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A typical assumption made in the existing opinion formation models is that two individuals can
communicate with each other only if the distance between their opinions is less than a threshold called
bound of confidence. However, in the real world it is quite possible that people may also have a few friends
with quite different opinions. To model this situation, we propose a bounded confidence plus random
selection model, in which each agent has several long-range neighbors outside the bound who are selected
according to a similarity-based probability rule. We find that the opinions of all agents can reach a consensus
in bounded time. We further consider the situation when agents ignore the bound of confidence and select
all their neighbors randomly according to the similarity-based probability rule. We prove that in this
scenario the whole group could also reach a consensus but in the probability sense.

M
ulti-agent models of opinion formation are used to investigate many collective phenomena in social
networks, such as the formation of consensus1–5, information spreading and aggregating6–8, and wisdom
of crowds9,10. An opinion formation model generally contains two aspects: an opinion updating rule and

an underlying social structure. The agents are usually supposed to be boundedly rational in the process of
updating opinions11,12. Therefore, myopic updating rules, such as taking a linear combination of other agents’
opinions and following a majority rule, are prominent in existing models1–3,9,10,13–17. The social structure, which is
represented by various sorts of networks, might be assumed to be fixed during the process of formation, randomly
time-varying, or time-varying according to certain principles1,9,17–19.

One of the extensively studied models is the Hegselmann-Krause model (HK model for short), where all agents
are boundedly confident such that each agent updates her opinion by averaging all agent opinions that differ from
her own by less than a threshold called the bound of confidence20–26. The social structure in the HK model is based
on the homophily principle in sociology27. This model represents opinion dynamics in the real world to a certain
extent, while still leaves a plenty of room for improvement. For example, cutting off connections with other
individuals exclusively according to the bound of confidence is quite unrealistic. From experience, we might be
more inclined to communicate with those who hold similar opinions, but communicating actively or passively
with others who have quite different opinions is sometimes inevitable in the real world. Motivated by this
consideration, a modified bound confidence model is proposed in Ref. 28, in which each agent collects some
randomly selected opinions regardless of the opinion distance, and one agent is influenced by the weighted
average of the selected opinions if it is inside her bound of confidence. In this way, agents might be influenced by
some quite different opinions.

By modifying the traditional HK model, in this paper we present a bounded confidence plus random selection
model, where each agent can directly communicate with those whose opinions are inside her bound of confidence
and meanwhile selects a few long-range neighbors outside the bound according to a similarity-based probability
rule, i.e., one agent has a relatively large probability to be a neighbor of another agent outside her bound of
confidence if the distance between their opinions is relatively small. We introduce a parameter to tune the
randomness of the selection of neighbors, which also represents to what extent the difference on opinions affects
two agents’ neighboring relationship. We theoretically prove that all agents could reach a consensus in bounded
time steps regardless of the values of bound of confidence, and we provide an upper bound of convergence time.
We also show that a larger bound of confidence, a larger number of long-range neighbors, and higher randomness
in the choice lead to faster convergence to a consensus. This is apparently different from the traditional bounded
confidence models where the population might be divided into multiple clusters if the bound of confidence is
below a certain threshold.

Besides the proposed model mentioned above, we also investigate the opinion formation in another scenario
that, ignoring the bound of confidence, each agent selects all her neighbors randomly according to the
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aforementioned similarity-based probability rule. This model also
represent the homophily principle in social networks in the sense
that agents with similar opinions have high probabilities to commun-
icate with one another. The probability of any pair of agents being
neighbors is proportional to the distance between their opinions. An
related model was proposed in Example 8.7 of Ref. 29, in which
agents place positive weights on all others and place higher weight
on opinions closer to their own. Since the underlying network is
completely connected and there is a lower bound on weights, a con-
sensus is reached among all agents from any starting opinions. As for
our model, we find that opinions of the whole group can also reach a
consensus, but in the probability sense, and more long-range neigh-
bors and higher randomness in the choice lead to faster convergence.

Results
The bounded confidence plus random selection model. Consider
agents in a social network as a vertex set V 5 {1,2,…,n}. The opinion
of agent i at time t is denoted by mi(t)[½0,1�. The distance between two
agents, say i and j, in terms of opinions is denoted by dij(t)~

mi(t){mj(t)
���

���. The process of selecting neighbors consists of two

steps. Firstly, agents choose their neighbors according to the
bound of confidence denoted by r . 0. More specifically, the set of
agent i’s neighbors whose opinions are inside her bound of
confidence is defined as

Ni,1(t)~ j[V ,j=i : dij(t)ƒr
� �

Each agent also chooses several long-range neighbors outside her
bound of confidence according to a similarity-based rule. The prob-
ability that agent i chooses agent j as her long-range neighbor is as
follows (The detailed selecting process can be found in the Method
section):

pij(t)~
e{adij(t)

P
k=[Ni,1(t)|fig e{adik(t)

ð1Þ

For simplicity, we assume that all agents randomly select the same
number of long-range neighbors, which is set to be b. All the long-
range neighbors of agent i compose her another set of neighbors,
N1,2(t). The overall set of neighbors of agent i is denoted by
Ni(t)~Ni,1(t)|Ni,2(t). We introduce the parameter a in (1) to tune
the randomness of the selection. A relatively small a corresponds to
that agents are less affected by opinion distance in the selection of
long-range neighbors, and thus, the selection is highly random. We
can also interpret the parameter a as a measure of the openness of the
society. A relatively small a corresponds to that the society is more
open to different opinions.

As for the opinion updating rule, each agent i is assumed to adopt
the algebraic average of opinions of her neighbors and her own as the
new opinion, i.e.,

mi(tz1)~
X

j[Ni(t)|fig

mj(t)

1z Ni(t)j j ð2Þ

where Ni(t)j j is the cardinality of the set Ni(t). The updating rule (2)
has the same form as that in most of the traditional opinion forma-
tion models1–3,9,20–26.

In contrast to the traditional bounded confidence models where
the bound of confidence heavily affects the convergence of opinions
and separated clusters might appear under a relatively small bound of
confidence, the opinions in the proposed model can reach a con-
sensus in finite time regardless of the values of bound of confidence.
For the case where at least one long-range neighbor outside the
bound of confidence, the upper bound of convergence time is

T~q(1{r)n
2r

rz1

It is clear that a positive bound of confidence guarantees opinions
of all agents reach a consensus in finite time, and the convergence
time decreases as r increases (see the Supplementary Information
(SI) for details).

After characterizing the convergence of the opinion formation, the
following computer simulations focus on how the convergence speed
is influenced by different values of a, b, and r. We conduct the
simulations on 100 agents whose initial opinions are randomly dis-
tributed in the interval [0,1]. The value ranges of the parameters are
as follows: a[½0,50�, b[½1,10�, and r[ 0:01,0:05,0:1,0:2f g. The result is
shown in Fig. 1, which consists of four subfigures corresponding to
four different values of r. Here we say the whole group reaches a
consensus, if the distance between the maximum and the minimum
of all opinions is less than 1024.

It is shown in Fig. 1 that the final consensus among the opinions of
all agents can be achieved in a finite number of steps. By comparing
the four subfigures we can see that the convergence time decreases as
the bound of confidence increases. This indicates that the bound of
confidence has an apparent influence on the convergence speed.
Furthermore, for each given r, agents are more inclined to reach a
consensus under a small a and a large b. This implies that extensively
communicating beyond the difference on opinions facilitates reach-
ing a consensus.

The random selection model of opinion formation. If we assume
that agents ignore the influence of bound of confidence and select all
neighbors randomly according to the similarity-based probability
rule, the result changes dramatically both in theoretical analysis
and computer simulations.

Suppose that each agent chooses b neighbors randomly according
to the following probability rule (The detailed selecting process can
be found in the Method section):

pij(t)~
e{adij(t)

P
k[V\fig e{adik(t)

ð3Þ

Here we denote the set of agent i’s neighbors at time t by Ni(t), which
is composed by the b randomly selected neighbors. The opinion
updating rule is as follows:

mi(tz1)~
X

j[Ni(t)|fig

mj(t)

1zb
: ð4Þ

The theoretical analysis indicates that agents in our model reach a
consensus in the long run with probability one (see the SI for details).

Though consensus on opinion can be achieved with probability one
regardless of the specific values of parameters, the convergence time is
still related to the openness of the society, a, and the number of
neighbors, b. We study the influence of a and b by computer simula-
tions, and the maximum number of simulation steps is 104. We
conduct the simulations on 100 agents whose initial opinions are
randomly distributed in the interval [0,1]. The value ranges of the
parameters are as follows: a[½0,50� and b[½1,60�. The result is shown
in Fig. 2. Since the number of steps for convergence under different
values of parameters vary up to four orders of magnitude, we plot
them on a logarithmic scale. We can see that a relatively small a and a
relatively large b help all the agents reach a consensus fast. That is to
say, a society where agents communicate with one another extensively
and beyond the difference on opinions will make an agreement fast.

Discussion
In this paper, we have proposed a bounded confidence plus random
selection model of opinion formation, where each agent can directly
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communicate with other agents whose opinions are inside her bound
of confidence and meanwhile randomly selects several long-range
neighbors outside her bound of confidence according to a similarity-
based probability rule. We introduce a parameter to tune the ran-
domness of the selection of neighbors, which also represents how
open the agents are to different opinions. We find that all agents
could reach a consensus in finite time, and we provide an upper
bound of convergence time. Computer simulations further show that
a large number of neighbors and selecting neighbors beyond the
difference on opinions lead to faster convergence to consensus.

Furthermore, we investigate another situation where agents
choose all their neighbors randomly according to the similarity-
based probability rule. Theoretical analysis shows that the whole
group will reach a consensus with probability one, and computer
simulations show that the more an agent is inclined to communicate
with those who have similar opinions, the slower the convergence
speed is.

It is well known that in the traditional bounded confidence mod-
els, such as the HK model, if the bound of confidence is not large
enough, the whole group of agents might split into different clusters
of opinions20–26. The underlying reason that all the agents in our first
model reach a consensus in finite time is that the agents always
communicate with at least one agent outside their bound of confid-
ence. This means that there exists no isolated cluster of agents who do
not interact with others outside the cluster, which is totally different
from the HK model where multiple isolated clusters exist when the
bound of confidence is smaller than a certain threshold. This feature
allows the distance between the maximum and minimum of all opi-
nions always decreases at a strictly positive rate until the consensus is
achieved. The convergence time is finite, and its upper bound can be
determined in advance for any given number of agents and any
bound of confidence.

For the second model, the underlying reason that agents reach a
consensus with probability one is that at any time step the probability
of any pair of agents being neighbors is strictly positive. As time goes
to infinity, any pair of agents are neighbors for infinitely many num-
ber of steps with probability one. The sufficient communication
among all agents is essential for reaching a consensus.

In our models, agents are homogenous in the sense that they
update opinions using the same updating rule. In fact, in the real
world individuals are different in certain aspects, such as social sta-
tus, education level, which results in the diversity of updating rules.
Therefore, generalization of the proposed models to opinion forma-
tion of heterogeneous agents needs further research. In addition,
consensus of opinions is a feature of our models, while persistent
disagreement is also common in the real world, which might be
caused by the existence of influential and stubborn agents who have
great influence on others while do not change their own opinions.
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Figure 1 | Impact of the openness of the society (a) and the number of long-range neighbors (b) on the opinion formation under different bounds of
confidence (r). A relatively large a corresponds to that agents are more inclined to communicate with those who hold similar opinions. The initial

opinions of all agents are randomly distributed in [0,1]. Four subfigures are corresponding to four different bounds of confidence. The overall trend in

each subfigure is similar to the others, while the convergence time varies under different bounds of confidence. The result is averaged over 100 realizations.

Figure 2 | The number of steps needed to reach a consensus as a function
of the openness of the society (a) and the number of neighbors (b). A

relatively large a corresponds to that agents are more inclined to

communicate with those who hold similar opinions. The initial opinions

of all agents are randomly distributed in [0,1]. The number of steps for

consensus is cut off if it exceeds 10000. The result is averaged over 100

realizations.
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Constructing models to represent these situations is also an attractive
direction for future work.

Methods
Choosing long-range neighbors outside the bound of confidence. Any agent i’s first
long-range neighbor is chosen according to the following probability like playing
Russian roulette

pij(t)~
e{adij(t)

P
k=[Ni,1 (t)|fig e{adik (t)

:

After the first round, we assume that agent l is selected. At the second round, agent l
is deleted from the set of candidates, and any agent. is selected as agent i’s second long-
range neighbor according to the following probability

pij(t)~
e{adij(t)

P
k=[Ni,1(t)|fi,lg e{adik(t)

The following rounds of selecting neighbors are similar, and it lasts until b
neighbors are obtained. Note that if the number of agents outside the bound of
confidence is less than b, agent. simply chooses all the candidates as her neighbors.

Choosing neighbors in the random selection model. Now we assume that each
agent randomly chooses all her neighbors according to a probability rule. The number
of neighbors at each time step are set to be b (1 # b # n 2 1), which are selected
sequentially in the way the above subsection mentioned. More specifically, at time t,
agent i chooses agent j as her first neighbor according to the following probability

pij(t)~
e{adij(t)

P
k[V\fig e{adik (t)

:

After the first round, we assume that agent l is selected. At the second round, agent l
is deleted from the set of candidates, and any agent j[V\fi,lg is selected as agent i’s
second neighbors according to the following probability

pij(t)~
e{adij(t)

P
k[V\fi,lg e{adik (t)

The following rounds of selecting neighbors are similar, and it lasts until the given
number of neighbors are obtained.
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ERRATUM: Opinion dynamics with similarity-based random neighbors

Qipeng Liu & Xiaofan Wang

This Article contains an error in the order of the figures. Figure 2 and Figure 1 were published as Figure 1 and
Figure 2 respectively. The correct Figure 1 and Figure 2 appear below. The figure legends for Figures 1 and 2 are
correct.
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