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Community detection is important for understanding networks. Previous studies observed that
communities are not necessarily disjoint and might overlap. It is also agreed that some outlier vertices
participate in no community, and some hubs in a community might take more important roles than others.
Each of these facts has been independently addressed in previous work. But there is no algorithm, to our
knowledge, that can identify these three structures altogether. To overcome this limitation, we propose a
novel model where vertices are measured by their centrality in communities, and define the identification of
overlapping communities, hubs, and outliers as an optimization problem, calculated by nonnegative matrix
factorization. We test this method on various real networks, and compare it with several competing
algorithms. The experimental results not only demonstrate its ability of identifying overlapping
communities, hubs, and outliers, but also validate its superior performance in terms of clustering quality.

M
any complex systems take the form of networks, sets of nodes or vertices joined together in pairs by links
or edges, such as social networks, technological networks, biological networks, and information net-
works. The community structure is arguably the most fundamental property of most real-world net-

works, i.e., it is commonly observed that a group of vertices are densely connected; such a graph is called a
community (or module) in literature. However, it would be oversimplifying if one assumes the communities
make a partition of the whole network under concern. It errs in two senses. On one hand, it is very nature for a
vertex to participate in more than one communities; i.e., communities are often overlapped1. On the other hand,
some vertices might not participate in any community; i.e., we might have outliers. An outlier is not necessarily
solitary, and it might have some negligible connection with some communities. Finally, not all vertices are born
equal in a community, and some vertices of a community might be special in the sense that it is linked with almost
all others; in literature, such a vertex is known as hub, leader, or center. Since real-world networks are inevitably huge,
its analysis usually starts from the identification of its communities with overlapping under consideration. Needless
to say, the community structure will greatly benefited from the simultaneous detection of hubs and outliers.

Albeit all of communities identification as well as hubs and outliers detection are well studied, we are not aware
of any algorithm can furnish them together. One might be tempted to run specific algorithms and combine their
results. This nevertheless does not always work, as different approaches might end with conflicting information.
Herein we propose a novel method, namely CDNMF, which means ‘‘Community Detection with Nonnegative
Matrix Factorization.’’ CDNMF first describes these three types of roles using two sets of quantities, the centrality
matrix of vertices and degree matrix of communities. Here a vertex’s centrality represents its importance in a
community, and hence the centrality matrix of vertices represents the vertices’ importance in each community.
An element of the degree matrix of communities, which is diagonal, indicates the degree of the community, and is
equivalent to the summation of the expected degree of all vertices of this community. It then learns the two
quantities by the multiplicative updating rule of NMF style. These matrices enable us to rank each vertex’s
centrality in each community, and use the community degree as cutting off criterion; as a result, the three types
of vertices can be inferred together. Since the communities are retrieved independently, when we are working on a
new community, we do not need to care whether a vertex of it belongs to a previously identified community or
not. The overlapping communities are thus handled naturally. The importance of a hub in a community will
ensure it to be ranked at the top of the community. After all communities have been decided, those vertices that
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have not been included in any of them are outliers. In summary,
CDNMF is capable of identifying overlapping communities as well
as detecting hubs and outliers simultaneously.

The nature of the problem incurs a plethora of work in literature,
and we only mention some new results that closely relate to us. For
example, Xu et al.2 introduced a method called SCAN which detects
communities with overlapping vertices (which they called hubs1)
and outliers in the network. Berton et al.3 proposed a distance mea-
sure using random walk, and then introduced the dissimilarity index
between pairs of vertices based on it. By ranking the dissimilarity
index, outliers could be detected. But this method just focuses on
finding the outliers, while it does not consider the detection of com-
munities. However, it considers hubs as outliers, which seems to be
unreasonable. Zhao et al.4 considered that many networks contains
vertices that do not fit in with any of the communities, and thus
forcing all vertices into communities could distort the results. They
extracted the cores of the networks and allowed for arbitrary struc-
ture in the remainder of the network, which could include weakly
connected vertices, as the ‘‘background.’’ But they defined most of
the vertex in a network as outliers, which was too sweeping to be
compared with the traditional definition of outliers. Chen and Saad5

held the opinion that not every participating vertex in the network
needed to belong to a community as before, and they proposed a
method to extract meaningful dense subgraphs from given networks.
However, they extracted dense subgraphs regardless of the rest ver-
tices, and still their method does not have the capability to detect
hubs.

Nonnegative Matrix Factorization (NMF)6 is a feature extraction
and dimensionality reduction technique in machine learning, which
has been adapted to community detection recently. For example,
Zarei et al.7 presented a NMF-based algorithm for identifying fuzzy
communities, where the new feature matrix, called the vertex-vertex
correlation matrix was introduced. Psorakis et al.8 presented an
approach to community detection that utilizes a Bayesian nonnega-
tive matrix factorization model to extract soft modules from net-
works. Wang et al.9 proposed a symmetric NMF technique to
detect overlapping communities in networks. Zhang and Yeung10

proposed a community detection method called BNMTF, which is
based on the bounded nonnegative matrix factorization. Using three
factors in the factorization, they could explicitly model and learn the
community membership of each vertex. However, the current NMF-
based methods only focuses on the detection of communities, but

none of them take into account the identification of vertex roles, such
as hubs and outliers.

Nonnegative Matrix Factorization (NMF)6 is a feature extraction
and dimensionality reduction technique in machine learning, which
has been adapted to community detection recently. For example,
Zarei et al.7 presented a NMF-based algorithm for identifying fuzzy
communities, where the new feature matrix, called the vertex-vertex
correlation matrix was introduced. Psorakis et al.8 presented an
approach to community detection that utilizes a Bayesian nonnega-
tive matrix factorization model to extract soft modules from net-
works. Wang et al.9 proposed a symmetric NMF technique to
detect overlapping communities in networks. Zhang and Yeung10

proposed a community detection method called BNMTF, which is
based on the bounded nonnegative matrix factorization. Using three
factors in the factorization, they could explicitly model and learn the
community membership of each vertex. However, the current NMF-
based methods only focuses on the detection of communities, but
none of them take into account the identification of vertex roles, such
as hubs and outliers.

Also of note is several related works11–14 which adopts similar
models. But rather than using loss function, they adopts the like-
lihood probability as the goal, and take a different algorithmic
approach such as expectation-maximization algorithm to learn the
model. Still, as with the above NMF-based methods, they only con-
siders the detection of communities, and does not refer to the hubs or
outliers.

Results
In this section, we demonstrate the effectiveness of our method
CDNMF at exploring the three kinds of vertex roles by applying it
on some real-world datasets. The experimental results verify that
CDNMF can reveal rich information on these networks.

Real world networks examples. The School Friendship Network was
compiled from the National Longitudinal Study of Adolescent
Health15. It is based on self-reporting from students, which are
from different grades, from grade 7 to grade 12. But in grade 9,
there are two subgraphs, which correspond to the groups of white
and black students, respectively.

By setting the group number K 5 6, we fit our model to the school
friendship network data. Figure 1 shows our community result,
which roughly matches the ground-truths of this network. The hubs

Figure 1 | Our community result. Here different shapes represent the real community membership, and different colors represent different communities

detected (except pink vertices). The hubs are marked by black boxes, such as vertices 15 and 35; the overlapping vertices are shown as pie vertices, such as

vertices 45 and 46; and the rest vertices, colored by pink, are outliers, such as vertices 25 and 42.
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are drawn larger (in black boxes), and they all have strong links to
other students in their communities. The overlapping vertices are
those students who have many relations in different communities,
which imply that they communicate with these communities fre-
quently, although they still mainly belong to the grades where they
are in the ground-truths. What’s more, the distribution of overlap-
ping students often lies between the adjacent grades. This phenom-
enon is very sensible in the reality where students in the adjacent
grades often communicate more frequently than that in non-adja-
cent grades. Besides, Xie et al.16 posed a problem that some vertices
(such as vertex 42) serves as a bridge between groups but do not have
particular coherence to any group, and it is still not clear whether
these vertices are really meaningful or necessary to be considered as
‘‘overlapping.’’ Here we give the answer. In our result, we consider
vertices 42, 58, and 60 as outliers, and find that there are key differ-
ences between these vertices and the overlapping ones. They all have
weak links to different communities, implying their relations with
students either in their grades or in other grades are weak. This is a
different behavior from the overlapping students, which implies
these outliers are not as ‘‘gregarious’’ as the overlapping ones.
Hence maybe they should be given more care about. Therefore, we
believe it has more sense to assign such ‘‘bridge’’ vertices as outliers.
Obviously, the identification of these three types of roles reveals more
important and interesting information, and gives us a better under-
standing of this network.

The Dolphins Social Network was reported by Lusseau17. In this
network, dolphins represented as vertices have a link with each other
if they are observed together more often than expected by chance
over a period of seven years from 1994 to 2001. It is mainly divided
into the male dolphins and female dolphins, which are marked by the
cycle vertices and square vertices, respectively (see Figure 2).

By setting the group number K 5 2, we fit our model to the
dolphins social network data. Our community result has been shown
in Figure 2 with different colors. As we can see, ‘‘sn100’’ is an over-
lapping vertex lying between the two communities and has some
links to both of them; it is thus not proper to assign it to only one
community. Besides, this vertex has the highest value of between-
ness18, leading to the fission of the dolphin community of doubtful
sound into subgroups, which is clearly playing an important role
holding the network together. Notice that the betweenness is a mea-
sure of the influence of individuals in a network over the flow of
information between others, which makes sense to consider it as an

overlapping vertex of the two communities. Moreover, our method
successfully finds the outliers, such as ‘‘zig,’’ ‘‘smn5,’’ ‘‘pl,’’ most of
which possess a same behaviour that just have one or two links with
each community. Especially, ‘‘pl’’ belongs to the male community in
the reality but has more links with the female community, thus some
other community detection methods often misclassified it to be a
female dolphin19. Differently, our method neither misclassifies it to
the female community nor assigns it to the male community, but
considers it as an outlier. This assignment provides a new insight and
involves deeper understanding for this network.

The Political Books Network was compiled by Valdis Krebs20. This
network represents books about US politics sold by Amazon. com.
Edges represent frequent co-purchasing of books by the same buyers,
as indicated by the ‘‘customers who bought this book also bought
these other books’’ feature on Amazon. The political viewpoints of
these books are given by ‘‘liberal,’’ ‘‘neutral’’ and ‘‘conservative,’’
respectively, which are taken as the ground-truth in our experiment.

By setting the group number K 5 3, we fit our model to the
political books network data. Our community result is shown as
Figure 3. Because the topological structure of the ‘‘neutral’’ commun-
ity is not clear, it’s a common challenge for most community detec-
tion algorithms. Here, our method successfully finds the domains of
‘‘conservative,’’ ‘‘neutral’’ and ‘‘liberal,’’ respectively. For instance,
vertex ‘‘Why America Slept’’ is an overlapping vertex between ‘‘con-
servative’’ and ‘‘neutral,’’ which means it is often co-purchased by the
same buyer. Although it is marked by ‘‘neutral,’’ we infer that it may
contain both of the two viewpoints but mainly belongs to ‘‘neutral’’
part. More interestingly, the overlapping vertices are all between
‘‘conservative’’ and ‘‘neutral,’’ or between ‘‘liberal’’ and ‘‘neutral,’’
but not between ‘‘conservative’’ and ‘‘neutral.’’ It makes sense that
the same buyer seldom buys two books with the clearly opposite
political views, but has some probability to choose two books with
similar or relative soft views. In addition, we find the hubs ‘‘A
National Party No More’’ and ‘‘Bushwhacked’’ in the ‘‘conservative’’
and ‘‘liberal’’ communities, respectively. We guess these two books
may be very popular in the two communities, which is correctly the
situation in the reality. Considering the detected outliers, most of
them locate at the borderline in the network. It implies they have
weak links to other vertices, and probably are not as popular as other
books in each community. In summary, our method can not only
detect the community structure, but also provide some more useful
information for this network.

Figure 2 | Our community result for the dolphin social network. Here different shapes represent the real community membership, and different colors

represent different communities detected (except pink vertices). The hubs (vertices ‘‘Web’’ and ‘‘Grin’’) are shown in the black boxes; the overlapping

vertex ‘‘SN100’’ is shown by pie vertex; and the rest, colored by pink, such as vertices ‘‘Zig,’’ are outliers.
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The Karate Club Network21 has become a de facto testbed for
community detection algorithms. A disagreement developed
between the administrator (vertex 33) of the club and the club’s
instructor (vertex 1), which ultimately resulted in the instructor’s
leave and starting a new club. These two groups are used as the
ground-truth in our study.

By setting the group number K 5 2, we fit our model to the karate
club network data. Our community result is shown in Figure 4, which
roughly corresponds to the actual communities of this network.
Especially, vertices 1, 33, and 34 are hubs found by CDNMF, vertices
3, 9, 31, and 32 are overlapping vertices, and vertex 17 is an outlier. In
fact, vertex 17 locates at the borderline position of the left commun-
ity, and it only connects the other two unimportant vertices 6 and 7,
which causes it has only weak association with this community, and
thus it is considered as an outlier vertex. Differently, vertex 12 has
only one link with this community, but it connects with the club’s
instructor (vertex 1) directly, which means it may be as well as an
important vertex. For this reason, it should not be found as an outlier

vertex but a community vertex, which is correctly the result of our
method. Our method successfully finds the overlapping communit-
ies, the hubs, and outlier simultaneously. Therefore, it can be
regarded as a helpful supplement to vertex divisions by introducing
some more information from the identification of vertex roles.

Result comparisons. Here we use CDNMF on ten widely used
real-world networks, and compare it with several well-known
community detection methods. The networks used are shown in
table 1, where n and m denotes the numbers of vertices and edges,
respectively, and K denotes the actual number of communities in
the network. Note that, ‘‘Friendship6’’ and ‘‘Friendship7’’ denote
the same network, but they used different ground-truths; the
last two networks ‘‘Jazz’’ and ‘‘Neural’’ do not have known
communities. The methods compared include: Louvain method22

which is regarded as one of the best for vertex partition, CPM
(Clique Percolation Method)1 which is the most prominent
algorithm for overlapping community detection, and BNMF8

Figure 3 | Our community result for the political books network. Here different shapes represent the real community membership, and different colors

represent the communities got by CDNMF (except pink vertices). Especially, the hubs are shown in the black box; the overlapping vertices are shown by

pie vertices; and the outliers are marked by pink color.

Figure 4 | Our community result for the karate club network. Here different shapes represent the real community membership, and different colors

represent different detected communities (except pink vertices). The hubs (vertex 1, 33 and 34) are shown in the black boxes. The overlapping vertices,

such as vertex 3, are shown by pie vertices, and the rest, colored by pink, are outliers.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2993 | DOI: 10.1038/srep02993 4



and BNMTF10 which both are community detection methods
based on NMF. In order to sufficiently evaluate the performance
of different algorithms, we adopt two sets of comparisons in terms
of accuracy and community quality, respectively.

Accuracy comparisons. There are various standard measures that can
be used to compare the known community structure and the one
delivered by the algorithm. CDNMF does not force every vertex into
a community, and some of them are detected as outliers. This situ-
ation appears for CPM algorithm in like manner. Thus, for fair
comparison, we choose the widely-used FVCC, which measures
the fraction of vertices classified correctly18, as the accuracy metric
here. Table 2 shows the results of different algorithms in terms of
FVCC index. Notice that CPM cannot get the community result on
political blogs network within 24 hours. As we can see, our method
CDNMF has the best performance on four of the seven networks,
and it is also competitive with the other method on the left three
networks.

Quality comparisons. The second evaluation criterion is the average
conductance (AC) of communities with weights, which extends the
conductance used by Leskovec et al.27, mapping the weighted value of
conductance for all the communities in a cover. The conductance can
be simply thought of as the ratio between the number of edges inside
the community and those leaving it. More formally, the conductance
is defined as follows:

w(S)~cs=min (Vol(S), Vol(V\S)), ð1Þ

where cs~ u, vð Þ : u[S, v[=Sf gj j, Vol(S)~
P

u[S du, and du is the
degree of vertex u. Thus, more community-like sets of vertices have
lower conductance. Consequently, the AC can be defined as

AC~
1PK

i~1 N(Ci)

XK

i~1
N(Ci)w(Ci), ð2Þ

where K denotes the number of communities, Ci denotes the ith
community, and N(Ci) denotes the number of vertices in Ci.

Table 3 shows the results of different algorithms in terms of aver-
age conductance. Generally, the performance of CDNMF is still bet-
ter than the other four algorithms in terms of the AC quality. To sum

up, our algorithm is very effective on real-world networks in terms of
both accuracy and quality. Therefore, as we can see, CDNMF can not
only detect three types of vertices roles providing richer information
of networks, but also find community results with highly accuracy
and quality.

Applications. We use our method CDNMF on two applications in
biology science and cognitive psychology respectively, which are the
molecular-biological network of protein-protein interactions and the
network of word associations, to show its superior performance over
the existing methods in solving real-world problems. Different from
the networks used before, these two ones considered here possess
rich metadata which describe the structural and functional roles of
each vertex. Therefore, we can evaluate the performance of different
methods by measuring how well the discovered community
structures reflect the metadata, which seems to be more convincing
than using quality metrics designed only based on network topology.

In the following, we will offer two types of comparisons for each
network. The first one is with CPM1, which is the most prominent
algorithm for overlapping community detection. CPM takes some
vertices of the network as background and does not classify them into
any community. For fairness, when comparing with it, we take the
subgraph processed by CPM as the targeted network. But the draw-
back of this comparison is that, it is on a subgraph rather than on a
whole network. For this reason, we offer the second type of compar-
ison with Louvain22, which is regarded as one of the best algorithm
for vertex partition by28. In these two comparisons, we use the num-
ber K of communities got by CPM and Louvain respectively as the
given community number of our model.

Protein-protein interaction network. In the first application, we con-
sidered a protein-protein interaction (PPI) network from
Saccharomyces cerevisiae29. It contains 2,640 vertices and 6,600 links,
where vertices represent proteins and links denote pairwise physical
interactions in the yeast.

For this network, we use the Gene Ontology (GO) terms30, which
are the most elaborate protein annotations available, as its metadata.
It provides controlled vocabulary (GO terms) which describes cer-
tain aspects of protein characteristics (function, location, etc). Here
we measured the quality of detected community structure by util-
izing GO term enrichment analysis, which finds common biological
meaning (i.e., significant shared GO terms) for the proteins within
each community. Enrichment is computed using hyper-geometric
test31, and each shared GO term was assigned a p-value to quantify
the significance of gene-term enrichment. For the quantitative evalu-
ation of community structure quality, we used the average of num-
bers of significantly enriched GO terms (i.e., GO terms with p-value
less than a threshold) for all communities as quality metric. Different
thresholds for significance of gene-term enrichment may lead differ-
ent results. For fairness, we set 10 different thresholds for the signifi-
cance test.

Table 1 | Real-world networks used here

Datasets n m K Descriptions

Karate 34 78 2 Zachary’s karate club21

Dolphins 62 159 2 Dolphin social network17

Friendship6 68 220 6 High school friendship network15

Friendship7 68 220 7 High school friendship network15

Polbooks 105 441 3 Books about US politics20

Word 112 425 2 Word network23

Polblogs 1,490 16,718 2 Blogs about politics24

Jazz 198 2,742 - Jazz musicians25

Neural 297 2,148 - Neural network of C. elegans26

Table 2 | Comparing CDNMF with Louvain, CPM, BNMF, and
BNMTF on seven real networks with known community structures
in terms of FVCC

FVCC (%) Louvain CPM BNMF BNMTF CDNMF

Karate 97.06 75.00 82.35 52.94 100
Dolphins 96.77 100 83.23 67.74 98.11
School6 92.75 82.35 86.39 26.09 96.55
School7 91.30 82.35 85.22 36.23 94.74
Polbooks 84.76 88.57 81.52 79.05 84.54
Word 58.93 62.16 55.36 72.32 59.02
Polblogs 96.17 - - - - 93.15 88.72 97.50

Table 3 | Comparing CDNMF with Louvain, CPM, BNMF, BNMTF,
and CDNMF on nine real-world networks in terms of AC quality

AC Louvain CPM BNMF BNMTF CDNMF

Karate 0.2739 0.5795 0.2282 0.8333 0.1851
Dolphins 0.2437 0.3748 0.1281 0.8824 0.0537
School6 0.2418 0.3054 0.2477 0.7579 0.2117
School7 0.2418 0.3054 0.2577 0.5433 0.2375
Polbooks 0.0703 0.2137 0.1546 0.4703 0.1120
Word 0.5292 0.7267 0.3645 0.8852 0.3622
Polblogs 0.0762 - - - - 0.0642 0.0791 0.1634
Jazz 0.2587 0.614 0.5488 0.2953 0.2281
Neural 0.3661 0.7486 0.7373 0.4687 0.3197

www.nature.com/scientificreports
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The comparison of our method and CPM is shown in Figure 5(a).
For seven in ten thresholds, communities attained by CDNMF
always get much more enriched GO terms than that of CPM, which
means our communities can better reflect the metadata. Of note, our
method is run on the subgraph sifted by CPM, and the filtered
network is more suitable for CPM than the original one, which makes
this comparison partial to CPM. In this sense, our method still gets
more significant communities. Thus, it can better show the superi-
ority of our method over CPM.

Furthermore, the comparison of our method and Louvain is
shown in Figure 5(b). It shows that our result is always better than
that of Louvain as the threshold for the significance test is varied,
which indicates it has better community results from the perspective
of genes function.

Word association network. The network analyzed here comes from
the word associations, which is constructed from the University of
South Florida Free Association Norms data set32 in the manner of1.
This network contains 5,017 vertices and 29,148 links, where each
vertex represents a word, and each link between two words indicates
that people always associated one endpoint of the link with its other
one.

For this network, we use the WordNet database, which is built for
semantic analysis, as the metadata33. This database assigned a set of
meanings/definitions or senses to each word (known as Synsets). We
define a pair of words to be similar when they belong to a same
Synset. To assess the quality of detected community structure, we
compute the enrichment of vertex pair similarity34. Particularly,
enrichment is the average metadata similarity between all pairs of
vertices that share a community, divided by the average metadata
similarity between all pairs of vertices. The larger the enrichment, the
better the community structure is.

First, we compare our method with CPM. The enrichment of our
result is 51.28, which is much larger than that of CPM (30.75). It
indicates that, even in the case of using CPM’s subgraph, the com-
munity result got by our method is still more reasonable than that of
CPM in terms of real semantic. Thereafter, we compare our method
with Louvain on the whole network. The enrichment of our result is
17.77, which is larger than that of Louvain (15.97). This result shows
that, when compared with Louvain, our method can always get the
better community result from the perspective of semantic analysis.

Discussion
In this work, we have proposed a novel method CDNMF based on
NMF. Compared to previous work on roles identification of vertices
in networks, CDNMF uses the centrality representation of vertices in
each community, which enables us to identify not only all com-
munities, but the different roles of vertices in the same run, including

hubs and outliers. In contrast to other NMF-based methods,
CDNMF avoids an artificial threshold in the detection of overlapping
communities, which makes it much easier to implement. The experi-
ments on various real-world networks, clearly demonstrated the
superior performance of our method. We would like to draw atten-
tion to some information that are detected by CDNMF and possibly
useful but missed by other algorithms that were applied on the same
data sets.

Let us also point out some possible improvements to our method.
In the current method, the number K of communities has to be
predefined. This is not unique to our method, but commonly
observed in all similar model-based methods. To surmount this obs-
tacle, several methods have been proposed in literature, e.g., the
minimum description length principle11,14 and multi-objective
optimization35,36, neither of which, however, is compatible with our
framework or can be adapted in a natural way. We leave it open for
the future work.

Methods
This section describes our model and the optimization problem, presents the a simple
algorithm to solve this problem, and then show how it reveals all the sought-after
information.

Generative model. Let N 5 (V, E) be an undirected and unweighted network, where
V is a set of n vertices and E is a set of m edges each of which connects a pair of vertices
in V. Let A denote the adjacency matrix of N. It is an N 3 N binary matrix where for 1
# i, j # N, the entry Aij is 1 if and only if there is an edge between vertices i and j; by
definition, Aii 5 0 for any 1 # i # N. Assume there can be at most K communities, and
K is known a priori.

Our model will have two sets of parameters, wz and uiz. For a community z, the soft
degree wz of z is defined to be the sum of expected degrees of all vertices in z. For any
pair of vertex i and community z, the centrality uiz of i in z is defined as the expected
proportion of vertex degree of i in z; by definition,

P
i uiz~1. Note that we assume a

soft membership of communities.
Under this model, an expected edge ,i, j. can be generated in the following

process. First, one selects a community z with degree wz, then community z selects
vertices i, j as a pair using probabilities uiz, ujz respectively, finally vertices i, j form the
edge. Summing over communities z, the expected number of edges that lies between
vertices i and j can be written as

Âij~
X

z

uizwzujz , ð3Þ

Using the format of matrix, (3) can be evaluated as

Â~UHUT , ð4Þ

where Â denotes the expected adjacency matrix of network N. Here, U 5 (uiz)n3 K is
the centrality matrix of vertices, where each element uiz denotes the centrality of
vertex i in community z, subject to

P
i uiz~1. And H 5 diag(wT) is the degree matrix

of communities, where wT 5 (w1, w2, …, wz, …, wK). Obviously, H is a diagonal
matrix, where each diagonal element wz denotes the soft degree of community z.

Figure 5 | Two types of comparisons in the PPI network, measured by the average of numbers of significantly enriched GO terms of communities. The

10 different thresholds were set for the significance test. (a) Comparison of our method and CPM. (b) Comparison of our method and Louvain.
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Model learning. Our task here is to learn the model mentioned before. We first define
it as an optimization problem, and then infer the parameters by best fitting the
observed network and the model specified in (4).

We use squared loss to measure the relaxation error. The loss function can be then
formulated as

min
U , H§0

L(A,U,H)~ A{Â
��� ���2

F
~ A{UHUT
�� ��2

F
:

s:t: 1T
n U~1T

K ,

H~diag(wT ),and

wT~(w1,w2,:::,wz ,:::,wK ):

ð5Þ

As H is a diagonal matrix, the expected adjacency matrix Â can be rewritten as

Â~UHUT~UH1=2H1=2UT~(UH1=2)(UH1=2)T~XXT : ð6Þ

Then, we can transform the optimization problem of (5) to be an equivalent problem
of nonnegative matrix factorization:

min
X§0

A{XXT
�� ��2

F
: ð7Þ

According to37, by using gradient descent method, we obtain the multiplicative
updating rule of NMF style for the element Xij in X:

Xij/Xij
1
2
z

(AX)ij

(2XXT X)ij

 !
: ð8Þ

Now, the optimization of (7) is to iteratively solve (8) by choosing a set of initial
values. When it converges, we can infer the model parameters using X. Using (6), we
can obtain the degree matrix of communities by

H~(1T
n X)2, ð9Þ

and we then get the centrality matrix U of vertices by

U~X(H1=2){1: ð10Þ

Identifying overlapping communities, hubs, and outliers. When having the
centrality matrix U of vertices and the degree matrix H of communities, here we
introduce a method for detecting the overlapping communities, hub vertices, and
outlier vertices.

As each column of U denotes the centralities of all vertices in this community, we
rank all the vertices in each column according to their values in decreasing order. For

any community z, the zth column of ordered U is denoted by Ûz :

Û
T

z ~(Û (z)
1 ,Û (z)

2 ,:::,Û (z)
j ,:::,Û (z)

n ), ð11Þ

where Û (z)
1 §Û (z)

2 §:::§Û (z)
j §:::§Û (z)

n and 1 # j # n. Obviously, the upper the
vertex, the more important it is in this community. The corresponding vertex vector

of Û
T

z is denoted by Iz:

IT
z ~(I(z)

1 ,I(z)
2 ,:::,I(z)

j ,:::,I(z)
n ), ð12Þ

where 1 # j # n, and Ij
(i) represents the vertex index corresponding to the value Û (i)

j .
From H, we get the expected degree of the zth community wz. Then we add the

vertex in Iz one by one from top to bottom to this community, until the sum of degrees
of these vertices is larger than wz. The real degree of community z is then evaluated
by

D(z)
p ~

Xp

j~1

Xn

q~1

AI(z)
j q, ð13Þ

where p indicates that number of vertices having been added in the zth community.
Then the members of the zth community Cz is:

Cz~
I(z)

j 1ƒjƒpj
n o

, if DP{wzj jƒ Dp{1{wz

�� ��,
I(z)

j 1ƒjƒp{1j
n o

, if Dp{wz

�� ��w Dp{1{wz

�� ��:
8><
>: ð14Þ

As we can see, these communities will overlap with each other when they are over-
lapping in nature. We then get the overlapping communities.

After getting all the communities, the outliers set O in the network can be then
calculated as:

O~V{
[K
z~1

Cz , ð15Þ

and the hubs set B is evaluated as:

B~ I(z)
j j~1, 1ƒzƒKj

n o
: ð16Þ

In this way, if a vertex is a hub, it is ranked in the top in the column, sequentially, it can
be easily detected. If a vertex is an outlier, it is ranked below the cut position, i.e., it
links to other communities via weak relations. If a vertex resides in the overlapping
region of communities r and s, it will have high centrality in both these two com-
munities and be added to them simultaneously. In addition, in some particular
applications, we may consider the first two vertices as the hubs, such as the two leaders
in the cycle community in the karate network (see Figure 4). Moreover, different from
other models8,11,14, which need the specified threshold to detect overlapping com-
munities, our CDNMF can detect three types of vertex roles including overlapping
communities without any threshold.
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