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Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human
platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet
metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references.
The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an
expansive scope of biochemical transformations that may affect or be affected by disease processes in
multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using
constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism
reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These
results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636
should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of
pathophysiological conditions including, but not strictly limited to, coagulopathies.

A
lthough it is one of the simplest and smallest human cells, the platelet has a rich biochemical repertoire
and likely plays an underappreciated role in a range of human diseases. Herein we focus on the role
platelet metabolism plays in the incompletely understood phenomenon of aspirin resistance. Aspirin

(acetyl salicylic acid, ASA) is one of the most common medications taken today and is available over the counter,
but is also prescribed at higher doses as a prophylactic, ‘first line’ anticoagulant, as it has been shown to reduce
vascular mortality, myocardial infarction, and stroke among high-risk patients with atherothrombotic disease1.
Aspirin inhibits cyclooxygenase-1 (COX-1) in platelets, inhibiting the potent vasoconstrictor and platelet agonist
thromboxane A2 (TXA2). Although the pharmacological mechanism of aspirin has been identified and its health
benefits are widely accepted, it has been estimated that 10–20% of aspirin-treated patients may experience
diminished or absent response to aspirin treatment2. Various studies have explored the prevalence of aspirin
resistance in patient populations3,4, but there have not been any cell-scale, quantitative, mechanistic delineations
of the effect of diminished cyclooxygenase activity on platelet metabolism.

Systems biology catalogues knowledge in a framework enabling mechanistic insight into causes and effects of
resulting biological phenotypes, allowing for the contextualization of datasets which subsequently promote the
predictive capabilities of biological models. There has been demonstrated utility in using metabolic reconstruc-
tions as scaffolds for systems modeling of biological organisms5, with applications ranging from metabolic
engineering6 to studying human disease7 and predicting responses to therapeutic drugs8–11. Although smaller
models exist for platelets which define signaling cascades12 or fluid dynamics13, in order to systematically assess
the characteristics of platelet metabolism we constructed iAT-PLT-636, a cell-scale, mass and charge balanced
representation of platelet metabolism that is built and functionally verified from proteomic, metabolomic,
fluxomic, and physiological data. iAT-PLT-636 provides an assessment of platelet metabolism that heretofore
has not been described and further, may disclose a potential influence on a variety of acute and chronic disease
conditions. The global view of metabolism afforded by iAT-PLT-636 provides an ideal scaffold for the analysis of
high throughput datasets and understanding the systems-level context of the outcome of small-scale experiments.
Thus, a biochemical, cell-scale signature for ASA-resistance was derived using iAT-PLT-636 with physiological
constraints simulating ASA response, ultimately providing a mechanistic overview of the shifts in flux through
reaction pathways for the ASA-resistant platelet.
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Results
Scope and content of iAT-PLT-636. iAT-PLT-636 was constructed
in a systematic, quality controlled manner with quality control/
quality assurance (QC/QA) measures using 33 human platelet
proteomic studies and 354 peer reviewed articles in the literature
that were used to define the platelet biochemical network based on
the global reconstruction of human metabolism (Figure 1 and
Methods). As the first large-scale, mass balanced model of platelet
metabolism, iAT-PLT-636 presents a breadth of platelet metabolism
that has not been captured and perhaps not even recognized before in
previous studies (Figure 2). Network content includes 1,008 reac-
tions (biochemical transformations, intracellular transporters, and
extracellular transporters), 739 compartment-specific metabolites,
225 proteins, and represents 636 genes contained in Recon 114.
Approximately one-third of the reactions have proteomic as well
as bibliomic (primary literature) support. Proteomic support for
extracellular and intracellular transport reactions is lacking, and
thus primary literature sources provided the majority of the
evidence for transport reactions. Conversely, proteomic studies
provided further insight into the true scope of amino acid,
carbohydrate, fatty acid (elongation, activation and oxidation), and
nucleotide metabolism, providing potential missing links in the
energy metabolism of the platelet15,16.

Gene-protein-reaction (GPR) relationships define the association
between genes, metabolic enzymes, and the biochemical transforma-
tions that they ultimately facilitate17. These relationships also serve as
a scaffold, enabling the integrated analysis of various high through-
put data in iAT-PLT-63618. 457 reactions have a disease associated
SNP, many of which have known therapeutic drug targets (Figure 3).
403 genetic variant diseases associated with 247 genes (Online

Mendelian Inheritance in Man19) are encompassed within the pur-
view of the model. Moreover, there are 231 FDA approved drugs that
are associated with model enzymes, of which 183 overlap with the set
of disease-associated SNP reactions (Figure 3). The ratio of drug
targets to the total number of reactions is 0.23 for iAT-PLT-636
and 0.13 for the human reconstruction, indicating there is an
increased density of druggable targets in the platelet model
(Fisher’s exact test, p 5 3.3*10213). An enrichment analysis for drug
categories with targets in iAT-PLT-636 for FDA approved drugs in
the DrugBank database20 reveals a set of categories that all have
literature-validated roles in affecting platelet metabolism
(Supplement) identifying 20 non-exclusive categories (Table 1).

Hierarchical characterization of iAT-PLT-636. The size and com-
plexity of iAT-PLT-636 as assessed by the dimensions of the
stoichiometric matrix and the size of the steady state flux solution
space, places the platelet model in between two other human blood
related cell metabolic networks, mature erythrocytes and macro-
phages (Supplemental Figure 1). The reaction dependencies within
iAT-PLT-636 are too numerous and complex to fully appreciate
simply from looking at a map (Supplemental Figures); objective,
analytical and simulation based methods are needed to charac-
terize the dependencies in the model. Functional relationships
between reactions in metabolic networks can be calculated in
numerous ways21; we employed established methods to identify
perfectly correlated as well as partially correlated (or coupled) sets
of reactions22,23 (see Methods, Figure 4A). Perfectly correlated
reaction sets are groups of reactions in which the reactions are
correlated (or anti-correlated) for a specified set of conditions.
Coupled reactions account for the set of relationships in which a
non-zero flux in one reaction implies a non-zero flux in another,
although the range and magnitude of the fluxes may vary indepen-
dently. Network content in iAT-PLT-636 was the assessed in terms of
these relationships between different reactions. Reaction set
connectivity between reactions was defined as the inclusion of a
reaction in a coset (correlated reaction set)24 or coupled22,23 with
other reactions (Figure 4A).

iAT-PLT-636 has 179 cosets and 460 coupled reaction sets
(Supplement), with an average of 3.39 reactions and 83.57 reactions,
respectively. While perfectly correlated cosets are mutually exclusive
sets of reactions, coupled reactions are not. On average, 16.43 reac-
tions were shared between coupled reaction sets and 38 reactions per
coupled set (median of 28). Figure 4B illustrates the numerous com-
plex dependencies of reactions in the model which largely center
around transport reactions for substrates and products related to
ATP generation. Clustering the set of cosets and flux coupled reac-
tion sets resulted in three principle clusters of reaction subsystems
(Figure 4C). Cosets are colored red and appear adjacent to the diag-
onal, whereas coupled reactions are colored green and appear in the
farther off-diagonal entries. The first cluster of reactions is highly
interconnected, with many connections to other reactions in the
network. The second cluster contains key reaction systems in platelet
hemostatic cascades (prostaglandin and serotonin synthesis) as well
as specialized metabolism (neurotransmitter reuptake, glutathione
synthesis, and mitochondrial exchange). Canonical pathways
involve groups of reactions, some of which may be coupled, others
of which may be in cosets, and still other reactions which are in
neither. An example of this is the prostaglandin anabolic pathway
(Figure 4D), which includes cosets, coupled reactions, as well as non-
coupled reactions. Cluster three consists of phospholipid metabolism
and is dominated by fatty acid metabolism, and the redundancies
amongst these reactions make them uncoupled from most of the
metabolic network, however many of these reactions are linked to
ATP maintenance in the energy exchange group.

Identifying an ASA-resistant metabolic signature. iAT-PLT-636
was used to investigate the differences between platelet metabolism
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in normal (ASA-sensitive, ASA-s) and ASA-resistant (ASA-r) indivi-
duals. Time course metabolomic and fluxomic ([14C]-labeled meta-
bolites, see Methods) datasets generated from platelets in human
plasma at 37uC15,25–28 were incorporated into iAT-PLT-636 as
constraints on the metabolic reaction fluxes thereby constraining
the feasible solution space of the metabolic network. Two different
models were built for ASA-s and ASA-r individuals by varying the
thromboxane A2 (TXA2) secretion flux, whose urinary byproduct is
believed to be a clinically measurable indicator of ASA resistance3

(Methods). Reaction flux phenotypes were calculated via rando-
mized sampling of the feasible flux states for the ASA-s and ASA-r
platelet models29,30. Reaction fluxes that were significantly different
(Wilcoxon rank-sum test, p , 0.05) between the two conditions
defined the ASA-r signature (Figure 5 and Methods). There is an
observed diversion of NADPH and oxygen for prostaglandin
synthesis which induces increased flux through the oxidative PPP
while decreasing flux through aerobic ATP generation pathways in
ASA-r platelets (Supplement).

In order to further validate and test the model predictions, we
analyzed targeted proteomic data from ASA-s and ASA-r patient
cohorts with stable coronary ischemic heart disease31, by determining
if the reaction flux changes in the models could predict the measured
proteomic differences in the clinical samples. During coronary
ischemic insults, one consequence of decreased cardiac perfusion is
an acute increase in oxidative stresses via elevated hydrogen peroxide
levels32. Disease phenotypes can be evoked through biochemical flux
demands33, so an increase in the hydrogen peroxide uptake was
applied to the ASA-s and ASA-r models in order to simulate an
increased ROS (reactive oxygen species) load. 150 metabolic reac-
tions were significantly altered between ASA-s and ASA-r due the
same ROS load (Figure 5 and Supplement).

Left null space pools of stoichiometric matrices represent groups
of metabolites with conserved moieties in the network (i.e., metabo-
lites or functional groups that are neither synthesized nor degraded),
so the sum totals of the metabolites do not change34–36. Thus the left
null space can be used to decipher seemingly unrelated changes in
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Figure 3 | Platelet model properties. GPR (Gene-protein-reaction) relations from gene to reaction via drug targets and SNPs are shown to represent the

information density of iAT-PLT-636 and provide the motivation for conducting mechanistic omics-mapping studies on platelet metabolism. (A)

Example of a simple GPR for monoamine oxidase (5-hydroxytryptamine:oxygen oxidoreductase) which metabolizes serotonin, demonstrating the

hierarchical levels of biological data integration in iAT-PLT-636. The thin black arrows represent the hierarchical structure between genes, proteins,

enzymes, and metabolites. The block arrows highlight the identifiers used to query the different databases. (B) The innermost ring (blue) denotes whether

the reaction has an explicit association with a known gene. The second (green) and third (yellow) rings highlight whether the associated gene with the

reaction has a disease-associated SNP, OMIM19, or known drug target, DrugBank20, respectively.
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fluxes within the network. We analyzed the left null space metabolite
pools to characterize the differences between the ASA-s and ASA-r
flux states (Methods, Supplement, and Figure 5). The connection
between TXA2 inhibition and the altered redox state is through the
link between the NADP moiety in the cytoplasm and the endoplas-
mic reticulum (which is independent of the mitochondrial NADPH/
NADP pool). Changes in the NADH/NAD pools in the cytoplasm
and mitochondria move in opposite directions, a result of the
increased diversion of flux for prostaglandin synthesis in the ASA-
r model. Shifts in the CoA, Ubiquinone 10, and glutathione pools (i.e.
changes in the ‘charge ratios’), indicate flux diversions from fatty acid
metabolism, oxidative phosphorylation, and redox management,
respectively. In addition to the increased prostaglandin synthesis,
ASA-r exhibits increased flux through glycolysis and nucleotide sal-
vage pathways with corresponding decreases in redox management
compared to ASA-s (Figure 5).

Patient data presented by Mateos-Cáceres et al showed an increase
in glyceraldehyde 3-phosphate dehydrogenase (GAPD), a decrease
in 1,6-bisphosphate aldolase (FBA), a decrease in glutathione S-
transferase (GST), and a non-significant decrease in triose phosphate
isomerase (TPI) for ASA-resistant platelets. These results were con-
sistent with ASA-r model predictions, which exhibited increased
fluxes through GAPD and TPI (Wilcoxon rank-sum test, p ,

0.05); the flux through FBA decreased, but was not significant.
Simulation results predicting a significantly reduced flux through
glutathione ROS metabolism and superoxide dismutase in ASA-r
platelets and an inability of ASA-r platelets to sustain the same degree
of hydrogen peroxide insults as ASA-sensitive platelets were con-
firmed with reduced GST expression.

Discussion
In this manuscript we provide a systems characterization of platelet
biochemistry through the accomplishment of four objectives; 1) con-
struction of a data-driven, manually curated, high quality network
reconstruction of platelet metabolism, iAT-PLT-636, 2) assessment
of network content by mapping to SNP associated diseases and drug
targets, 3) elucidation of the hierarchical functional dependencies
within the network, and 4) analysis of the aspirin resistance phenom-
enon with identification of characteristic biochemical signatures.

Although the platelet has a central role in the blood coagulation
cascade, the broad spanning biochemical and metabolic capabilities
allude to a potentially profound influence on organismal physiology
and possible role in acute as well as chronic diseases. This is high-
lighted by the broad range of SNP associated diseases that have
enzymes within core platelet metabolism (Figure 2). Moreover there
is a broad scope of drug categories that span medications used in
cardiology, rheumatology, psychology, neurology, nephrology,
infectious disease, and anesthesiology. These results suggest potential
‘off-organ’ drug effects, including side-effects as well as off-target
drug effects that may be important when evaluating existing and/
or new medications9,10.

A frequent challenge in the analysis of biochemical networks is the
characterization of reaction and metabolite dependencies under spe-
cified conditions; there exist numerous ways to express these
dependencies at feasible flux states of the networks21,22,24,37. For the
platelet we focus on identification of perfectly correlated reaction sets
(which simplify the network by collapsing reactions into modules),
but also consider their interactions with other reactions that are
coupled to them22,23,38. iAT-PLT-636 contains 1008 reactions and
transporters with a 289 dimension (right) null space, indicating of
a richness of metabolic capabilities. The cosets assist in reducing this
complexity by creating reaction modules highlighting where the
degrees of freedom within the solution space of the network lie.
The coupled set of reactions (Figure 4C off diagonal elements) then
allows one to see which reactions affect one another. The hierarchical
structure and dependencies within the network highlighted in
Figure 4 (Panels C and D) illustrate that it is not a trivial task to
determine an intervention by simply blocking a particular reaction.
The interplay of reactions must be taken into account when trying to
identify new potential therapeutic targets. The role of neurotrans-
mitters on platelet metabolism has been largely unexplored39 and the
second reaction cluster highlights some of the different areas which
may affect neurotransmitter re-uptake in the platelet, including the
metabolism and transport of tyrosine, ascorbate, urea cycle inter-
mediates, and high energy phosphate metabolites.

As a specific case study, ASA resistance was analyzed from the
expanded view of metabolism provided by iAT-PLT-636. Although
platelet turnover has been suggested to be a mechanism for ASA
resistance15,40–43, the observed altered flux states from the simula-
tions, as well as measured changes in platelet fluxes3, suggest that
ASA resistance is attributable to more than just increased turnover of
otherwise normally functioning platelets. Fluxomic data generated
under physiological conditions (human plasma at 37uC) was incor-
porated as quantitative flux constraints in order to generate aspirin
sensitive and resistant models, ASA-s and ASA-r, respectively15,25–28.
With these models in hand, clinical data was analyzed from patients
with coronary ischemic heart disease31.

The ASA-r model predicted increases in GAPD and TPI,
decreased FBA, and reduced ROS disposition via glutathione related
pathways (compared to the ASA-s model). These predictions con-
firmed through targeted proteomic measurements of GAPD, TPI,
and GST by Mateos-Cáceres et al. Interestingly, Mateos-Cáceres et al
did not have a clear rationale for the seemingly contradictory con-
centration changes of the glycolytic enzymes. However, with iAT-
PLT-636, the resulting flux pattern was easily accounted for as a
redirection of carbon flux through the PPP. These results also affirm
Mateos-Cáceres et al’s proposed mechanism for reduced protection
against ROS species in ASA-r platelets compared to ASA-s platelets,
although model simulation results show additional propagated
effects with reduction in flux through superoxide dismutase reac-
tions and an almost significant (p 5 .054) decrease in flux through
catalase. Mateos-Cáceres et al purified and measured 5 oxidative
stress proteins, of which GST had a significant decreased protein
expression. Predictions of the model simulations reached a similar
conclusion, supporting the role of glutathione metabolism in redox

Table 1 | Enriched non-mutually exclusive Drug Categories (Fisher-
exact test with Bonferroni-Hochberg correction, a 5 0.05) in the
platelet model with respect to all other approved drugs in DrugBank

Drug Category Corrected p-value

Cyclooxygenase Inhibitors 2.76E-18
Phosphodiesterase Inhibitors 5.15E-11
Adrenergic Uptake Inhibitors 6.48E-11
Vasodilator Agents 7.92E-10
Nonsteroidal Anti-inflammatory Agents (NSAIAs) 1.24E-09
Serotonin Uptake Inhibitors 7.18E-07
Antidepressants 4.04E-06
Antidepressive Agents 6.62E-05
Cardiotonic Agents 1.96E-04
Antidepressive Agents, Second-Generation 6.04E-04
Thiadiazines 1.24E-03
Dopamine Uptake Inhibitors 1.24E-03
Diuretics 1.26E-03
Antidepressive Agents, Tricyclic 5.41E-03
Antipyretics 7.68E-03
Monoamine Oxidase Inhibitors 7.68E-03
Diuretics, Thiazide 7.70E-03
Carbonic Anhydrase Inhibitors 7.70E-03
Anesthetics, Inhalation 7.70E-03
Norepinephrine-Reuptake Inhibitors 7.70E-03
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management. This finding is also consistent with the current under-
standing of cellular responses to oxidative stresses and the need for
high concentrations of glutathione in cells, in part for their critical
role in counteracting ROS44. Furthermore, Mateos-Cáceres et al’s
results showed no significant change in thioredoxin expression
between phenotypes, suggesting intracellular protein oxidants were
not a large source of ROS.

An analysis of the left null space pools assisted in the interpretation
of the alterations in ASA sensitive versus resistant cases by identify-
ing the flux constraint linking prostaglandin synthesis and central
metabolic pathways via the conserved NADP moiety (Figure 5 and
Supplement). The results of this study suggest that the metabolic
consequences of ASA-resistance on platelet metabolism are elicited
by the diversion of metabolites to prostaglandin synthesis and the
consequent flux decrease in oxidative metabolism and flux increase
in the PPP with corresponding shifts in redox pathways, glycolysis,
nucleotide salvage pathways, and lipid metabolism. These pathways
have not been previously implicated in ASA-resistance and they
present targets for delineating the origins of ASA-resistance. iAT-
PLT-636 represents the current state of knowledge of platelet meta-
bolism. Although the platelet is comparatively simple relative to
other human cell types, there is a rich and complex biochemical
complement within these cells, and findings in this study and other
work suggest that the platelet has an underappreciated role in a wide
scope of disease processes. We hope that this functionally integrated,
hierarchically structured model of platelet metabolism supports and
stimulates further analyses of the platelet and its role in human health
and disease.

Methods
Content curation through comprehensive assessment of the literature (bibliome).
33 proteomic studies on platelets were used as a major source for evidence in
enzymatic reactions in the model. Using the 1406 gene transcripts from a generalized
human reconstruction14 as a reference for genes that participate in human
metabolism, the proteomic studies mapped onto 546 unique PDB IDs and their
associated 459 Entrez gene IDs in human metabolism. Also, if there was any
delineation of the enzyme isoform associated with the PDB ID, it was taken into
consideration in the GPR construction. Because platelets are cell fragments of
megakaryocytes, it is conceivable that low levels of megakaryocyte gene transcripts
and proteins may contribute to noise between proteomic studies. Therefore, mapped
gene transcripts that were present in two or more proteomic studies were considered
to have enough evidence to be in the model, whereas genes that were present in only
one study were considered to have low evidence and were not used in model building.
When mapping protein and gene transcripts onto the model, further curation was
done to limit the presence of ‘‘generalist’’ enzymes, which promiscuously catalyze
reactions on a variety of substrates45. Reactions that mapped from generalist enzymes
were designated as medium evidence reactions whereas the ‘‘specialist’’ enzyme with
proteomic evidence yielded high evidence reactions. After curation efforts were
complete on the proteomic studies, 135 reactions had high evidence and 379 reactions
had medium evidence. Eventually, evidence indicators were used in the model
building algorithm as scoring criteria. In addition to proteomic studies, 289 bibliomic
studies were used to justify 142 enzymes in platelet metabolism and 65 bibliomic
sources were used to justify 85 extracellular transports. Because bibliomic sources
explicitly studied a specific reaction or pathway in platelet metabolism, usually in the
context of a disease (or related perturbation) study, the consequent reactions from
these sources were all deemed to have high evidence and were included in iAT-PLT-
636. The logical GPR relationships for each reaction in the model were used to
perform the mapping to proteins, SNPs, and individual genes.

Constraints-based modeling approach. The foundation of constraints-based
approaches is the stoichiometric representation of the mass- and charge-balanced
biochemical transformations of the cell46. The core, governing constraints for the
model are given by,

S:~v~0 ð1Þ

v
I

lbv~vvv
I

ub ð2Þ

where S is the m 3 n stoichiometric matrix for m metabolites and n reactions, v is a n
3 1 reaction flux vector and vub(vlb) are the upper (lower) reaction bound flux vectors.

Model construction and functional testing. After evidence was assigned to
candidate reactions, Model Building Algorithm (MBA)47 was used to build a draft

model for platelet metabolism. In concordance with the evidence structure for MBA,
Ch is the set of high evidence core reactions, Cm is the set of medium evidence core
reactions, and Rp is the set of reactions in the resulting partial model. MBA balances
the tradeoff between building a parsimonious model and maximizing the number of
reactions with high evidence by selecting the set of reactions meeting the following
criteria,

Maximize Rp\Cm

�
�

�
�{ejRp=(Ch|Cm)js:t:Ch5Rp ð3Þ

e is a penalty parameter which balances the tradeoff between building a parsimonious
model (high value of e) and maximizing the number of reactions with medium
evidence in the model (low value of e). 300 candidate models were generated with
MBA to account for alternative reaction pathways that could fulfill the same objective
and constraints. In earlier versions of the model construction process, up to 1,000
iterations were used, however we observed that for a model of this size, the reaction
content converged by 300 iterations. After the draft model was built, a topological
map of the reaction subsystems were drawn using SimPheny software (Genomatica,
San Diego, CA) (see Supplement). Reactions with no evidence (used for gap-filling)
were verified based on how many high and medium evidence reactions they
supported. Therefore, subsystems with low evidence were removed, as they were most
likely added as MBA iterated through alternate solutions. The R-group representation
of fatty acid metabolism was replaced with the explicit representation of the five most
abundant fatty acids in platelets: palmitic (1650), stearic (1850), 9-octadecenoic
(1851), linoleic (1852), and arachidonic (2054) acids. 300 reactions were added to the
model to account for the synthesis, degradation, and interconversion of
diacylglycerols, triacylglycerols, inositols, and phospholipids.

Characterization of network dependencies. The different types of functional
relationships between reactions shown in Figure 4 were derived by first calculating the
flux variability48 on the platelet model under open constraints (21 to 1000 mmol/1010

platelets/hr for all extracellular transporters and 21000 to 1000 mmol/1010 platelets/
hr for intracellular reactions). Let vi be a flux through reaction i and let vmin,i, vmid,i and
vmax,i be the minimum, midpoint, and maximum of vi’s flux range. The second step of
the method sets the flux through vi at vmin,i, vmid,i and vmax,i separately and calculates
FVA. If the flux through another reaction, vj, is uniquely constrained (vmin,j equals
vmax,j) at the minimum, midpoint, and maximum of vi’s flux, then vi and vj are
correlated24. Otherwise, if vi constrains the flux vj at any point in its range, then the
two reactions are coupled22,49 (see comparison in Supplement). Sets of reactions that
are perfectly correlated or directionally coupled are in cosets (correlated reaction sets)
or coupled sets, respectively. This definition is inherently bi-directional (vj will
constrain vi). The heatmap in Figure 4C was created after denoting reaction cosets
with a value of 1 and coupled reactions with a value of 21. Hierarchical clustering is
shown employing Jaccard’s coefficient and Ward’s method. For Figure 4B, reactions
in clusters larger than five reactions with Jaccard similarity greater than 75% were
used to represent a condensed biochemical network. The resulting network had 520 of
the 1008 reactions in the model.

Construction of ASA-sensitive and ASA-resistant platelet models. The uptake of
four carbon sources ([14C]glucose, [14C]acetate, [14C]oleate, and [14C]palmitate)
and oxygen, secretion of lactate, and intracellular ATP turnover were used from27.
Uptakes of [14C]citrate25, [14C]adenine26, pyruvate15, and [14C]glutamine28 as well as
secretion of [14C]hypoxanthine and [14C]xanthine26 from other studies in human
plasma were used as additional constraints to better characterize energy metabolism
in the resting platelet. In order to determine the intracellular flux state of energy
metabolism while limiting the total number of participating reactions, MBA47 was
once again used to enumerate possible parsimonious flux states for platelet
metabolism which enforced the aforementioned exchange constraints and
maintained intracellular constraints with respect to measured pathways in platelet
energy metabolism. This enumeration allowed for the selection of high likelihood
reaction states which could then be used to define minimal media (input reactions),
platelet demands (output reactions), and energy pathways (intracellular reactions)
that maintained basal platelet energy metabolism. Further constraints on TXA2

secretion and hydrogen peroxide uptake were enforced to define the ASA-sand ASA-r
models, with and without an ROS load. To model ASA-r, 95% of the maximum TXA2

secretion (1.102 mmol/1010 platelets/hr) was set as the lower bound to mimic
experimental observations on TXA2 production and ASA-resistivity3, whereas the
upper bound for TXA2 secretion in ASA-s platelets was set to 1% of the maximum rate
(0.011 mmol/1010 platelets/hr) to replicate the irreversible inhibitory effect on
TXA2

50. The resulting magnitude of the thromboxane secretion constraint lies within
physiological limits, as previous studies have measured 0.451 to 17.3 mmol/
1010 platelets/hr52 as the rate of secretion. In order to model the effect of the same load
in the context of ASA-resistivity, the upper bound of hydrogen peroxide uptake for
both models was set to 95% of the maximum hydrogen peroxide uptake for the ASA-
resistant model, which was 13.82 mmol/1010 platelets/hr, as the theoretical maximum
uptake for the ASA-s model was 6.7% higher at 14.75 mmol/1010 platelets/hr
hydrogen peroxide. Minimal media and modeling constraints are provided in the
supplement. Markov Chain Monte Carlo sampling using the artificial centering hit-
and-run (ACHR) algorithm was used to uniformly sample the solution space of the
constrained platelet models. 5000 sampling points, each representing a feasible flux
solution, were simulated over the course of six hours and had a resulting mixed
fraction cutoff of 0.5130. Mixed fractions close to 0.5 indicate uniform sampled points
around the median flux value, thus, the sampling of platelet models achieved uniform
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distributions over the solution spaces. The different sampled distributions represent
the different phenotypes and significant reaction flux differences were determined
using a Wilcoxon signed rank sum test, p , 0.05. A basis for the left null space of iAT-
PLT-636 was calculated and positive row reduction was performed in order to
identify metabolite pools (i.e., sums of metabolites whose sum totals are constant due
to the conservation of a particular moiety, e.g. NADP 1 NADPH). There were 18 of
these pools for iAT-PLT-636 (Supplement). Pools with significantly changing
reactions determined through the sampling analysis were extracted and were used in
the maps for Figure 5B.
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