are equal to the von Neumann
entropy of the reduced density matrix on either side, which is the
usual measure of entanglement in a pure state.

A classical-quantum (CQ) state is a bipartite state that can be
written as

rcq~
X

i

qi ij i ih j6si, ð6Þ

where {qi} is a probability distribution, ij iji~0,1, � � � ,dA{1f g is a
basis of system A in a dA-dimensional Hilbert space, and {si} is a set
of density matrices of system B. The maximal classical correlation is
revealed when Alice performs her measurement in the basis {jiæ}12;
thus, the maximal classical correlation in the CQ state rcq is given by

C1~x qi; sif g~S
X

i
qisi

� �
{
X

i
qiS sið Þ. To calculate the

amount of quantum correlation, Alice projects her system onto

another basis a2
j

��� En o
that is mutually unbiased to the optimum basis

{jiæ} for classical correlation. From ija2
j

D E��� ���2~ 1
dA

, we have

a2
j rcqj ja2

j

D E
~
X

i

qi a2
j ij i ih jð Þj ja2

j

D E
si

~
1

dA

X
i

qisi~
1

dA
rB:

ð7Þ

For each different result j that Alice obtains, Bob is left with the same
state rB~

X
i
qisi; thus, Bob’s state has no correlation with Alice’s

result, and we immediately have Q2~Q3 � � �~0 according to the
definitions of these quantities. Hence, for a CQ state, the correlation
vector is given as~C~ C1,0, � � � ,0ð Þ. The only correlation present in a
CQ state is the classical correlation, and the quantum correlation in
any MUB vanishes!

Next, we consider the Werner states of a d 3 d dimensional sys-
tem35,

rw~
1

d d{að Þ I{aPð Þ, ð8Þ

where 21 # a # 1, I is the identity operator in the d2-dimensional

Hilbert space, and P~
Xd

i,j~1
ij i jh j6 jj i ih j is the operator that

exchanges A and B. Because the Werner states are invariant under
a unitary transformation of the form U fl U, the maximal classical
correlation can be revealed when Alice simply projects her system

onto the basis states {jiæ}. With probability pi~
1
d

, Alice will obtain

the i-th basis state jiæ, and Bob will be left with the state

rB
i ~A ih jrAB ij iA

�
pi~

1
d{a

I{a ij i ih jð Þ. It is straightforward to

show that C1~x pi; rB
i

� �
~log2

d
d{a

� 

z

1{a

d{a
log2 1{að Þ:xw.

Due to the symmetry of the Werner states, it is not difficult to dem-
onstrate that Q2~Q3~ � � �~C1~xw. Therefore, for the Werner
state rw, the correlation vector is given by ~C~ xw,xw, � � � ,xwð Þ. The
maximal quantum correlation in a Werner state can be revealed in
any basis, and it is equal to the maximal classical correlation C1.
However, the correlation vector of a Werner state is different from
that of a pure state because C1 # S(rB) 5 log2 d. The inequality
becomes an equality only when d 5 2 and a 5 1, in which case,
the Werner state becomes a pure state rw 5 jEPRæ ÆEPRj. For the
Werner states, the symmetric discord is equal to the quantum dis-
cord D12 when Alice’s measurement is restricted to projective mea-
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surements. The entanglement of formation Ef for the Werner states is

given as Ef rwð Þ~h
1
2

1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ max 0,

da{1
d{a

� 
� �2
s0

@
1
A

0
@

1
A, with

h(x) ; 2x log2 x 2 (1 2 x) log2(1 2 x)36. The three different
measures of quantum correlation, i.e., our measure of maximal
quantum correlation Q2, the quantum discord D and the entangle-
ment of formation, are illustrated in Fig. 3 for comparison. From this
figure, we see that the curve for entanglement of formation intersects
the other two curves; thus, Ef can be larger or smaller than Q2 (D).

As the last example, we consider a family of two-qubit states,
where the reduced density matrices of both qubits are proportional
to the identity operator. Such a state can be written in terms of Pauli
matrices,

rAB~
1
4

I26I2z
X3

j,k~1

wjksj6sk

0
@

1
A, ð9Þ

where I2 is the identity operator in the two-dimensional Hilbert space
of a qubit, and wjk are real numbers that satisfy certain conditions to
ensure the positivity of the matrix in (9). These two-qubit states can
be transformed by a local unitary transformation (that does not
change the correlations) to the following form:

sAB~
1
4

I26I2z
X3

j~1

rjsj6sj

 !
ð10Þ

which is equivalent to the Bell-diagonal states. To ensure the posi-
tivity of the matrix in (10), the real vector~r~ r1,r2,r3ð Þmust lie inside
or on the boundary of the regular tetrahedron that is the convex hull
of the four points: (21, 21, 21), (21, 1, 1), (1, 21, 1) and (1, 1, 21)
(which are the four Bell states). The singular values of the matrix wjk

are given by jrjj. We rearrange the three numbers {r1, r2, r3} according
to their absolute values and denote the rearranged set as {�r1, �r2, �r3}
such that �r1j j§ �r2j j§ �r3j j.

In the Methods, we prove that the correlation vector of the state in

(9) is given by~C~ x1,x2,x3ð Þ, where xj~1{h
1z �rj

�� ��
2

� 

with h(x) ;

2x log2 x 2 (1 2 x) log2(1 2 x). To have some intuition of this result,
we consider some special classes of states with only one parameter.

When r1~r2~r3~{
a

2{a
with 21 # a # 1, the states in (10)

become the Werner states for d 5 2 in (6). When r1 5 r2 5 1 2

2p and r3 5 21 with 0 # p # 1, the states in (10) become r1 5 pjy2æ
Æy2j1 (1 2 p) jy1æ Æy1j; we obtain C1 5 1 and Q2 5 Q3 5 1 2 h(p).
When r1 5 1 2 2p and r2 5 r3 5 2p, the states in (10) become

r2~p y{j i y{h jz 1{p
2

yz
�� �

yz
� ��z wz

�� �
wz
� ��	 


; we have C1~

max 1{h pð Þ,1{h
1zp

2

� 
� �
, Q2~1{h

1zp
2

� 

and Q3~min

1{h pð Þ,1{h
1zp

2

� 
� �
. Here, y{j i~ EPRj i~ 1ffiffiffi

2
p 01j i{ 10j ið Þ,

yz
�� �

~
1ffiffiffi
2
p 01j iz 10j ið Þ and wz

�� �
~

1ffiffiffi
2
p 00j iz 11j ið Þ. Our mea-

sure of quantum correlation Q2 is compared with the quantum dis-
cord D and the entanglement of formation Ef for r1 and r2 in Fig. 4.

Inequality relations between correlation measures. It is not
difficult to show that the relation Q2 # D holds for the Werner
states, and for all the example states considered in this article.
However, it is not clear whether this inequality holds for any
bipartite states. If Q2 # D holds for any bipartite states, then one
can easily have C1 1 Q2 # S(A:B) where S(A:B) 5 S(rA) 1 S(rB) 2

S(rAB) denotes the quantum mutual information.
Nevertheless, we can prove the following inequality:

C1zQ2ƒH1zH2zS rBð Þ{S rABð Þ{log2 dA ð11Þ
where Hc (c 5 1, 2) denotes the Shannon entropy of the probability

distribution p cð Þ
i

n o
obtained by the measurement on system A in the

basis Ac
ij iA
��i~1, � � � ,dA

� �
. The proof is given in the Methods. Since

Hc # log2 dA, one immediately has

C1zQ2ƒS rBð Þ{S rABð Þzlog2 dA: ð12Þ

As C1 and Q2 are the two largest elements in the correlation vector,
when they are replaced by correlations in any two MUBs, inequalities
(11) and (12) still hold.

Figure 3 | Three measures of quantum correlation for the Werner states as functions of a when d 5 2 (left) and d 5 3 (right). The red curve represents

our measure Q2, the green curve represents the quantum discord D and the blue curve represents the entanglement of formation Ef.

Figure 4 | Different measures of quantum correlation for two special classes of states: r1 5 p | y2æ Æy2 | 1 (1 2 p) | y1æ Æy1 | (left) and

r2~p y{j i y{h jz 1{p
2

yz
�� �

yz
� ��z wz

�� �
wz
� ��	 


(right). In each figure, the red curve represents our measure Q2, the green curve represents the

quantum discord D, and the blue curve represents the entanglement of formation Ef. In the left figure, the green curve is not shown because D 5 Q2 for r1.
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Discussion
Our measures of quantum correlation provide a natural way to
quantify the ‘‘spooky action at a distance’’, and directly reveal the
essential feature of the genuine quantum correlation, i.e., the sim-
ultaneous existence of correlations in complementary bases. This
feature enables quantum key distribution with entangled states, since
the quantum correlation that exists simultaneously in two (k) MUBs,
which is quantified by Q2 (Qk), is the resource for entanglement-
based QKD via two (k) MUBs. Quantitative relation between the
genuine quantum correlation and the secret key fraction in QKD
could be studied in further work.

All the measures considered above are not symmetric with respect
to the exchange of systems A and B, as only system A’s bases are
considered to reveal the correlation. Symmetric measures and a sym-
metric correlation vector are also introduced and discussed in the
Methods. A further study of the relation between the symmetric
correlation vector and the symmetric discord12 could reveal the dif-
ference between these measures in practical applications.

There are some open questions. Are our measures (Q2, Q3) of
genuine quantum correlation additive? How do they behave under
some natural operations (for example, Alice adds an ancilla)? Do our
measures (Q2, Q3) behave like the entanglement measures that do not
increase under local operations and classical communication
(LOCC)9, or more like the measures of nonclassical correlation
beyond entanglement (for example, quantum discord) that could
increase under LOCC38? We hope that further investigations will
unveil these mysteries.

Methods
Proof of the inequality (11). Here we prove inequality (11) in the main text.

Let p cð Þ
i

n o
c~1,2ð Þ denote the probability distribution obtained by the

measurement on system A in the basis Ac
ij iA
��i~1, � � � ,dA

� �
, i.e., p cð Þ

i ~trAB

Ac
ij i A

c
ih j6Ið ÞrABð Þ. Let Hc (c 5 1, 2) denote the Shannon entropy of the probability

distribution, Hc~
XdA

i~1
{p cð Þ

i log2 p cð Þ
i . Here, the basis A1

i

�� �
A

��i~1, � � � ,dA

n o
is

the optimum basis for measurement on system A to achieve the maximum classical

correlation C1, and the basis A2
i

�� �
A

n o
is the optimum basis to achieve Q2 among the

bases that are mutually unbiased to A1
i

�� �
A

n o
. However, the proof below only

requires that Ai
i

�� �
A

n o
and A2

i

�� �
A

n o
are mutually unbiased to each other.

Let r cð Þ~
XdA

i~1
Ac

ij i A
c
ih j6p cð Þ

i r
cð Þ

i with c 5 1, 2, where

r
cð Þ

i ~ Ac
ih jrAB A

c
ij i
.

p cð Þ
i .

The uncertainty relation37 gives

S A1
i

�� �� ���B	 

zS A2

i

�� �� ���B	 

§log2 dAzS AjBð Þ ð13Þ

where S(AjB) 5 S(rAB) 2 S(rB), and S Ac
ij ijBð Þ~S r cð Þ

� �
{S rBð Þ c~1,2ð Þ. As r(c) is a

CQ state, one can show that S r cð Þ
� �

~Hcz
X

i
p cð Þ

i S r
cð Þ

i

� �
. Therefore,

H1z
X

i

p 1ð Þ
i S r

1ð Þ
i

� �
{S rBð Þ

zH2z
X

i

p 2ð Þ
i S r

2ð Þ
i

� �
{S rBð Þ

§log2 dAzS rABð Þ{S rBð Þ

ð14Þ

As C1~S rBð Þ{
X

i
p 1ð Þ

i S r
1ð Þ

i

� �
and Q2~S rBð Þ{

X
i
p 2ð Þ

i S r
2ð Þ

i

� �
, we immedi-

ately have

C1zQ2ƒH1zH2zS rBð Þ{S rABð Þ{log2 dA ð15Þ

which completes the proof of the inequality.

Calculation of the correlation vector for the states in (9). In this paragraph, we shall
demonstrate that the correlation vector of the state in (9) is given by ~C~ x1,x2,x3ð Þ,

where xj~1{h
1z �rj

�� ��
2

� 

with h(x) ; 2x log2 x 2 (1 2 x) log2(1 2 x). We perform

the calculation in the transformed basis, with the states rewritten in Eq. (10). Without
loss of generality, we can suppose the numbers rj are already arranged according to jr1j
$ jr2j $ jr3j; then, we only need to prove that ~C~ x1,x2,x3ð Þ, where

xj~1{h
1z rj

�� ��
2

� 

. A projective measurement performed on qubit A can be written

PA
+~

1
2

I2+~n:~sð Þ, parameterized by the unit vector~n. We have

p+rB
+:TrA PA

+rAB

	 

~

1
2
: 1

2
I2+

X
j

njrjsj

 !
: ð16Þ

When Alice obtains 6, qubit B will be in the corresponding states

rB
+~

1
2

I2z
X

j
njrjsj

� �
, each occurring with probability

1
2

. The entropy S rB
+

	 

reaches its minimum value h

1z r1j j
2

� 

when~n~ 1,0,0ð Þ. From

rB~pzrB
zzp{rB

{~
1
2

I2 and S(rB) 5 1, we immediately have

C1~1{h
1z r1j j

2

� 

. The basis for Alice’s projection PA

+~
1
2

I2z~n’:~sð Þ in the

definition of Q2 must be mutually unbiased to the basis parameterized by~n~ 1,0,0ð Þ;
therefore, the unit vector~n’ must be in the form~n’~ 0,n2,n3ð Þ. The maximum in the
definition of Q2 is reached when~n’~ 0,1,0ð Þ, and thus a calculation similar to that for

C1 yields Q2~1{h
1z r2j j

2

� 

. For a qubit system, three MUBs exist. We can reveal

the quantum correlation in another (the last) MUB, which corresponds to the case

~n’’~ 0,0,1ð Þ. We easily obtain Q3~1{h
1z r3j j

2

� 

. For the general case in which the

numbers rj do not follow jr1j $ jr2j $ jr3j, a similar argument yields ~C~ x1,x2,x3ð Þ

with xj~1{h
1z �rj

�� ��
2

� 

.

Symmetric correlation vector. The correlation vector defined in the main text
relies on a special choice of the measure of classical correlation; it is not
symmetric with respect to exchange of A and B. Here, we consider an alternative
definition of the correlation vector, which is symmetric with respect to the
exchange of A and B.

For any bipartite quantum state rAB, Alice chooses a basis aij iA i~1, � � � ,dAj
� �

of
her system in a dA-dimensional Hilbert space and Bob chooses a basis

bij iA i~1, � � � ,dBj
� �

of his system in a dB-dimensional Hilbert space, and each one
performs a measurement projecting his/her system onto the corresponding basis

states. With probability pij~trAB aij iA aih j6 bj

�� �
A

bj
� ��� �

rAB

� �
, Alice and Bob will

obtain the i-th and j-th results, respectively. The correlation of their measurement
results is well characterized by the classical mutual information:

I pij
� �

~H pa
i

� �
zH pb

j

n o
{H pij

� �
, ð17Þ

where H {pk} is the Shannon entropy of the probability distribution {pk}, and
pa

i ~
X

i
pij and pb

j ~
X

i
pij are the marginal probability distributions. In other

words, H pa
i

� �
~
X

i
{pa

i log2pa
i , and H pij

� �
~
X

ij
{pijlog2pij .

The symmetric measure of classical correlation Cs
1 in the state rAB is defined as the

maximal classical mutual information of the local measurement results, maximized
over all local bases for both sides, i.e.,

Cs
1 rABð Þ~ max

aij i6 bjj if g
I pij
� �

: ð18Þ

The symmetric measure of classical correlation was discussed in12 (where the notation

Imax was used). A product basis a1
i

�� �
6 b1

j

��� E
i~1, � � � ,dA,j~1, � � � ,dBj

n o
that achieves

the maximum in (18) is called a Cs
1-basis, and is denoted as

A1
i

�� �
6 B1

j

��� E
i~1, � � � ,dA,j~1, � � � ,dBj

n o
.

The symmetric measure of maximal quantum correlation Qs
2 is defined as the

maximal residual correlation over all local bases that are mutually unbiased to a Cs
1-

basis A1
i

�� �
6 B1

j

��� En o
, further maximized over all possible Cs

1-bases (if not unique),

i.e.,

Qs
2 rABð Þ~ max

A1
ij i6 B1

jj if g
max

a2
ij i6 b2

j

�� �� � I p’ij
n o

, ð19Þ

where a2
i

�� �� �
b2

j

��� En o� �
is mutually unbiased to A1

i

�� �
A

n o
B1

j

��� E
B

n o� �
and

p’ij~trAB a2
i

�� �
A

a2
i

� ��6 b2
j

��� E
A

b2
j

D ���� �
rAB

� �
. A basis a2

i

�� �
6 b2

j

��� En o
that achieves the

maximum in (19) is called a Qs
2-basis, and is denoted as A2

i

�� �
6 B2

j

��� En o
. We redefine

the Cs
1-bases A1

i

�� �
6 B1

j

��� En o
as the bases that achieve the maximum in (18) as well as

the maximum in (19).
Similarly, Qs

3 denotes the residual quantum correlation in a third complementary

basis that is mutually unbiased to both A1
i

�� �
6 B1

j

��� En o
and A2

i

�� �
6 B2

j

��� En o
. In this
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manner, we have an alternative correlation vector~Cs~ Cs
1,Qs

2,Qs
3, � � � ,Qs

M

	 

, which is

symmetric with respect to the change of A and B.
Because the Holevo bound is an upper bound of accessible classical mutual

information, we immediately know from the above definitions that the asymmetric
correlation vector~C is an upper bound of the symmetric correlation vector~Cs for each
component, i.e., C1§Cs

1, Q2§Qs
2, � � � , QM§Qs

M . It is not difficult to demonstrate
that the asymmetric correlation vector ~C actually coincides with the symmetric
correlation vector ~Cs (i.e., ~C~~Cs) for the CQ states, the Werner states and the two-
qubit states in Eq. (9).
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