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Active dendritic branchlets enable the propagation of dendritic spikes, whose computational functions
remain an open question. Here we propose a concrete function to the active channels in large dendritic trees.
Modelling the input-output response of large active dendritic arbors subjected to complex spatio-temporal
inputs and exhibiting non-stereotyped dendritic spikes, we find that the dendritic arbor can undergo a
continuous phase transition from a quiescent to an active state, thereby exhibiting spontaneous and
self-sustained localized activity as suggested by experiments. Analogously to the critical brain hypothesis,
which states that neuronal networks self-organize near criticality to take advantage of its specific properties,
here we propose that neurons with large dendritic arbors optimize their capacity to distinguish incoming
stimuli at the critical state. We suggest that ‘‘computation at the edge of a phase transition’’ is more
compatible with the view that dendritic arbors perform an analog rather than a digital dendritic
computation.

C
ritical systems are organized in a fractal-like pattern spanning across numerous temporal and spatial
scales. The brain has recently been included amongst abundant physical and biological systems exhibiting
traces of criticality1,2. In the past decade, several phenomena suggestive of critical states have been observed

in different systems: multielectrode data from cortical slices in vitro3–5, anesthetized6, awake7 and behaving
animals8; human electrocorticography9, electroencephalography10, magnetoencephalography10,11, as well as func-
tional magnetic resonance imaging11,12 recordings. Together, these experiments suggest evidence for the intrinsic
pervasiveness of criticality into a wide range of spatio-temporal brain scales.

The critical brain hypothesis offers an appealing solution to a long-lasting conundrum of neuroscience: how
can localized information (sometimes from very specific regions) propagate in the brain without a spatial/
temporal exponential decay or saturation1,13? Advantages of neuronal systems poised around a critical state
include optimization of the dynamic range of neuronal networks14, as confirmed experimentally15, as well as
transmission and storage of information3,4,16,17. However, a fundamental assumption of the critical brain hypo-
thesis has so far not been examined: is the single neuron the minimal dynamic unit in neuronal networks, like a
spin site in the Ising model for ferromagnets (the prototypical system for phase transitions)? Or can critical
phenomena associated with phase transitions already occur at the single neuron level? Adopting a statistical
physics approach, we explore the behavior of dendritic branchlets at the sub-cellular level as forming a network of
functional dynamical units.

Here we treat neurons with their extensive dendritic trees as excitable media (see Fig. 1a). This task is far from
trivial because of the complexity18,19, the diversity of neurons20, and the absence of information about key elements
governing the dynamics, such as how the zoo of ionic channels is distributed along the dendrites21–24. In fact, there
is an entire research area concerned with biophysically detailed neuronal modeling24–27 and dendritic
computation28.

For our modeling purposes, we evoke the statistical physics principle that emergent phenomena seem to
depend on only few characteristics such as symmetries, dimensionality, network topology, type of coupling
etc. Hence the basic dynamical units (atoms, spins) need not be modeled in detail29. Our cellular automaton
approach to dendritic computation unveils the emergence of critical phenomena at the single neuron level from a
large number of sub-cellular interacting units (dendritic compartments).

We find that the dendritic arbor can fire spontaneously when we take into account the fact that dendritic spikes
are non-stereotyped, that is, with variable durations30. In this case, a smooth continuous phase transition appears
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between rest and self-sustained dendritic activity. At the interface
between these states, there is a critical regime, which optimizes the
dynamic range of the input-output response function of the neuron’s
dendritic arbor. The presence of the phase transition can increase the
maximum neuronal signal compression capacity by up to , 100
times. In our critical-neuron model, the minimal dynamic units are
dendritic branchlets (or perhaps patches of dendritic spines), so that
even a single neuron can have a highly nonlinear input-output res-
ponse function. This capability of a single neuron to compress stimu-
lus intensity varying over several orders of magnitude in a decade of
output firing rate could be the basis of psychophysical power laws31.
In addition, such refinement in the basic dynamical unit corresponds
to a modeling improvement of spatial resolution of a few orders of
magnitude.

Results
The overwhelming majority of models of criticality in neuronal net-
works, if not all, neglect the characteristic tree shape of neurons.
Typically, the collective behavior studied is generated by oversimpli-
fied point-like neurons with no spatial structure4,14,32–36. Dropping
this strong assumption unveils a new sublevel of neuronal dynamics
where concepts from statistical physics can be applied. In previous
work we introduced a simple model of active dendrites37. In the
model, nonlinear excitable waves of activity, not accounted for by
passive dendrites and linear cable theory, propagate and annihilate
upon collisions, giving rise to large signal compression abilities.
Weak inputs are highly amplified whereas strong inputs are not
subjected to early saturation. The dynamic range, which quantifies
how many decades of stimulus intensity can be distinguished by the
excitable medium, attains large values. This property has proven
robust against several model variants37,38.

In fact, excitable media with a tree structure performed better than
other network topologies39,40. Moreover, the system dynamics in a tree
topology allows analytical treatment due to the absence of loops. The
model was quantitatively understood by solving the master equation
under an excitable-wave (EW) mean-field approximation38. However,
phase transitions are not observed in such dendritic arbors when the
dynamics of the excitable elements (active dendritic branchlets) is
deterministic. In this paper, we study a different dendritic arbor with
non-stereotyped dendritic spikes that exhibit probabilistic spike dura-
tion30, as well as non-homogeneous spike duration41, introduced by a
layer-dependent function. Such biologically motivated improvements

in the model give rise to a new dynamical regime consisting of a self-
sustained state with spontaneous activity that emerges through a non-
equilibrium phase transition.

Physiological experiments show that dendritic spikes depend on
several voltage-gated ionic channels. Due to the non-homogeneous
density of channels along the proximal-distal axis, dendritic spikes
can present distinct dynamical features in different regions of the
dendritic tree. Dominated by the slow calcium-dependent poten-
tials27,41,42 or N-methyl-D-aspartate (NMDA) potentials30, the dend-
ritic spikes/plateaus have variable duration (see for example Ref. 30
and references therein), and the duration of active periods can
become effectively longer at more distal sites41, as illustrated in
Figs. 1b through d. These responses account for a variety of active
behaviors including dendritic spikes with longer and more variable
duration than sodium-dependent somatic spikes30.

In our previous models37,38, other parameters have been studied,
but the time-length of the spikes that we introduce here proves to be
a crucial factor. Such variability in the duration of the spike has
been shown to shape the network dynamics43, and to enhance the
computational capability of neuronal networks44. In the present
model, the variable duration of dendritic spikes plays an important
role in dendritic computation because it is capable of controlling the
emergence of a phase transition. Evidence for both sides of this
continuous non-equilibrium phase transition has been reported
experimentally23,41. Several different patterns of activity observed
experimentally are candidates for the active phase of the puta-
tive phase transition we propose: plateaus30,45, single spikes42,46,47,
bursts48,49, and oscillations50,51.

Model. As illustrated in Fig. 1a, we model the dendritic arbor
as connected probabilistic cellular automata with a Cayley tree
topology of active branchlets capable of transmitting dendritic
spikes. The states update in parallel with discrete time steps of dt
5 1 ms. Exploring the idea of a dendritic branchlet as a fundamental
functional unit of the nervous system (see Ref. 52 and references
therein), we consider dendritic branchlets as excitable units. Each
excitable unit (the i-th dendritic branchlet) has three possible
discrete states si(t) g {0, 1, 2}. A quiescent site (si(t) 5 0) may
become active in the next time step (si(t 1 1) 5 1) either by
external driving or by propagation of an excitable-wave from an
active neighbor with probability pl. External input arrives at
quiescent sites with probability ph 5 1 2 exp(2hdt) per time step,
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Figure 1 | Model of an active dendritic tree with non-stereotyped dendritic spikes. (a), Excitable elements (circles) connected (bars) in a Cayley tree

topology with G 5 3 layers and coordination number z 5 3 (one mother and k 5 2 daughter branches). Large green (yellow) arrow illustrates forward

(backward) propagation. (b)–(d), Biologically motivated dendritic spike with duration depending on the distance from the soma as a net effect of variable

density of ionic channels. Red arrows indicate that the site is being stimulated (by an external input and/or by mother or daughter branches), and
1

pg
drepresents the average period of dendritic spikes at layer g.
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where h stands for the rate of independent Poisson processes and
may vary in a range of several orders of magnitude. An active site
(si(t) 5 1) becomes refractory (si(t 1 1) 5 2) with probability pg

d at
each time step, where g indicates the layer that the site belongs to (see
Fig. 1c). To close the cycle, refractory sites become quiescent with
probability pc (we fix pc 5 1/2 throughout this paper).

The probabilistic nature of our model takes into account the fact
that the density of ion channels in a given spatial region is not always
large enough to allow their mean activation (or inactivation, or deac-
tivation etc.) to be described by a continuous variable, and hence
fluctuations around the mean are not negligible. Such non-determin-
istic and irregular factors have already been proven to play a crucial
role in shaping the neuronal excitability53,54, the propagation55 and the
duration of dendritic spikes30. Despite the fact that subthreshold
dendritic activity can influence the integration of synaptic signals51,
we assume a large attenuation of subthreshold activity to an extent
that a boost of activity is required for activity propagation. It is
noteworthy that our previous model37, which features this very same
assumption, has been recently validated by detailed morphologically
reconstructed multi-compartmental cell models with active dendrites
but also including passive propagation of subthreshold activity56.

The model generalizes our previous work37,38 by introducing a
probabilistic spike duration, which is motivated by experiments
(see Ref. 30 for a recent review paper). In what follows, we first
consider a simple homogeneous model with spike duration con-
trolled by a uniform probability pg

d~pdƒ1, Vg (our previous model37

is thus recovered when pd 5 1). For pd^0 the spike duration
becomes unreasonably long. Thus, our attention is mostly concen-
trated in the regime between the extremes (0 , pd , 1). Whereas the
stereotyped sodium-dependent somatic spikes last typically 1 ms,
the duration of dendritic activity exhibits large variability depending
on the type of neuron and ion channels involved, and fall within the
range of 1–10 milliseconds (or even longer30). This is captured in our
model by the fact that our time step dt 5 1 ms, and the time spent in
the active state is about p{1

d : For pd 5 1, the duration of our model
dendritic spike is 1 ms, and for pd 5 0.1 the average duration would
be 10 ms. We start by analysing this model with homogeneous spa-
tial distribution of spike duration, which has some advantages: it is
clear, intuitive, and allows analytical insights about its phase trans-
ition, which is controlled by pl and pd.

Next, we study a more realistic scenario based on the relevant
physiological evidence previously described: the model assumes that
the spike duration depends on the proximal distance, such as prev-
iously reported in the Purkinje cell41. Owing to the absence of a clear
functional dependence in the literature, for simplicity, we consider a

linear dependence pg
d~1{0:9

g
G

a, where G 5 10 (unless otherwise

stated) stands for the tree size, and the parameter a (0 # a # 1)
controls the inhomogeneity.

To characterize the dynamical regimes of our system, we must
define our order parameter29. The main order parameter of interest
here is the stationary firing rate of the proximal site s0 (see Fig. 1a):

F~
1
T

XT

t~1

ds0 tð Þ,1, ð1Þ

where T is an averaging time window and di,j is the Kronecker delta
(by definition, di,j 5 1 if i 5 j, and zero otherwise). The proximal
dendrite firing rate F is biologically interesting because it provides the
main input to the neuronal soma and can be thought of as propor-
tional to the neuronal firing rate. Notice that s0 and hence F are
functions of the external input with intensity h. One of our main foci
will be on the response function F(h).

Phase diagram without external input. It is instructive to analyze
the complex spatio-temporal dynamics of an extensive dendritic

tree in the simplest scenario, when average spike durations are
homogeneous (a 5 0) and the system is subjected to no external
driving (h 5 0). The absence of stimulus is a somewhat artificial
condition, but very informative because it crisply uncovers the
critical region. Starting with the states of nodes randomly
distributed according to a uniform distribution among the three
possible states, we follow the dynamics for a sufficiently long time
(T , 104 time steps) until a stationary state is reached. If the tree
reaches an active and stable level, in which the activity in the
dendritic tree does not vanish and the firing rate of the proximal
site is nonzero, the system is said to be supercritical. On the contrary,
if the activity of the system vanishes rapidly, the system is subcritical.
For large systems, the fate of the system depends weakly on the initial
condition and is mainly determined by control parameters pl (which
controls the coupling between branchlets) and pd (which controls the
average spike duration). The critical regime occurs at the border
between the sub- and supercritical regimes, where the activity level
vanishes slowly and without a characteristic time scale14.

As represented in Fig. 2a, we numerically find the critical curve of
the parameter plane (pl, pd) in a finite tree with G 5 10. The critical
curve corresponds to the border between the absorbing state with
F(h 5 0) 5 0 (blue) and the active state with F(h 5 0) . 0 (red).
Naturally, a true phase transition occurs only for infinite systems, but
for moderately large systems we already observe activity that persists
for simulation times much longer than any relevant biological time
scale. It is important to emphasize that no active phase exists for
dendritic spikes with a deterministic duration, pd 5 1. Only when
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Figure 2 | Continuous phase transition in active dendritic trees with non-
stereotyped dendritic spikes. (a), Average firing rate as a function of pl

(which governs the coupling among branchlets) and pd (which governs the

average spike duration) in numerical simulations for tree size G 5 10. (b),

Returning probability (see Methods for details) as a function of pl and pd.

(c), Same as panel (a) but for the generalized excitable-wave mean-field

approximation (see Methods for details).
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they are non-stereotyped (pd , 1) does self-sustained activity
become possible.

To qualitatively understand why the activity dies out in a specific
part of the parameter space of a finite tree, we define the returning
probability R. It corresponds to the probability that an active site A
stimulates a given quiescent neighbor B and receives back the stimu-
lus at later times after performing a complete cycle (i.e., after going
through the refractory (sA 5 2) and the quiescent (sA 5 0) states). A
necessary (but not sufficient) condition for a network without loops to
exhibit a stable self-sustained state (and consequently a phase trans-
ition) is that R ? 0. A nonzero returning probability is necessary for
the persistence of the self-sustained state because otherwise the activ-
ity ceases after a few time steps due to collisions of the excitable waves
with the boundaries (layer G) and with one another. The Methods
section illustrates the fastest example of a successful process of return-
ing activity, which requires at least three time steps, and extends the
calculation for arbitrarily long two-site processes. Figure 2b shows
R(pl, pd), in which a transition similar to that of Fig. 2a is observed.
A comparison between them confirms that R ? 0 is a necessary but
not sufficient condition for an active phase to emerge.

Another analytical approach to shed light on the results is to
employ one of the many mean-field approximations available in
the statistical physics literature29. We have previously developed an
excitable-wave (EW) mean-field approximation that focuses on the
wave propagation direction, making it particularly suitable for excit-
able waves on a tree38. In the Methods section we describe a general-
ized version of the approximation to account for non-stereotyped
dendritic spikes. As Fig. 2c shows, the phase transition observed in
the simulations can be qualitatively described by the generalized EW
(GEW) mean-field approximation.

Neuronal response to external input. From herein, we focus on the
more relevant scenario in which a neuron has to somehow cope with
information arriving stochastically at its thousands of synapses. We
make the simplest assumption that, at each branchlet, the average
excess of incoming excitatory post-synaptic potentials (EPSPs), as
compared to inhibitory post-synaptic potentials (IPSPs), can be
modeled by an independent Poisson process with rate h. We study
the response function F(h) (averaged over T 5 104 time steps and five
realizations) and its dependence on model parameters.

Figure 3a depicts three response functions F(h; pl) for a fixed pd,
exemplifying one response function of each kind: subcritical (trian-
gles, blue), critical (closed circles, black) and supercritical (open
circles, red). Alternatively, for a fixed pl, the critical line can also
be crossed by varying pd, as depicted by Fig. 3b. In this case, the
maximum firing rate displays its dependence on pd: Fmax 5 (1 1

3pd)21.
For some classes of dendrites, it can be more realistic to employ

our heterogeneous model, with a . 0. We consider a varying in a
logarithmic range of several decades because the phase transition
already occurs for a=1. In this instance, the phase transition is
controlled by both pl and a, giving rise to a critical curve in parameter
space, as depicted in the inset of Fig. 3d. Analogously to the homo-
geneous case, for fixed pl the transition depends on a, as depicted in
Fig. 3c. For both homogeneous and heterogeneous models (solid line
of Figs. 3b and c), the GEW mean-field approximation captures
particularly well the behavior of both sub- and supercritical curves
but fails to capture the strong amplification of the critical curves
under weak external driving. As shown in the family of curves for
fixed a displayed in Fig. 3d, the critical curve has a very small expo-
nent (m^0:11), which cannot be correctly described by mean-field
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approximations. This exponent m is similar to a Stevens psychophy-
sical response exponent31 observed at the single-neuron scale37, as
had been previously noticed at the level of a neuronal ensemble14,57,58.

Excitable networks have a recognized ability to compress several
decades of input rate in a single decade of output rate14,36–40,57. This
information processing capacity emerges exclusively from local
interactions between the excitable elements. A large dynamic range
is robust, being also obtained for models with increasing levels of
biophysical realism, such as networks of FitzHugh-Nagumo and
Hodgkin-Huxley elements57,59, as well as more sophisticated models
based on detailed anatomical information of the retina56,60.

The definition of dynamic range is illustrated in Fig. 3a14. We start
by neglecting the regions of the response curves which are close to the
detection threshold Fmin or the saturation level Fmax. According to a
conventional definition, only the interval between F0.1 and F0.9

(arbitrarily defined within 10% of the plateau levels) properly codes
the input. Those firing rates correspond to external driving with rates
h0.1 and h0.9. The dynamic range is the range (measured in decibels)
between h0.1 and h0.9, i.e.,

D:10 log10

h0:9

h0:1

� �
: ð2Þ

The phase transition is an important feature for signal compression.
Comparing the different regimes, as depicted for instance in Fig. 3a, a
simple reasoning allows one to understand why the critical curve
optimizes the compressing capacity14. The subcritical curves cannot
amplify small external stimuli, since the activity from incoming
pulses vanishes exponentially fast in space and time. At the other
extreme, for supercritical curves, almost any pulse initiates the self-
sustained network activity for arbitrarily long time periods, masking
the response to weak stimuli. However, when the network has the
correct critical parameters, the spontaneous network activity is com-
posed of neuronal avalanches launched by spontaneous fluctuations
of the system. In the presence of an external field h, such avalanches
add and superpose, creating the response function F(h) (analogous to

magnetization for non-zero fields in magnetic systems). In this case,
the network dynamic range is optimized.

Since phase transitions are properly defined only for infinite sys-
tems, we have investigated the effects of system size in our model. It
turns out that, even for moderately large systems (e.g. G 5 10, as in
Figs. 2 and 3), self-sustained activity survives for a period of time
which is much longer than any relevant characteristic time for neur-
onal processing (T , 104 time steps ,10 seconds), which is the
operational marker that we have employed for the transition. Its
occurrence is associated with the peaks in dynamic range shown in
Fig. 4a.

In small trees, activity dies out rapidly due to wave collisions
with the boundaries, preventing self-sustained activity. Taking for
example the case of G 5 4 in Fig. 4a, the maximum Dmax (of the D vs.
pl curve) occurs at pl 5 1, meaning that finite size effects masks the
(infinite size) phase transition. Larger trees, in contrast, can exhibit
Dmax 5 D(plc) for weaker coupling revealing the presence of a phase
transition at plc(G) , 1. The larger is the tree, the smaller is the plc(G)
(Fig. 4a), and the larger is the Dmax (Fig. 4b).

As presented in Fig. 2, pd 5 1 prevents an active state. However, for
pd , 1 a phase transition to an active state occurs in large enough
trees. The black arrows in Fig. 4b represent the minimum tree size
that gives rise to our operationally defined transition for pd 5 0.5 (G
5 4), and pd 5 0.9 (G 5 6).

The optimization of the dynamic range at the critical value
(Fig. 4c), and the growth of the maximum dynamic range with the
tree size (Fig. 4d) are also observed in the model with non-uniform
spike duration. In this more realistic model version, the phase trans-
ition vanishes for a , 0, as depicted in the inset of Fig. 3d, since
in such case the spike duration is deterministic across the tree.
Increasing a from zero, Dmax(a) grows up to a maximum around
the region where the phase transition appears (represented by arrows
in Fig. 4d). As shown in Fig. 4c, larger values of a lead to a phase
transition with smaller critical coupling plc. On the other hand, as
depicted in Fig. 4d, the Dmax(a) curves show plateaus with heights
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and widths that both increase with tree size. This suggests that large
active dendritic trees with non-uniform spike duration lead to a large
dynamic range, a result whose robustness is attested by the width of
the plateaus. In particular, the difference in dynamic range for an
optimized a compared with the a 5 0 case is remarkable, attaining
about 20 dB for G 5 5 (Fig. 4d).

Discussion
We have shown that the idea of a critical network of excitable ele-
ments being able to optimally process incoming stimuli can be
applied at the subcellular (dendritic) scale. Instead of a network of
excitable point-like neurons connected by synapses, here we have
shown that electrically connected excitable dendritic branchlets can
cause a dendritic arbor of a single neuron to undergo a phase trans-
ition. The key ingredient for this scenario is stochasticity in the
duration of dendritic spikes.

Several experiments indicate that a dendritic spike at a distal site is
usually not strong enough to trigger a somatic action potential55. This
suggests that real dendrites ought not typically show deterministic
signal propagation (that is, pl , 1). In the present model, taking for
instance a dendrite with tree size G 5 10 and probability of activity
propagation pl 5 0.5, the probability for a most distal dendritic spike
to propagate all over to the proximal site and potentially generate a
spike is very small: 0:5ð Þ10^10{3. Thus, the model is in accordance
with experimental wisdom. Remarkably, whenever the dendritic
parameters lie near the silent/active phase transition, our results
prove that non-reliable dendritic spike propagation is compatible
with an optimal dynamic range.

We have examined the implications of variable dendritic spikes
(non-homogeneous and non-deterministic) for dendritic computa-
tion. We have shown that a necessary condition for a phase transition
to occur in active dendrites is that the returning probability R be
nonzero, which in turn can only occur with variable dendritic dura-
tion (pd , 1). In an attempt to incorporate more details on dendritic
spikes, we have also modeled different spatial functions of average
spike duration, and showed that our main results are robust in that
parameter space.

While the variable-duration criterion must be satisfied to give rise
to a critical neuron, it does not play such a crucial role in giving rise to
a critical neuronal network43. The key difference between the two
spatial scales is the topology: due to inhibitory signaling mechanisms
during growth61, a dendritic tree contains no loops, whereas in neur-
onal networks they abound. The possibility of criticality at both
scales naturally raises the question: if neurons can be critical, why
should we need critical networks? We propose that the answer
depends on the type of neuronal computation and the scale at which
it occurs. In the cases where the processing is distributed among a
large number of neurons with small dendritic trees, it is plausible to
look at point-like neurons as the basic units of a larger system which,
via balanced synapses, can tune itself to a collective critical regime. By
contrast, single-neuron criticality could play a computational role in
cases where neurons have extended dendritic trees and therefore
must cope with large variations of synaptic input (such as olfactory
mitral cells or cerebellar Purkinje cells, for instance). Clearly, in
principle nothing prevents the mechanisms at both scales from act-
ing together.

The input-output response function of a critical neuron amplifies
small-intensity inputs while preventing early saturation when sub-
jected to large-intensity inputs. The response function follows a slow-
increasing power-law function F , hm, in which m corresponds to a
rather tiny exponent m^0:11, as shown in Fig. 3d. Such a slow-
increasing function could be easily confounded with a logarithmic
(Weber-Fechner’s psychophysical) law31,57. These results strengthen
previous suggestions that a system poised at a critical point is a
natural candidate to explain how m , 1 Stevens’ power-law expo-
nents emerge14.

Our simple model yields similar results to those obtained with
detailed compartmental modeling of morphologically reconstructed
dendrites: the maximum dynamic range a dendritic arbor can attain
grows with the tree size56. This supports the previous proposal that
neurons with large dendritic arbors might have grown to attain such
impressive size and complexity in order to enhance their capacity to
distinguish the amount of external driving37,38.

Owing to our irresistible tendency of comparing brain processes
with whichever technology happens to be dominant at the time, the
term dendritic computation is typically associated with a symbolic
and digital-like information processing21. However, dendritic trees
are living tissues that change all the time, growing and retracting
branchlets, spines and synapses. For example, 30% of spine surface
retracts in hippocampal neurons over the rat estrous cycle62. This, we
believe, does not seem compatible with a fixed circuitry implement-
ing, say, logical gates. In contrast, our framework suggests that dend-
ritic arbors perform a robust analog computation, which is resilient
to disturbances of tree properties. For instance, pruning half of the
tree corresponds to changing from G to G 2 1, which amounts to a
small decrease in the dynamic range.

In contrast to physical systems, biological systems can approach
the critical state through homeostatic mechanisms33,63. This self-
organized tuning is essential for processing information over a large
range of stimulus intensities. We believe that critical neurons do
indeed exist, but experimental limitations or lack of a clear theor-
etical framework possibly prevented spatio-temporal neuronal crit-
icality from having been reported in the literature to date. It is
important to emphasize, however, that our model focusses on a
regime dominated by the active propagation of activity (dendritic
spikes). Whether or not a phase transition occurs in a regime where
active as well as passive mechanisms coexist remains untested and
should be investigated in future models and experiments.

Experimental confirmation of single-neuron criticality requires
spatial and temporal recording resolutions at the edge of current
available techniques. Several lines of evidence already suggest critical
phenomena at the neuron level. In vivo long-range inter-spike time
interval correlations, which may have originated from a critical neu-
ron, have been reported in human neurons from hippocampus64 and
amygdala65, as well as in rat neurons from the leech ganglia and the
hippocampus66. Furthermore, neglecting the extensive spatial fea-
tures of neurons, criticality in neuronal excitability has recently been
proposed35.

Signs of a self-sustained state could be associated to patterns
of dendritic activation: spikes, plateaus, bursts, and oscillations41.
Evidently, dendritic trees can also be on the other side of the trans-
ition, showing a silent or rest state. Our model predicts a continuous
phase transition so that criticality lies between such subcritical
(silent) and supercritical (self-sustained active) regimes. We specu-
late that adaptation and homeostatic mechanisms, similar to those
discussed in Refs. 33, 63, could finely tune a self-organized critical
state (or more precisely, a self-organized quasi-critical state63). Such
homeostatic mechanisms, conceivably present at the dendritic level,
will be presented in a forthcoming paper.

On the computational side, our cellular automaton model can be
generalized so that each branchlet is modeled by a detailed biophys-
ical compartment with a plethora of ion channels56, coupled with
(noisy) axial resistances. However, as in the proverbial arbor that
prevents us from seeing the forest, we must be aware that detailed
biophysical modeling may hamper us from detecting phase transi-
tions if the model has few compartments. Our statistical physics
model, with simple excitable units but connected in a large dendritic
network, enables us to see the forest.

Methods
Returning probability calculation. The returning probability R . 0 is a necessary
condition for a phase transition. For the phase transition between quiescent and self-
sustained states to occur the system must allow the self-sustained activity to be kept
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for arbitrarily long times. In a finite network without loops, such as a Cayley tree, this
condition is only satisfied if the activity can go back and forth between two neighbor
sites, say A and B, as illustrated in Fig. 5. Otherwise, in the absence of external driving,
the system must go to the rest state (regardless of the initial condition) after a
maximum of 2G 1 1 time steps.

It is possible to calculate the returning probability between two neighbor sites that
obey the cyclic cellular automata rules. The example of Fig. 5 can be computed
directly. Considering the initial condition at time t, sA(t) 5 1 and sB(t) 5 0, there is a
unique possible path for the excitable wave to go back and forth after three time steps.
Notice that, by construction, sA(t) must complete the cycle (i.e., it must go through
states sA 5 2 and sA 5 0), since we have excluded the trivial solution: sA(t) 5 1, Vt. The
final configuration sA(t 1 3) 5 1 and sB(t 1 3) 5 2 is therefore reached with
probability p2

d 1{pdð Þp2
lpc , where pdpcpl is the probability of site A to go throughout

the cycle, and pl(1 2 pd)pd is the probability of site B to receive the input, to remain
active, and finally to become refractory.

This example is the simplest one. In general, however, there are infinitely many
possibilities that must be included in a full calculation of R. The configuration sA 5 2
and sB 5 1, which was depicted at time t 1 1 in Fig. 5, could have also be found at later
times: t 1 2, t 1 3 and so on, leading to identical final configuration sA 5 1 and sB 5 2.
The calculation of the returning probability which accounts for all the possible
intermediate steps, considering that site B has just been activated (sB(t 1 1) 5 1),
involves three sums of infinite geometric series, S1, S2 and S3. Site A can spend
arbitrarily long periods active (/ S1), refractory (/ S2), or quiescent (/ S3) and
nevertheless receive back the excitable wave, given that the pivot site B remains active
in the meantime. Finally, without loss of generality, we can ignore the final state of site
B to find the returning probability after infinitely many time steps:

R~pdpc 1{pdð Þp2
lS1S2S3, ð3Þ

where

S1~
1

1{ 1{pdð Þ2
, ð4Þ

S2~
1

1{ 1{pc

� �
1{pdð Þ

, ð5Þ

S3~
1

1{ 1{plð Þ 1{pdð Þ : ð6Þ

Equations (3)–(6) were used in Fig. 2b. However, this result can also be extended to
account for the heterogeneous case with pd belonging to different layers (a and b). The
returning probability Ra,b turns out to be

Ra,b~pa
dpc 1{pb

d

� �
p2

lSa,b
1 Sa,b

2 Sa,b
3 , ð7Þ

where

Sa,b
1 ~

1

1{ 1{pa
d

� �
1{pb

d

� � , ð8Þ

Sa,b
2 ~

1

1{ 1{pc

� �
1{pb

d

� � , ð9Þ

Sa,b
3 ~

1

1{ 1{plð Þ 1{pb
d

� � : ð10Þ

Generalized excitable-wave mean-field approximation. This approximation
generalizes the recently proposed excitable-wave (EW) mean-field calculation38.
Here, the scope of the approximation is enlarged to account for non-stereotyped
dendritic spikes with probabilistic spike duration (pd # 1) and non-homogeneous
spatial distributions (pd(g)). This is a single-site mean-field approximation, but it
keeps track of the excitable-wave direction of propagation. Remarkably, the system
response is better captured by this approximation than by the traditional two-site
mean-field approximation38.

First we explain the notation and then recall the system master equations.
Assuming that at time t a site at generation g is in state x; its mother site at generation g
2 1 is in state y; and i (j) of its daughter branches at generation g 1 1 are in state z (w)

etc., the joint probability of this configuration reads as: Pg
t y; x; z ið Þ,w jð Þ, . . .
� �

.

We also employ the usual normalization conditionsX
w3 Pg

t y; x; w1,w2,w3ð Þ~Pg
t x; y; w1,w2ð Þ. Thus, the master equations for arbitrary

coordination number z 5 k 1 1 and layers 0 , g , G is given by38:

Pg
tz1 ; 1;ð Þ~Pg

t ; 0;ð Þ{ 1{phð Þ

:
Xk

i~0

pi
l

k

i

 !
{1ð ÞiPg

t ; 0; 1 ið Þ
� �"

{bpiz1
l

k

i

 !
{1ð ÞiPg

t 1; 0; 1 ið Þ
� �#

z 1{pdð ÞPg
t ; 1;ð Þ,

ð11Þ

Pg
tz1 ; 2;ð Þ~pdPg

t ; 1;ð Þz 1{pc

� �
Pg

t ; 2;ð Þ, ð12Þ

Pg
tz1 ; 0;ð Þ~1{Pg

tz1 ; 1;ð Þ{Pg
tz1 ; 2;ð Þ, ð13Þ

where Pg
t y; x; w 0ð Þ
� �

:Pg
t y; x;ð Þ is a two-site joint probability. For simplicity, we also

drop the excess of notation symbols (;), such that Pg
t xð Þ stands for Pg

t ; x;ð Þwhich is the
probability of finding at time t a site at generation g in state x (regardless of its
neighbors).

Equations controlling the active state for sites belonging to the first (g 5 0) and last
(g 5 G) layer can be obtained from straightforward modifications of Eq. (11),
yielding:

P0
tz1 ; 1;ð Þ~P0

t ; 0;ð Þ{ 1{phð Þ

:
Xkz1

i~0

pi
l

kz1

i

 !
{1ð ÞiP0

t ; 0; 1 ið Þ
� �" #

z 1{pdð ÞP0
t ; 1;ð Þ,

ð14Þ

PG
tz1 ; 1;ð Þ~PG

t ; 0;ð Þz 1{phð Þ bplPG
t 1; 0;ð Þ

� 	
z 1{pdð ÞPG

t ; 1;ð Þ,
ð15Þ

while equations controlling the refractory (12) and quiescent (13) states remain
unchanged. The full description of the dynamics requires higher-order terms (infi-
nitely many in the limit G R ‘), but, as we show below, Eqs. (11)–(13) are enough for
the GEW approximation.

The rationale for the EW approximation (restricted to pd 5 1) is simple38: in an
excitable tree, activity is decomposed in forward- and backward-propagating excit-
able waves. We separate (for g . 0) the active state (1) into three different active states:
(1A), (1B), and (1C), as represented in Fig. 6. Pg

t 1Að Þ (black) corresponds to the
density of active sites which received an external input and thus generates excitable-
wave propagating both forwards and backwards. Pg

t 1Bð Þ (green) corresponds to the
density of active sites which received only forward-propagating input. Finally, Pg

t 1Cð Þ
(yellow) corresponds to the density of active sites which received only backward-
propagating input.

For a correct description of the general case, pd # 1, we need to introduce loops into
the topology as represented by the purple arrows of Fig. 6. First, we assume that with
probability 1 2 pd an active site remains active for the next time step. Second, among
those sites that remained active we consider that a fraction 1 2 pd of them can jump to
Pg

tz1 1Að Þ, and therefore contribute with both forward- and backward-propagating
excitable-waves. This last step mimics the actions of the returning activity, since state
(1A) is a required intermediate step to fulfill a back and forth movement of the
excitable-wave under the GEW mean-field approximation.

Following these ideas, and applying the usual mean-field approximations38, one
can write the equations for the g . 0 layers as

p
λ

p
λ

p
δγ

p

p
δ

p
δ

A B

1−

t+2

t+1

t+3

t

2

0

0

2

1

1

1

1

Figure 5 | Example of returning activity. An active site A stimulates its

neighbor B (red arrow) and receives back the activity three time steps later.

This process involves a series of intermediate steps. Site A must pass

through the refractory (sA(t 1 1) 5 2) and quiescent (sA(t 1 2) 5 0) states

before becoming active (sA(t 1 3) 5 1) again. Moreover, site B must be

kept in the active state (sB(t 1 1) 5 1) for at least one time step (sB(t 1 2) 5

1) in order to be able to excite back the susceptible A site (sA(t 1 2) 5 0).

Therefore a nonzero persistence probability (1 2 pd . 0) is fundamental

for a nonzero returning probability (R . 0).
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Pg
tz1 1Að Þ~Pg

t 0ð ÞLg
Az 1{pg

d

� �
: Pg

t 1Að Þz 1{pg
d

� �

: Pg

t 1Bð ÞzPg
t 1Cð Þ

� 	�
,

ð16Þ

Pg
tz1 1Bð Þ~Pg

t 0ð Þ 1{L
g
A

� �
L

g
B tð Þ

zpg
d 1{pg

d

� �
Pg

t 1Bð Þ,
ð17Þ

Pg
tz1 1Cð Þ~Pg

t 0ð Þ 1{L
g
A

� �
1{L

g
B tð Þ

� 	
L

g
C tð Þ

zpg
d 1{pg

d

� �
Pg

t 1Cð Þ,
ð18Þ

where the excitation probabilities are given by

L
g
A~ph, ð19Þ

L
g
B tð Þ~1{ 1{pl Pgz1

t 1Að Þ
hn

zPgz1
t 1Bð Þ

iok
, ð20Þ

L
g
C tð Þ~bpl Pg{1

t 1Að ÞzPg{1
t 1Cð Þ

h i
: ð21Þ

Equations (12) and (13) remain unchanged, with Pg
t :Pg

t 1Að ÞzPg
t 1Bð ÞzPg

t 1Cð Þ.
The dynamics of the most distal layer g 5 G is obtained by fixing LG

B tð Þ~0. The
proximal element (g 5 0) has a simpler dynamics since it does not receive back-
propagating waves, so its activity is simply governed by

P0
tz1 1ð Þ~P0

t 0ð ÞL0 tð Þz 1{p0
d

� �
Pg

t 1ð Þ, ð22Þ

with

L0 tð Þ~1{ 1{phð Þ 1{pl P1
t 1Að ÞzP1

t 1Bð Þ
� 	
 �kz1

:

Taking into account the normalization conditions, the dimensionality of the map
resulting from the GEW approximation is the same as for the EW approximation38:
4(G 2 1) 1 5. Numerical solutions of this map with b 5 1 leads to the solid curves in
Fig. 3 and 4.
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46. Davie, J. T., Clark, B. A. & Häusser, M. The origin of the complex spike in
cerebellar purkinje cells. J Neurosci 28, 7599–7609 (2008).

47. Major, G., Polsky, A., Denk, W., Schiller, J. & Tank, D. W. Spatiotemporally
graded NMDA spike/plateau potentials in basal dendrites of neocortical
pyramidal neurons. J Neurophysiol 99, 2584–2601 (2008).

48. Wong, R. K. & Prince, D. A. Dendritic mechanisms underlying penicillin-induced
epileptiform activity. Science 204, 1228–1231 (1979).

49. Wong, R. K. & Stewart, M. Different firing patterns generated in dendrites and
somata of CA1 pyramidal neurones in guinea-pig hippocampus. J Physiol 457,
675–687 (1992).
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