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Spin-orbit coupling plays an important role in various properties of very different materials. Moreover
efforts are underway to control the degree and quality of spin-orbit coupling in materials with a concomitant
control of transport properties. We calculate the frequency dependent optical conductivity in systems with
both Rashba and Dresselhaus spin-orbit coupling. We find that when the linear Dresselhaus spin-orbit
coupling is tuned to be equal to the Rashba spin-orbit coupling, the interband optical conductivity
disappears. This is taken to be the signature of the recovery of SU(2) symmetry. The presence of the cubic
Dresselhaus spin-orbit coupling modifies the dispersion relation of the charge carriers and the velocity
operator. Thus the conductivity is modified, but the interband contribution remains suppressed at most but
not all photon energies for a cubic coupling of reasonable magnitude. Hence, such a measurement can serve
as a diagnostic probe of engineered spin-orbit coupling.

S
pin-orbit coupling in semiconductors1 and at the surface of three dimensional topological insulators2–8

where protected metallic surface states exist, plays a crucial role in their fundamental physical properties.
Similarly pseudospin leads to novel properties in graphene9–11 and other two dimensional membranes, such

as single layer MoS2
12–17 and silicene18–22. In particular MoS2 has been discussed within the context of valleytronics

where the valley degree of freedom can be manipulated with the aim of encoding information in analogy to
spintronics. Spin-orbit coupling has also been realized in zincblende semiconductor quantum wells23–25 and
neutral atomic Bose-Einstein condensates26 at very low temperature27.

In some systems both Rashba28 and Dresselhaus29 spin-orbit coupling are manipulated, the former arising from
an inversion asymmetry of the grown layer while the latter comes from the bulk crystal. In general spin-orbit
coupling will lead to rotation of the spin of charge carriers as they change their momentum, because SU(2)
symmetry is broken. In momentum space this has been observed by angle-resolved photoemission spectroscopy
(ARPES) as the phenomenon of spin momentum locking. In a special situation when the strength of Rashba and
Dresselhaus spin-orbit coupling are tuned to be equal, SU(2) symmetry is recovered and a persistent spin helix
state is found23–25. This state is robust against any spin-independent scattering. However it will be potentially
destroyed by the cubic Dresselhaus term which is usually tuned to be negligible.

To describe these effects we consider a model Hamiltonian describing a free electron gas with kinetic energy
given simply by 2k2/(2m), which describes charge carriers with effective mass m. We also include spin-orbit
coupling terms, with linear Rashba (a1) and Dresselhaus (b1) couplings, along with a cubic Dresselhaus (b3) term.
The Hamiltonian is

Ĥ0~
2k2

2m
Îza1 kyŝx{kxŝy

� �
zb1 kxŝx{kyŝy

� �
{b3 kxk2

y ŝx{kyk2
xŝy

� �
:

ð1Þ

Here ŝx , ŝy and ŝz are the Pauli matrices for spin (or pseudospin in a neutral atomic Bose-Einstein condensate)
and Î is the unit matrix. For units we use a typical wave vector k0 ; ma0/ 2 with corresponding energy
E0~ma2

0

�
2, where a0 is a representative spin-orbit coupling which has quite different values for semiconductors

(a0/ < 105 m/s, estimated from Ref. 25) and cold atoms (a0/ < 0.1 m/s, estimated from Ref. 26). The mass of a
cold atom is at least 1000 times heavier than that of an electron and the wavelength of the laser used to trap the
atoms is at least 1000 times (estimated from Ref. 26) larger than the lattice spacing in semiconductors.

In this report we study the dynamic longitudinal optical conductivity of such a spin-orbit coupled 2D electron
gas. We find that the interband optical absorption will disappear when the Rashba coupling is tuned to be equal to
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the Dresselhaus coupling strength. We discuss the effect of nonlinear
(cubic) Dresselhaus coupling on the shape of the interband conduc-
tivity and the effect of the asymmetry between the conduction and
valence band which results from a mass term in the dispersion
curves.

Results
We compute the optical conductivity (see Methods section) as a
function of frequency, for various electron fillings and spin-orbit
coupling strengths. In all our figures we will use a dimensionless
definition of spin-orbit coupling; for example, the choice of values
designated in the lower right frame of Fig. 1, a1 5 0.2, b1 5 0.3, and
b3 5 0.3, really means a1/a0 5 0.2, b1/a0 5 0.3, and b3k2

0

�
a0~0:3.

In Fig. 1 we plot the spin direction in the conduction band as a
function of momentum for several cases. The top left frame is for
pure Rashba coupling, in which case spin is locked to be perpendic-
ular to momentum2 as has been verified in spin angle-resolved
photoemission spectroscopy studies30–33. The top right frame gives
results for pure linear Dresselhaus coupling (no cubic term b3 5 0).
The spin pattern is now quite different; the direction of the spin
follows the mirror image of the momentum about the x-axis. The
lower left frame for equal linear Rashba and Dresselhaus coupling is
the most interesting to us here. All spins are locked in one direction,
namely h 5 3p/4 with those in the bottom (upper) triangle pointing
parallel (anti-parallel) to the 3p/4 direction, respectively. This spin
arrangement corresponds to the persistent spin helix state of Ref.
23–25. The condition a1 5 b1 and b3 5 0 is a state of zero Berry
phase34 and was also characterized by Li et al.35 as a state in which the
spin transverse ‘‘force’’ due to spin-orbit coupling cancels exactly.
Finally the right lower frame includes a contribution from the cubic

Dresselhaus term of Eq. (1) and shows a more complex spin arran-
gement. Spin textures have been the subject of many recent
studies30–33,36. In Fig. 2 we present results for the dispersion curves
in the conduction and valence band E1/–(k) of Eq. (10) as a function
of momentum k. The two left panels are pure Rashba (top) and
Rashba equals to Dresselhaus (bottom, see also Fig. 1 of Ref. 37 where
only the contour plots of the valence band is shown). The two right
panels include the Dresselhaus warping cubic term which pro-
foundly affects the band structure.

The optical conductivity is obtained through transitions from one
electronic state to another. In general these can be divided into two
categories — transitions involving states within the same band, and
interband transitions. Here we focus on interband transitions; the
interband optical conductivity is given by

sxx vð Þ~ e2

iv
1

4p2

ðkcut

0
kdkdh

VxS2zVyS1
� �2

S2
1zS2

2

f Ezð Þ{f E{ð Þ
v{EzzE{zid

{
f Ezð Þ{f E{ð Þ

v{E{zEzzid

� �
,

ð2Þ

where f xð Þ~1
�

e x{mð Þ=kBTz1
� �

is the Fermi-Dirac distribution
function with m the chemical potential. For b3 5 0 and b1 5 a1,
we have a cancellation in the optical matrix element, VxS2 1 VyS1

5 0; remarkably the interband contribution vanishes. This result is
central to our work and shows that in the persistent spin helix state
the interband contribution to the dynamic longitudinal optical con-
ductivity vanishes. This is the optical signature of the existence of the
spin helix state which exhibits remarkable properties. With b3 5 0
the optical matrix element is b2

1{a2
1

� �
ky
�

. Thus, pure Rashba or
pure (linear) Dresselhaus coupling will both lead to exactly the same
conductivity although the states (and spin texture) involved differ by
a phase factor of p. When they are both present in equal amounts this
phase leads to a cancelation which reduces the interband transitions
to zero as the two contributions need to be added before the square is
taken. Of course the joint density of states, widely used to discuss
optical absorption processes, remains finite. It is given by

Figure 1 | Spin texture in the conduction band as a function of
momentum kx/k0, ky/k0 for various values of Rashba (a1), Dresselhaus
(b1), and cubic Dresselhaus (b3) spin-orbit coupling. In the case of purely

Rashba coupling (upper left frame), the spin is locked in the direction

perpendicular to momentum, while for linear Dresselhaus coupling

(upper right frame) the y-component of spin is of opposite sign to that of

its momentum. For the persistent spin helix state (lower left frame) all

spins are locked in the 3p/4 direction and oppositely directed on either side

of this critical direction. The lower right frame shows the spin texture for a

case with all three kinds of coupling.
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Figure 2 | Band structure of the conduction and valence band (Eq. (10))
as a function of momentum kx/k0, ky/k0 for various values of Rashba (a1),
Dresselhaus (b1), and cubic Dresselhaus (b3) spin-orbit coupling. The left

two panels are for pure Rashba a1 5 1.0, b1 5 0.0, b3 5 0.0 (top panel) and

Rashba equals to Dresselhaus a1 5 0.5, b1 5 0.5, b3 5 0.0 (bottom panel).

The right two panels are for a1 5 0.4, b1 5 0.4, b3 5 0.3 (top panel) and a1

5 0.2, b1 5 0.8, b3 5 0.3 (bottom panel). The dispersion curves are

profoundly changed from the familiar Dirac cone of the pure Rashba case

when b1 and b3 are switched on. In the contour plots, red refers to energy

0.2E0 and dark green refers to energy 20.2E0.
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D vð Þ~ 1
4p2

ðkcut

0
kdkdh f Ezð Þ{f E{ð Þ½ �

I m
1

v{EzzE{zid
{

1
v{E{zEzzid

� � ð3Þ

and will be contrasted with the interband optical conductivity below.
We first focus on the case b3 5 0. The interband conductivity is

shown in Fig. 3 as a function of frequency for positive (top frame) and
negative (bottom frame) chemical potential (m/E0 5 6 0.2). It is clear
that there is a considerable difference between the two cases, and
there is also considerable variation with the degree of Rashba vs.
Dresselhaus coupling. This will be discussed further below. Most
important is that for equal amounts of Rashba and Dresselhaus
coupling, the interband conductivity is identically zero for all
frequencies.

What is the impact of a finite value of b3? In Fig. 4 we show both
the joint density of states (top two panels) and the interband con-
ductivity (bottom two panels) for non-zero b3 for m/E0 5 0.2 (left
panels) and m/E0 5 –0.2 (right panels). Various combinations of a1,
b1 and b3 are shown as labeled on the figure. There is a striking
asymmetry between positive and negative values of the chemical
potential. This asymmetry has its origin in the quadratic term 2k2/
(2m) of the Hamiltonian (1) which adds positively to the energy in
both valence and conduction band while the Dirac like contribution
is negative (s 5 –1) and positive (s 5 11) respectively [see Eq. (10)].
While the quadratic piece drops out of the energy denominator in Eq.
(2) it remains in the Fermi factors f(E1) and f(E–).

Several features of these curves are noteworthy. They all have van
Hove singularities which can be traced to extrema in the energy
difference Ez{E{~2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1zS2
2

p
. Taking b3 5 0 for simplicity, this

energy becomes 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1zb2
1z2a1b1 sin 2hð Þ

q
which depends on the

direction (h) of momentum k, but has no minimum or maximum as a

function of jkj5 k. To get an extremum one needs to have a non-zero
cubic Dresselhaus term. This gives dispersion curves which flatten
out with increasing values of k. The dependence of the energy E1 – E–

on momentum is illustrated in Fig. 5 where we provide a color plot
for this energy as a function of kx/k0 and ky/k0 for two sets of spin-
orbit parameters a1 5 0.4, b1 5 0.4, b3 5 0.3 (top panel) and a1 5 0.2,
b1 5 0.8, b3 5 0.3 (bottom panel). Note the saddle points correspond
to the most prominent van Hove singularities in the joint density of
states (and conductivity) in Fig. 4. The van Hove singularities are at
about 1.4E0 (kx 5 ky in the momentum space) in the top frame of
Fig. 5 and at about 2E0 (kx 5 ky) and 0.9E0 (kx 5 –ky) in the bottom.

Discussion
The optical conductivity is often characterized by the joint density of
states, D(v), which has a finite onset at small energies. This is well
known in the graphene literature where interband transitions start
exactly at a photon energy equal to twice the chemical potential. Here
this still holds approximately in all the cases considered in Fig. 4
except for the solid red curve in the two left side frames. In this case
a1 5 b1 5 0.4 and b3 is non zero. If b3 is small the energy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1zS2
2

p
would be approximately equal to

ffiffiffi
2
p

ka1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z sin 2h
p

, which is zero
for h 5 3p/4, the critical angle in the spin texture of the lower left
frame of Fig. 1 for which all spins are locked in this direction. This
means that only the quadratic term 2k2/(2m) and cubic Dresselhaus
term contribute to the dispersion curve in this direction and there is
no linear (in k) graphene-like contribution. Thus, the onset of the
interband optical transition no longer corresponds to v 5 2m.

Considering the case of positive m, for the direction h 5 3p/4, (k/
k0)2/2 1 b3(k/k0)3 is the dominant contribution to the energy which
is equal to m/E0 and the minimum photon energy is now 2b3(k/k0)3,
which could be very small as is clear from the figure. For negative
values of m the onset is closer to 2jmj/E0 because in this case the
momentum at which the chemical potential crosses the band disper-
sion is given by (k/k0)2/2 2 a1(k/k0) 5 2m/E0 (the cubic term is
ignored because it is subdominant for small k/k0 compared to the
linear term). Now the photon energy onset will fall above 2jmj/E0, at a
value dependent on a1.

While the optical conductivity Eq. (2) requires a non-zero joint
density of states Eq. (3), the additional weighting of (VxS2 1 VyS1)2 in
sxx(v) can introduce considerable changes to its v dependence38 as
we see in Fig. 3 and Fig. 4. In the top frame of Fig. 3, b3 5 0 and there
are no van Hove singularities because the Dirac contribution to the
dispersion curves simply increases with increasing k. The solid black
and dashed red curves both reduce to the pure graphene case with
onset exactly at 2m and flat background beyond. The dotted red curve
for mixed linear Dresselhaus and Rashba is only slightly different.
The onset is near but below 2m and the background has increased in
amplitude. It is also no longer completely flat to high frequency;
instead it has a kink near v/E0 < 1.7 after which it drops. The
dash-dotted black curve for a1 5 0.4 and b1 5 0.6 has changed
completely with background reduced to near zero but with a large
peak corresponding to an onset which has shifted to a value much
less than 2m. Finally for a1 5 b1 the entire interband transition region
is completely depleted as we know from Eq. (2).

In Fig. 4 there is (non-zero) cubic Dresselhaus coupling present.
The solid red curves, for which a1 5 b1 but with b3 5 0.3 illustrate
that the conductivity on the left (positive m) is non-zero, and b3 5 0 is
necessary for a vanishing interband conductivity at all photon ener-
gies. We see, however, that these transitions have been greatly
reduced below what they would be in graphene for all photon ener-
gies except for a narrow absorption peak at v much less than 2m. For
negative values of m, on the other hand, even with b3 ? 0 the con-
ductivity is zero.

The experimental observation of such a narrow low energy peak
together with high energy van Hove singularities could be taken as a
measure of nonzero b3. It is interesting to compare these curves for

Figure 3 | The interband contribution to the longitudinal optical
conductivity of Eq. (2) for various values of a1 and b1 as labeled, with b3

set to zero. In the top frame the chemical potential was set at m/E0 5 0.2 and

in the bottom m/E0 5 20.2.
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the conductivity with the joint density of states (lower frames). The
color and line types are the same for both panels. The onset energy as
well as energies of the van Hove singularities are unchanged in going
from the joint density of states to the conductivity. Also, as is par-
ticularly evident in the dotted black and short dashed red curves the
1/v factor in sxx(v) leads to a nearly flat background for the con-
ductivity as compared with a region of nearly linear rise in the density
of states. This is true for both positive and negative values of m.

In conclusion we have calculated the interband longitudinal con-
ductivity as a function of photon energy for the case of combined
Rashba and Dresselhaus spin-orbit coupling. We have also consid-
ered the possibility of a cubic Dresselhaus contribution. We find that
in the persistent spin helix state when the spins are locked at an angle
of 3p/4 independent of momentum, which arises when the linear
Rashba coupling is equal to the linear Dresselhaus coupling, the
interband optical transitions vanish and there is no finite energy
absorption from these processes. Only the Drude intraband transi-
tions will remain. When the cubic Dresselhaus term is nonzero the
cancelation is no longer exact but we expect interband absorption to
remain strongly depressed for photon energies above 2m as com-
pared, for example, to the universal background value found in single
layer graphene. We propose interband optics as a sensitive probe of
the relative size of Rashba and Dresselhaus spin orbit coupling as well
as cubic corrections.

Methods
The optical conductivity is given by

sxx vð Þ~ e2

iv
1

4p2

ðkcut

0
kdkdhT

X
l

Tr ûxĜ k,vlð ÞûxĜ k,vnzvlð Þ

 �

ivn?vzid: ð4Þ

Here T is the temperature and Tr is a trace over the 2 3 2 matrix, and vn 5 (2n 1

1)pT and vl 5 2lpT are the Fermion and Boson Matsubara frequencies respectively
with n and l integers. To get the conductivity which is a real frequency quantity, we
needed to make an analytic continuation from imaginary ivn to v 1 id, where v is
real and d is an infinitesimal. The velocity operators ûx and ûy are given by

ûx~
LH0

Lkx
~VI ÎzVxŝxzVyŝy

ûy~
LH0

Lky
~V 0I ÎzV 0xŝxzV 0yŝy :

ð5Þ

Here VI 5 kx/m, Vx~ b1{b3k2
y

� �.
, Vy 5 (2a1 1 2b3kykx)/ , V 0I~ ky

�
m,

V 0x~ a1{2b3kykx
� ��

and V 0y~ {b1zb3k2
x

� ��
.

The Green’s function can be written as39

Ĝ k,vnð Þ~ 1
2

X
s~+

ÎzsFk
:ŝ

� �
G0 k,s,vnð Þ ð6Þ

where Fk~ S1,{S2,0ð Þ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
1zS2

2

p
,

Figure 4 | Joint density of states D(v) (top two panels) defined in Eq. (3) which involves the same transitions as does the interband conductivity

(bottom two panels) of Eq. (2) but without the critical weighting
VxS2zVyS1
� �2

S2
1zS2

2ð Þv . Left column is for positive chemical potential m/E0 5 0.2 and the right

for 20.2.
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G0 k,s,vnð Þ~ 1

i vnzm{
2k2

2m {s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1zS2
2

p ð7Þ

and

S1~ a1kyzb1kx{b3kxk2
y

� �
S2~ a1kxzb1ky{b3kyk2

x

� � ð8Þ

The wave function is given by

Yk,+ 0j w~
1ffiffiffi
2
p c{k,: 0j w+

S1{iS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1zS2
2

p c{k,; 0j w

" #
, ð9Þ

with corresponding eigenvalues

E+~
2k2

2m
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1zS2
2

q
: ð10Þ

Here c{k,: c{k,;

� �
creates a particle with momentum k and spin up (down). The spin

expectation values work out to be

Sx~ 2
Yk,+ sxj jYk,+h i~+

2
S1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
1zS2

2

p
Sy~ 2

Yk,+ sy

�� ��Yk,+

 �

~+
2

{S2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1zS2
2

p
Sz~ 2

Yk,+ szj jYk,+h i~0:

ð11Þ

These formulas allow us to calculate the spin texture, as well as the optical conduc-
tivity as given in Eq. (2).
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