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We consider fretting wear due to tangential oscillations of two contacting bodies. For small oscillation
amplitudes, the wear occurs only in a circular slip zone at the border of the contact area. With increasing
number of cycles, the wear profile tends to a limiting form, in which no further wear occurs. Under
assumption of a constant coefficient of friction, the limiting form of the wear profile does not depend on the
particular wear criterion and can be calculated analytically. An explicit analytic solution is presented for
arbitrary initial shape and illustrated for the cases of parabolic and conical shapes.

F
retting wear occurs if two bodies are pressed against each other and subsequently subjected to tangential
oscillations with small amplitude. It is of importance for any technical system with joints subjected to
oscillations. Very much attention was paid to fretting in such applications as fretting of tubes in steam

generators and heat exchangers1–3, joints in orthopedics4, electrical connectors5, and dovetail blade roots of gas
turbines6,7 as well as many others. Depending on particular properties of materials and on loading conditions,
fretting wear can lead either to a progressive wear or to some final state in which no further wear occurs. The proof
of the existence of the final state was done by Ciavarella and Hills8 for the case of an arbitrary two-dimensional
(plane strain) contact problem. In the present paper, we show that their conclusions are also valid for three-
dimensional contacts of axis-symmetric bodies and derive the shape of the final, no-wear state.

Consider a rotationally symmetric profile which is brought into contact with a rigid surface and then oscillates
in tangential direction with a given amplitude u(0)

x . Under assumption of sticking condition, the tangential stress
has a singularity at the border of the contact area9,10. In a contact with any finite coefficient of friction, this will
lead to the appearance of a circular slip zone at the border of the contact area11–13 which leads to wear in this
zone8. In the present paper, we will assume that the friction can be described by a local formulation of the
Amonton’s law: The surfaces in contact are in the sticking state if tangential stress t is smaller than normal
pressure p multiplied with a constant coefficient of friction m, and the tangential stress remains constant after the
onset of sliding:

tvmp, stick

t~mp, slip :
ð1Þ

At the circular border of the stick region with radius c, the critical condition t(c)~mp(c) is fulfilled. Inside this
region, the condition tvmp is valid. Due to wear outside of the sticking region, the local pressure in the sticking
region will increase and outside decrease further, independently of whether the experiment is done under
conditions of constant normal force or constant indentation depth d. This will lead to a progressive wear outside
of the region of stick. The wear process will advance until the pressure in the sliding region becomes zero. In this
limiting state, the inner parts of the contact will still remain in the sticking state, while the wear rate in the outer
parts of the contact tends to zero. The final state of no wear can be considered as a sort of ‘‘shakedown’’ state, in
which no further inelastic processes occur. The detailed kinetics of the profile depends on the wear criterion used
as well as on the loading conditions (controlled force or controlled indentation). In the most cases, the Reye-
Archard-Khrushchov wear criterion is used, stating that the wear volume is proportional to the dissipated
energy14–16. According to this wear criterion, the wear rate vanishes if either the relative displacement Dux of
the bodies or tangential stress in contact is zero. In non-adhesive contacts, the latter means vanishing of the
normal pressure p. The no-wear condition thus reads:

No wear condition :
either p~0

or Dux~0

�
: ð2Þ
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From these conditions, it follows that the pressure in the final state is
non-zero only inside the stick area and vanishes outside. The whole
process and the condition (2) for the final state were formulated in
detail by Ciavarella and Hills in Ref.8. They suggested that it should
be possible, using this condition, to deduce the final shape. This is
done in the present paper.

Results
Analytical solution for the final state with the method of dimen-
sionality reduction (MDR). To find the final profile we use the
method of dimensionality reduction (MDR)17–19. This method
allows solving the normal and tangential contact problems for
axisymmetric bodies by mapping them to a one-dimensional
contact of properly defined elastic foundation. We would like to
stress, that in spite of analyzing a contact with one-dimensional
elastic foundation, the MDR provides exact solutions for the initial
three-dimensional contact problem. The corresponding proofs can
be found in Ref.19,20 as well as in Chapters 17 and 18 of the
monograph18. In the following, we shortly recapitulate the basics of
the method of dimensionality reduction.

The main steps of the MDR are the following. Given a three-
dimensional profile z~f (r), we first determine the equivalent one-
dimensional profile20

g(x)~ xj j
ðxj j
0

f 0(r)ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2{r2
p dr: ð3Þ

The back transformation is given by the integral

f (r)~
2
p

ðr
0

g(x)ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2{x2
p dx: ð4Þ

The profile (3) is pressed to a given indentation depth d into an elastic
foundation consisting of independent springs with spacingDx whose
normal and tangential stiffness is given by

kz~E�Dx

kx~G�Dx ,
ð5Þ

where E� is the effective elastic modulus

1
E�

~
1{n2

1

E1
z

1{n2
2

E2
, ð6Þ

and G� the effective shear modulus

1
G�

~
(2{n1)

4G1
z

(2{n2)

4G2
: ð7Þ

E1 and E2 are the Young’s moduli, G1 and G2 the shear moduli of
contacting bodies, n1 and n2 are their Poisson-ratios. Note that
throughout this paper, we assume that the contacting materials sat-
isfy the condition of ‘‘elastic similarity’’

1{2n1

G1
~

1{2n2

G2
ð8Þ

guaranteeing the decoupling of the normal and tangential contact
problems9. In particular, this condition is always satisfied in the
important case of the contact between a rigid body and an incom-
pressible elastomer (both sides of equation (8) are then zero).

The resulting vertical displacements of springs are given by

uz(x)~d{g(x) ð9Þ

and the linear force density

q(x)~E�uz(x)~E� d{g(x)ð Þ: ð10Þ

The contact radius a is given by the condition

g(a)~d: ð11Þ

According to MDR rules, the distribution of normal pressure p in the
initial three-dimensional problem can be calculated using the follow-
ing integral transformation18,20:

p(r)~{
1
p

ð?
r

q0(x)ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2{r2
p dx~

E�

p

ð?
r

g 0(x)ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2{r2
p dx: ð12Þ

If the profile is moved tangentially by u(0)
x , the springs will be

stressed both in the normal and tangential direction, and the radius
c of the stick region will be given by the condition that the tangential
force kxu(0)

x is equal to the coefficient of friction m multiplied with the
normal force kzuz(c):

G�u(0)
x ~mE� d{g(c)ð Þ: ð13Þ

Let us denote the initial three-dimensional profile as f0(r), the
corresponding one-dimensional image as g0(x) and the limiting
shakedown shapes as f?(r) and g?(x) correspondingly. As discussed
above, the pressure outside the stick area must vanish in the limiting
shakedown state: p(r)~0, for rwc. From (12), it follows that

g 0(x)~0 and g(x)~const~g0, for cvxva: ð14Þ

From the condition (11), it then follows that the one-dimensional
profile in the shakedown state has the form

g?(x)~
g0(x), for 0vxvc

d, for cvxva

�
: ð15Þ

This shape is schematically shown in Figure 1. The three-dimen-
sional limiting shape can now be calculated by the back transforma-
tion (4):

f?(r)~

f0(r), for 0vrvc

2
p

ðc
0

g0(x)ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2{x2
p dxz

2
p

d
ðr
c

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2{x2
p dx, for cvrva

8>><
>>: ð16Þ

Examples of limiting profiles are shown in Figure 2.

Limiting shapes for indenters with different initial shape. I.
Parabolic indenter. The initial profile is in this case f0(r)~r2

�
(2R),

and the corresponding one-dimensional MDR-image g0(x)~x2
�

R.
The radius of the stick region is given by the condition (13):

c~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R d{

G�

E�
u(0)

x

m

 !vuut : ð17Þ

According to (16), the limiting three-dimensional profile has the
form

Figure 1 | One-dimensional MDR-image of the final ‘‘shakedown’’
profile.
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f?(r)~

r2

2R
, for 0vrvc

d{
2
p

d{
r2

2R

� �
arcsin

c
r
{

r2

pR
c
r

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

c
r

� �2
r

, for cvrva

8>><
>>: : ð18Þ

Normalizing all vertical coordinates by the indentation depth d and horizontal

coordinates by the contact radius of the initial profile, a0~
ffiffiffiffiffiffi
Rd
p

,

~f ~f =d, ~d~d=d~1,

~r~r=a0, ~x~x=a0, ~c~c=a0, ~a~a=a0 ,
ð19Þ

we can rewrite these equations in the dimensionless form

~f?(~r)~

~r2

2
, for 0v~rv~c

1{
2
p

1{
~r2

2

� �
arcsin

~c
~r
{

~r~c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

~c
~r

� �2
s

, for ~cv~rv~a

8>>><
>>>:

:ð20Þ

The non-dimensional form of the limiting profile thus depends only
on one parameter 0v~cv1.

The contact radius, and thus the outer radius of the wear region, is
given by the condition ~f?(~a)~~f0(~a):

1{
2
p

1{
~a2

2

� �
arcsin

~c
~a
{

~a~c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

~c
~a

� �2
s

~
~a2

2
: ð21Þ

In the limiting case ~c~0, the contact radius becomes ~a~
ffiffiffi
2
p

.
The total force can be calculated as

FN~2
ða
0

E� d{g(x)ð Þdx~2
ðc
0

E� d{x2
�

R
	 


dx~2E� dc{
c3

3R

� �
ð22Þ

or, under consideration of (17),

FN~
4
3

E�R1=2 d{
G�

E�
u(0)

x

m

� �1=2

dz
G�

2E�
u(0)

x

m

� �
: ð23Þ

Profiles (20) are shown in Figure 3 for a representative set of
parameters.

For ~c=~r<1, the exact solution (20) can be expanded in series:

~f?(~r)<

~r2

2
, for 0v~rv~c

~r2

2
z 1{

1
p

2{~r2{~r~c
	 
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1{
~c
~r

� �s
: for ~cv~rv~a

8>>><
>>>:

ð24Þ

While this equation is asymptotically exact for~c=~r?1, it gives a good
approximation in the whole definition range of variables ~c and ~r with

an accuracy not less than 15%. Using this approximation, one can
easily calculate the dependence of the outer wear radius ~a on the
inner wear radius ~c:

~a<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c
2

� �2

z2

s
{

~c
2
: ð25Þ

The normalized wear volume in the limiting state can be evaluated
with the same accuracy as

~V?<p(~c{1)2, ð26Þ

where ~V?~V?=(da2
0), and V? is the wear volume.

II. Conical indenter. The initial profile is in this case f0(r)~r tan h,
and the corresponding one-dimensional MDR-image g0(x)~
p

2
xj j tan h. The radius of the stick region is given by the condition (13):

c~
2

p tan h
d{

G�

E�
u(0)

x

m

� �
: ð27Þ

The limiting three-dimensional profile has the form

f?(r)~

r tan h, for 0vrvc

r{
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2{c2
p� �

tan hzd 1{
2
p

arcsin
c
r

� �� �
, for cvrva

8<
: : ð28Þ

Introducing the same dimensionless variables (19), but normalized by the

initial contact radius a0~
2
p

d
tan h

for the cone, we come to the dimen-

sionless presentation

Figure 2 | Examples of limiting profiles with ~c~0:5 for initial (a) parabolic form and (b) conical form. Dimensionless variables are defined in Eq. (19).

Figure 3 | 3D profiles in the final state according to equation (20).
Parameters: 9 linearly increasing ~c from 0.1 to 0.9.
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~f?(~r)~

2
p

~r, for 0v~rv~c

2
p

~r{
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2{~c2
p� �

z 1{
2
p

arcsin
~c
~r

� �� �
, for ~cv~rv~a

8>><
>>: :ð29Þ

The contact radius a is given by the condition f?(a)~f0(a), from
which it follows that

p

2
{ arcsin

~c
~a

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2{~c2
p

: ð30Þ

In the limiting case ~c~0, the contact radius becomes ~a~p=2.
The total normal force is equal to

FN~2
ða
0

E� d{g(x)ð Þdx~2
ðc
0

E� d{
p

2
x tan h

� �
dx

~2E� dc{
p

4
c2 tan h

� � ð31Þ

or under consideration of (27),

FN~
2E�

p tan h
d2{

G�

E�
u(0)

x

m

� �2
 !

: ð32Þ

The profiles (28) are shown in Figure 4.

Discussion
In the present paper we considered wear of axis-symmetrical profiles
due to tangential oscillations with small amplitude. Following former
suggestion of Ciavarella and Hills, we have proven that there exists a
final state in which the wear rate tends to zero. Using the method of
dimensionality reduction, we have found an analytical solution for
the shape in this final state in the closed integral form, Eq. (16).
Explicit integration has been carried out for parabolic and conical
profiles. The governing parameters of the final shape are indentation
depth and radius of the stick region. We would like to discuss the
main assumptions of this paper which affect the practical applicabil-
ity of the theory: (a) using the Coulomb’s law of friction with a
constant coefficient of friction, and (b) assuming a local wear law,
stating that the wear at each point does depend only on the pressure
and relative tangential displacement at this point. Both assumptions
are widely used but are known not to be completely correct: the
Coulomb friction law is only approximately valid if the normal stress
is not too small or too large10 and the derivations of the Khrushchev -
Archard wear relation show that the wear process is in reality
always a non-local process. As the obtained solutions have sharp

boundaries, at which the wear completely disappears and the normal
stress becomes infinitely large, the above conditions are surely not
applicable in the immediate vicinity of the boundary of the stick
region. It is an interesting task for the future research to clarify the
influence of these factors on the fretting wear and the very existence
of the final state.

Methods
For analytical solution, we used the so-called Method of Dimensionality
Reduction (MDR). The MDR is a simple technique of solving contact problems
for axi-symmetrical bodies. In this method, a three-dimensional contact problem
is replaced by a contact of a transformed profile with a properly defined elastic
foundation. The most comprehensive description of the method with all necessary
proofs is given in the recent monograph18 and in the dissertation19. The basics of
the method are further described in17,20. The MDR provides the exact three-
dimensional relations for indentation depth, contact radius and normal force as
well as radius of the stick region and the tangential displacement for the tangential
contact. Further, it allows restoring the correct three-dimensional distributions of
normal and tangential stresses in the contact area, thus providing the complete
solution of the three-dimensional problem.
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Figure 4 | 3D profiles in the final state according to equation (29).
Parameters: 9 linearly increasing ~c from 0.1 to 0.9.
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