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1Politecnico di Torino, Italy, 2ISC-CNR, Unità Università ‘La Sapienza’ di Roma, Italy, 3ETH Zurich, Switzerland.

A new approach to estimate the Shannon entropy of a long-range correlated sequence is proposed. The
entropy is written as the sum of two terms corresponding respectively to power-law (ordered) and
exponentially (disordered) distributed blocks (clusters). The approach is illustrated on the 24 human
chromosome sequences by taking the nucleotide composition as the relevant information to be encoded/
decoded. Interestingly, the nucleotide composition of the ordered clusters is found, on the average,
comparable to the one of the whole analyzed sequence, while that of the disordered clusters fluctuates. From
the information theory standpoint, this means that the power-law correlated clusters carry the same
information of the whole analysed sequence. Furthermore, the fluctuations of the nucleotide composition of
the disordered clusters are linked to relevant biological properties, such as segmental duplications and gene
density.

C
omplex systems are probed by observing a relevant quantity over a certain temporal or spatial range,
yielding long-range correlated sequences or arrays, with the remarkable feature of displaying ‘ordered’
patterns, which emerge from the seemingly random structure. The degree of ‘order’ is intrinsically linked

to the information embedded in the patterns, whose extraction and quantification might add clues to many
complex phenomena1–12.

In this work, an information measure for long-range correlated sequences, worked out from a partition of the
sequence into clusters according to the method proposed in8,9, is put forward. The clusters are characterized by
their length ,, duration t and area A, obeying power-law probability distributions, with a cross-over to an
exponential decay at large size. The probability distribution function of the lengths is considered to estimate
the Shannon (block) entropy S(,) of the clusters. The entropy can be written as the sum of three terms,
respectively constant, logarithmic and linear function of the cluster length. The clusters with dominant logarith-
mic term of the entropy are power-law correlated and correspond to ‘ordered’ structures, while those with
dominant linear term are exponentially distributed and correspond to ‘disordered’ structures. The information
measure is illustrated by analyzing the 24 nucleotide sequences of the human chromosomes. Each sequence is first
mapped to a fractional Brownian walk (the so-called DNA walk). Then, the probability distribution function P(,)
and the entropy S(,) of the DNA clusters are estimated by adopting the proposed approach.

It is worth recalling that the investigation of the block entropy of a signal was originally motivated by
cryptography. Claude Shannon attempt was aimed at encoding information in ways that still allowed recovery
by the receiver, the main question to be answered being: ‘How the signal can be compressed in elementary
messages which still contain the relevant information to be communicated?’. The approach proposed in this work
represents a possible answer. Furthermore, this question recalls the concept of Kolmogorov complexity KC(,)
which quantifies the interplay of randomness/determinism of the strings output of a computational program. The
Kolmogorov complexity is quantified in terms of the minimal length of the program that can still generate a
random string. It can be demonstrated that the length of the program, which is defined case-by-case in the specific
computational framework, is comparable to the length of the string plus a constant, and varies as the logarithm of
the length of the string itself.

From the information theory standpoint, the present work shows that by taking the nucleotide composition of
the whole sequence as the relevant information to be transmitted from the source to the receiver, the whole
sequence is encoded in blocks (clusters), which are able to transmit the same information of the whole sequence if
they are power-law correlated. Specifically, it is shown that the power-law correlated clusters are characterized by a
nucleotide content, purine-pyrimidine pairs (GC)% and (AT)%, on the average equal to the value of the whole
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chromosome sequence under analysis. Conversely, the exponentially
correlated clusters are characterized by a percentage of purine-pyr-
imidine pairs exhibiting fluctuations around the value taken by the
whole sequence. Interestingly, the standard deviationof the cluster
composition fluctuations for each of the 24 chromosomes is corre-
lated to biologically relevant properties, such as duplication frequency
and gene density. It is worthy of remark that the nucleotide composi-
tion is taken as a case study for the illustration of the implementation
and meaning of the proposed entropy measure, but it is not the only
biologically relevant information carried by a DNA sequence.

Results
The entropy of a sequence, coded in blocks, has been extensively
studied since its introduction by Shannon (see e.g.2–5, and

Refs. therein). The practical application of the Shannon entropy
concept requires a symbolic representation of the data, obtained by
a suitable partition transforming the continuous phase-space into
disjoint sets. As discussed in5, the construction of the optimal par-
tition is not a trivial task, being crucial to effectively discriminate
between randomness/determinism of the encoded/decoded data.
The method commonly adopted for partitioning a sequence and
estimating its entropy is based on a uniform division in blocks having
equal length ,. Then the entropy is estimated over subsequent par-
tition corresponding to different blocks lengths ,. The novelty of the
present work resides in the method used for partitioning the
sequence which directly yields power-law or exponential distributed
blocks (clusters). This is a major advantage, as it allows one to
straightforwardly separate the set of inherently correlated/uncorre-
lated blocks along the sequence.

Figure 1 | Cluster Length Probability Distribution. Probability distribution

function P(,, n) of cluster lengths for a sequence with H < 0.6 and L 5 2 20.

The moving average windows are n 5 500, n 5 1000, n 5 2000, n 5 3000

and n 5 10000 (from left to right). As n increases, P(,, n) becomes broader.

The slope of the distribution becomes steeper for , . n, corresponding to

the onset of finite-size effects and exponentially decaying correlation.

Figure 2 | Cluster Entropy. Entropy S(,, n) of the clusters corresponding

to the probability distribution function P(,, n) plotted in Fig. 1. For small

values of ,, the curves increase logarithmically as log ,D and are n-

invariant, while they vary as a linear function for larger values of ,, as

expected according to equation (5).

Table 1 | Nucleotide Composition. Length L (2nd column), Hurst exponent H (3rd column), base composition (% of ATCG, 4th–7th columns)
of the 24 chromosome whole sequences. Average nucleotide composition (% of the ATCG, 8th–11th columns) of the clusters, estimated
according to the proposed method with n 5 4 over the first 10MBases of the 24 chromosome sequences. In particular, the data in the 8th–
11th columns correspond to the plots shown in the middle panels of Figs. 3–8 for each chromosome. In Tables S1–S6 of Supplementary
Information, further results, estimated over different data sets with different values of n, are reported

CHR L H A [%] C[%] G[%] T[%] A[%] C[%] G[%] T[%]

1 226217758 0.64 29.09 20.87 20.87 29.14 26.52 25.79 25.58 25.15
2 237900011 0.66 29.84 20.11 20.13 29.90 28.50 24.51 22.34 29.81
3 195304882 0.66 30.14 19.84 19.84 30.16 28.46 21.77 21.50 28.65
4 187941502 0.66 30.87 19.11 19.12 30.88 34.47 19.80 22.86 30.28
5 177847050 0.66 30.20 19.74 19.77 30.27 29.97 24.86 19.70 36.43
6 169100547 0.65 30.18 19.80 19.81 30.19 29.97 21.23 21.73 28.27
7 155403473 0.66 29.60 20.38 20.36 29.63 28.85 21.79 27.09 22.93
8 143332430 0.65 29.90 20.06 20.06 29.86 29.51 20.61 20.85 29.03
9 120994158 0.67 29.35 20.65 20.64 29.33 27.91 21.83 21.38 28.76
10 131739836 0.65 29.19 20.79 20.78 29.22 31.15 19.94 19.47 29.44
11 131247160 0.68 29.20 20.77 20.79 29.21 28.97 22.23 25.08 26.85
12 130304143 0.67 29.59 20.40 20.39 29.60 30.66 22.85 24.19 29.62
13 95747346 0.66 30.69 19.26 19.26 30.77 33.94 20.95 21.82 33.88
14 88290585 0.67 29.44 20.41 20.46 29.67 33.94 20.95 21.82 33.88
15 81927784 0.66 28.89 21.13 21.10 28.86 32.64 21.69 20.74 33.00
16 78990748 0.67 27.53 22.35 22.44 27.66 29.17 24.30 22.89 31.49
17 79620483 0.65 27.17 22.81 22.76 27.22 25.36 24.80 24.73 24.87
18 74660927 0.67 30.09 19.87 19.90 30.12 25.36 24.80 24.73 24.87
19 56038018 0.66 25.79 24.14 24.20 25.86 32.65 21.61 23.15 30.64
20 59505758 0.66 27.76 22.02 22.09 28.10 29.01 24.09 19.02 36.45
21 35452914 0.65 29.68 20.39 20.44 29.46 32.27 19.25 21.18 27.29
22 35059666 0.65 26.08 23.98 23.95 25.96 28.30 22.93 24.63 24.92
X 152580014 0.65 30.20 19.73 19.76 30.26 32.88 20.86 25.39 28.01
Y 25654723 0.72 29.88 19.87 20.08 30.14 27.45 22.05 24.21 26.49
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A random sequence y(x) can be partitioned in elementary clusters
by the intersection with the moving average ~yn xð Þ where n is the size
of the moving window. The clusters correspond to the regions
bounded by y(x) and ~yn xð Þ between two subsequent crossings points
xc(i) and xc(i 1 1)8. The intersection between y(x) and ~yn xð Þ produces
a generating partition, yielding different sequences of clusters for
different values of n. The probability distribution function P(,, n)
of the lengths , for each n can be obtained by counting the clusters
N ‘1,nð Þ,N ‘2,nð Þ,…,N ‘i,nð Þ respectively with length ,1, ,2, …, ,i.
By doing so, one obtains8:

P ‘,nð Þ*‘{DF ‘,nð Þ*m ‘,nð Þ{1
, ð1Þ

where D 5 2 2 H and H indicate respectively the fractal dimension
and the Hurst exponent of the sequence. The exponent H is widely
used for quantifying long-range correlations (power-law decaying)
as opposed to short-range (exponentially decaying) correlations in
many complex systems. The Hurst exponent has been estimated for

the 24 chromosome sequences, as reported in the 3rd of Table 1. The
occurrence of long-range correlations means that the nucleotides are
organized along the sequences in similar way, a fact that can be
defined as compositional self-similarity of the chromosomes. The
function F ‘,nð Þ in equation 1 can be taken of the form:

F ‘,nð Þ: exp {‘=nð Þ: ð2Þ

F ‘,nð Þ accounts for the drop-off of P(,, n) due to finiteness of n
when , ? n. The quantity m(,, n) , ,D exp(,/n) is proportional to
the size of the subsets spanned by the random walkers which ranges
from a line proportional to , for H 5 1 to a square proportional to ,2

for H 5 0 for n . ,. The probability distribution function P(,, n) is
shown in Fig. 1 for a wide range of n values, estimated for a long range
correlated series with Hurst exponent H < 0.6. For n R 1, the lengths
, of the elementary clusters are centered around a single value. When
n increases, a broader range of lengths is obtained and, consequently,
P(,, n) spreads over all values.

Figure 3 | Cluster Composition. Base composition (% of A (blue) T (red) C (blue) G (red) nucleotides) of the clusters in the human chromosomes 1, 2, 3,

4. For each chromosome, the plots refer to windows n 5 2, n 5 4, n 5 10. Data refers to the first 10Mbases of each chromosome. See Tables S1–S6

of Supplementary Information for further estimates.
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The Shannon entropy is defined as2–5:

S ‘,nð Þ:{
X

P ‘,nð Þ log P ‘,nð Þ, ð3Þ

where the sum is performed over the number of elementary clusters
with length , obtained by the intersection with the moving average
for each n. This number ranges from 1 to m(,, n)–1 depending on how
many clusters are generated by the intersection with the moving
average. The value 1 is obtained when only one cluster with length
, is found in the partition. As already noted, the standard method for
partitioning a sequence and estimating its entropy is by splitting the
sequence into a set of disjoint blocks with equal length ,. Conversely,
in the present work, the intersections of the sequence with the mov-
ing average generate a set of disjoint blocks with a broad distribution
of lengths , corresponding respectively to power-law or exponential
correlation. This particular partition retains the determinism/ran-
domness of the blocks by simply varying n, an aspect intimately
related to the Kolmogorov complexity concept.

By using equations (1) and (3), the cluster entropy writes:

S ‘,nð Þ~S0z log ‘D{ logF ‘,nð Þ, ð4Þ

which, after taking into account equation (2), becomes:

S ‘,nð Þ~S0z log ‘Dz
‘

n
, ð5Þ

where S0 is a constant, log ,D is related to the term ,–D and ,/n is
related to the term F ‘,nð Þ.

To clarify the meaning of the terms appearing in equation (5), it is
worthy of remarking that for isolated systems, the entropy increase dS
is related to the irreversible processes spontaneously occurring
within the system. The entropy tends to a constant value as a sta-
tionary state is asymptotically reached (dS $ 0). For open systems
interacting with their environment, the increase is given by a term
dSint, due to the irreversible processes spontaneously occurring
within the system, and a term dSext due to the irreversible processes

Figure 4 | Same as Fig. 3 but for the chromosomes 5, 6, 7, 8.
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arising through the external interactions. The term log ,D in equation
(5) should be interpreted as the intrinsic entropy Sint. It is indeed
independent of n, i.e. it is independent of the method used for parti-
tioning the sequence, which plays here the role of the external inter-
action. The logarithmic term is of the form of a Boltzmann entropy S
5 log V, where V is the maximum volume occupied by the isolated
system. The quantity ,D corresponds to the volume occupied by the
random walker. Whenever , could reach the maximum size L of the
sequence, the second term on the right side would write log LD. The
term ,/n in equation (5) represents the excess entropy Sext intro-
duced by the partition process. It comes into play when the sequence
is partitioned in clusters and depends on n.

Fig. 2 shows the entropy S(,, n) evaluated by using the probability
distribution P(,, n) plotted in Fig. 1. One can note that S(,, n)
increases logarithmically as log ,D and is n-invariant for small values
of ,, while it increases as a linear function at larger ,, as expected
according to equation (5). Clusters with lengths , larger than n are
not power-law correlated, due to the finite-size effects introduced by

the window n. Hence, they are characterized by a value of the entropy
exceeding the curve log ,D, which corresponds to powerlaw corre-
lated clusters. It is worthy to remark that clusters with a given length
, can be generated by different values of the window n. For example,
clusters with , 5 2500 have entropies corresponding to the point A
(for n 5 1000) or A0 (for n 5 3000 and n 5 10000) as shown in Fig. 2.
One can observe that A0 corresponds to power-law correlated
(ordered) clusters, since A0 lies on the curve log ,D. Conversely, the
point A does not correspond to power-law correlated clusters, since
A lies on the curve ,/n which originates from the term F ‘,nð Þ. In
other words, clusters with lengths shorter than n are ordered (long-
range correlated), whereas clusters with lengths larger than n are
disordered (exponentially correlated).

To gain further insight in the meaning of the terms appearing in
equation (5), the source entropy rate s is calculated for the entropy
S(,, n). The source entropy rate is a measure of the excess randomness
and increases as the block coding process becomes noisier. By using
the definition and equation (5), the source entropy rate writes:

Figure 5 | Same as Fig. 3 but for the chromosomes 9, 10, 11, 12.
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s: lim
‘??

S ‘,nð Þ
‘

~
1
n
: ð6Þ

The excess randomness of the clusters is found to be inversely pro-
portional to n and, thus, becomes negligible in the limit of n R ‘.
This clearly occurs in the curves of Fig. 2, where one can note that
higher entropy rates correspond to steeper slopes of the linear term ,/
n (smaller n values).

Discussion
In this section, the information measure is implemented on the 24
human chromosomes, mapped to fractional Brownian walks (map-
ping details are described in Method). The nucleotide composition of
the DNA sequence is taken as the relevant information quantity to be
encoded from the source and decoded from the receiver.

It is well-established that the two strands of DNA are held together by
hydrogen bonds between complementary bases: two bonds for the AT
pair and three bonds for the GC pair, which is therefore stronger. The

existence of GC-rich and GC-poor segments may play different roles in
biological processes as duplication, segmentation, unzipping13–15.

Nonuniformity of nucleotides composition within genomes was
revealed several decades ago by thermal melting and gradient cent-
rifugation. On the basis of findings concerning buoyant densities of
melted DNA fragments, a theory for the structure of genomes of
warm-blooded vertebrates known as the isochores theory was put
forward16–19. Isochores were defined as genomic segments that are
fairly homogeneous in their guanine and cytosine (GC) composition.

Though it is widely accepted that the human genome contains
large regions of distinctive GC content, the availability of fully
sequenced DNA or RNA molecules allows one to accurately invest-
igate the local structure by statistical methods. The development of
efficient algorithms achieving deep and accurate description of the
complex genomic architecture is thus a timely endeavour20–30.

The chromosomes can be mapped to numeric sequences accord-
ing to different approaches. In this work, first the DNA is mapped (as
detailed in the section Method) to a random walk, then the clusters

Figure 6 | Same as Fig. 3 but for the chromosomes 13, 14, 15, 16.
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are generated as described in the previous section. Once having
generated the clusters, one can answer the question ‘How much of
the relevant information is still contained in the clusters?’. The
answer to this question is obtained by counting the ATGC basis
for each cluster and plotting the percentage as a function of the
cluster length. In Figs. 3–8, the nucleotide compositions are plotted
as a function of the cluster length , for n 5 2, n 5 4 and n 5 10. The
range of n values used in this work varied from 2 to 10.000. One can
observe that the nucleotides count is roughly constant for clusters
having length comparable or shorter than n. This means that ordered
DNA clusters with constant nucleotide composition are found, when
the entropy varies as a logarithm of ,. For cluster lengths , larger
than n, the power-law correlation breaks down with the onset of
exponentially correlated clusters (‘disordered’ clusters). An even
more interesting result is that the amplitude of the fluctuations is
not constant as it takes a characteristic value for each chromosome.
One can note from the data plotted in Figs. 3–8 that the fluctuations
of the cluster composition is very small for example in chromosomes

8, 9, 17, Y. Conversely, they are quite large for chromosomes 14, 15,
X. It should be remarked that Figs. 3–8 show the nucleotide com-
position of the ordered-disordered clusters. These plots are related to
the entropy of the blocks if one bears in mind the original aim of the
Shannon work. The estimate of the block entropy was originally
motivated by the attempt at decoding information in ways that still
allow recovery of the relevant information by the receiver. In other
words, the main question raised by Claude Shannon is: ‘‘How the
signal can be compressed in elementary messages (blocks) which still
contain the relevant information to be communicated?’’. The
approach proposed in this work answers this question. The DNA
sequence is encoded in short messages (clusters) able to transmit the
same information of the whole sequence (from where they were cut
out) only if they are power-law correlated. In this manuscript, the
information considered relevant to the receiver is the nucleotide
composition, which, of course, is not the only choice for the relevant
information to be transmitted, as other characteristic features might
be interesting as well. It is also discussed to what extent nucleotide

Figure 7 | Same as Fig. 3 but for the chromosomes 17, 18, 19, 20.
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fluctuations, characterizing the exponentially correlated clusters of
each chromosome, might be linked to features relevant to biological
processes. To this purpose, the standard deviation of the fluctuations
has been calculated for the nucleotide composition ATGC of the
clusters (values are reported in Table 2). The correlation sC with
bilogical features characteristic of each chromosome, such as length,
gene density, inter-chromosomal duplications, intra-chromosomal
duplications, local ATGC composition (data taken from Refs. 14, 15)
have been considered. The correlation coefficients rC are shown in
Table 3. Negative correlations between sC and intra-and inter-
chromosomal duplications are found. Conversely, strong positive
correlations are observed between sC and AT-rich regions. These
findings might point to the important result that the cluster fluctua-
tions are fingerprints of recent segmental duplications.

Methods
A DNA sequence is composed of four nucleotides: adenine (A), thymine (T), cytosine
(C) and guanine (G). The first step of the analysis consists in the conversion of the
four-letter genome alphabet into a numerical format. There are several ways of

mapping a DNA sequence to a walk: one-dimensional up to 4 dimensional, real or
complex representations. As the proposed Shannon entropy measure applies to one-
dimensional sequences, the present discussion is limited to one-dimensional real
representation of the four nucleotide bases. The sequence of the nucleotide bases is
mapped according to the following rule: if the base is a purine (A,G), the base is
mapped to 11, otherwise if the base is a pyrimidine (C,T), the base is mapped to –1
(Fig. 9). The sequence of 11 and –1 is summed and a random walk y(x) (DNA walk) is
obtained. This coding rule is preferable, as it keeps the nonstationarity of the series at a
minimum. Large nonstationarity of the numerical series might be an issue when long-
range correlation should be investigated. The average concentration of A and T are
about 0.30, those of G and C are about 0.20. The concentration of purines (A 1 G) and
pyrimidines (C 1 T) are very close to 0.50 along the sequence. Therefore, coding of
purines and pyrimidines to 11 and 21 guarantees a high degree of symmetry of the
numerical series. Conversely, an asymmetric coding rule would amplify the strong
variations of the local density distribution of the bases along the sequences, giving rise
to higher nonstationarity of the corresponding random walk.

The function ~yn xð Þ is calculated for the DNA walk with different values of the
window n. The intersection between y(x) and ~yn xð Þ yields a set of clusters, which
correspond to the segments between two adjacent intersections of y(x) and ~yn xð Þ.
Since each cluster of the DNA walk corresponds to a cluster of ATGC nucleotides, the
number of nucleotides can be counted and plotted as a function of the length , for
each cluster. In Figs. 3–8 the nucleotide composition of the clusters as a function of the
length , is shown for the 24 human chromosomes. The clusters have been cut out of

Figure 8 | Same as Fig. 3 but for the chromosomes 21, 22, X, Y.
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106 bases of each chromosome at once. To be statistically meaningful, there is a need
to operate over subsequences having the same length (note that the 24 human
chromosomes have different lengths L, 2nd column of Table 1). The method pro-
posed here has been however implemented on several sequences with different
lengths (varying from 105 to 107 have been considered in this study). This range takes
into account that, on one hand, a scaling law is sound when it is observed at least over
three decades of a logarithmic scales, and the computational time and complexity on
the other hand. One can note that the average composition of the power-law corre-
lated clusters is comparable with the composition of the whole sequence of the
analysed data. For example the nucleotide composition of the power-law correlated

clusters of the chromosome 1 should be confronted with the data reported in the
column 8th, 9th, 10th, 11th of Table 1 for the same chromosome, while the standard
deviation is reported in Table 2. The statistical robustness of the method has been
checked by estimating the correlation coefficient rc of the variance and other bio-
logical parameters of the sequences (Table 3).

One common problem in data mining is the statistical validation of the model
envisioned to describe data structures and patterns. The error is estimated on the
entire sample set for small quantity of data. For large data sets, more sophisticated
cross-validation methods have been developed to quantify the performance of algo-
rithms and models over disjoint subsets. Depending upon the criterion used to split
the data, the process of training and validation across disjoint sets is named random,
k-fold or leave-one-out31. In particular, the leave-one-out is the degenerate case of the
k-fold cross-validation, with only one disjoint subset (k 5 1) and is particularly useful
for very sparse datasets with few samples, though its error might be larger than the
error of the estimates themselves and computation time might be quite long. As the
analysed dataset (the 24 genomic sequences) is large enough, the random and k-fold
cross validation can be used with the advantage of higher accuracy and velocity of the
estimates. In the Supplementary Tables S1–S6, the average values and variances of the
nucleotide contents obtained over three disjoint data sets are reported for the 24

Table 2 | Standard deviation of the cluster nucleotide composition.
Standard deviations refer to the average values (% of the ATCG,
8th–11th columns), estimated according to the proposed method
with n 5 4 over the first 10MBases of the 24 chromosome
sequences. Standard deviationscan be appreciated in the middle
panel plots of Figs. 3–8 for each chromosome. In Tables S1–S6 of
Supplementary Information, further values over different chro-
mosome sets and with different values of n are reported

CHR sC [A] sC [C] sC [G] sC [T]

1 11.01 10.81 10.06 9.68
2 14.19 12.90 12.43 14.30
3 10.05 9.43 8.29 8.52
4 16.56 12.91 13.87 17.79
5 19.75 14.32 12.76 16.69
6 9.07 6.33 7.42 8.71
7 8.58 8.32 11.14 10.21
8 4.89 3.88 4.33 4.91
9 6.49 4.97 4.36 5.23
10 10.84 9.04 7.52 9.38
11 9.12 8.83 11.69 10.87
12 17.09 14.86 14.13 15.63
13 17.12 12.01 13.78 18.11
14 19.53 13.06 13.43 19.26
15 16.55 14.08 12.54 16.61
16 16.31 15.60 15.77 15.69
17 5.06 5.17 4.95 5.67
18 20.02 13.98 14.10 18.47
19 17.90 14.88 13.99 17.10
20 17.31 13.86 14.33 18.70
21 10.84 7.69 8.50 10.81
22 8.40 5.81 5.53 8.48
X 18.06 14.09 14.87 19.06
Y 6.19 6.66 7.08 7.47

Table 3 | Correlation rC of the cluster fluctuations for the first (M1),
the second (M2) and the third (M3) disjoint sets of the 24 human
chromosome sequences. The fluctuations are anticorrelated with
length, gene density, inter-chromosomal and intra-chromosomal
segmental duplications, while they exhibit a positive correlation
with the AT-rich regions. Very little correlation is found with the
GC-rich regions and global AT composition. Length values are
shown in the 2nd column of Table 1. Gene density data are taken
from Refs. 14, 15. Inter- and intra-chromosomal duplications data
are taken from Ref. 14. Base compositions are shown in Table 1
(respectively 4th–7th columns for the whole sequence, 8th–11th

columns for the first 10MBases, and in Tables S1–S6 of the
Supplementary Information)

rC [M1] rC [M2] rC [M3]

Length 20.194 20.552 20.582
Gene density 20.178 20.076 20.107
Inter-chromosomal duplications 20.330 20.242 20.165
Intra-chromosomal duplications 20.342 20.248 20.158
All pairwise duplications 20.331 20.237 20.149
Local composition A 10.658 10.762 10.461
Local composition T 10.668 10.674 10.551
Local composition C 10.021 10.039 10.269
Local composition G 20.149 10.211 10.246
Global composition AT 10.052 20.154 20.219

Figure 9 | DNA Sequence Mapping Visualization. Bottom: scheme of the first 30 ATGC bases of the sequence of the human chromosome 1. Middle: the

sequence of 11 and 21 corresponding to the ATGC. Top: the DNA walk y(x) obtained by summing the sequence of 11 and 21 (black squares)

with the moving average ~yn xð Þ with n 5 3 (red curve).
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chromosomes. For each subset, when the parameter n is varied, clusters of any lengths
are generated in random position of the sequence allowing to estimate the average
composition and the statistical errors at different position along the sequence. For
each set the standard deviations are also reported in the Supplementary Tables S1–S6.

Finally, we note that the Hurst exponent for the 24 chromosomes is reported in the
3rd column of Table 1. As one can see the value of the exponent H is higher than 0.5,
implying that a positive correlation (persistence) exist among the nucleotides. The
values of the Hurst exponents have been obtained by using the method described in
Refs. 8–10.

The sequences used in this analysis were retrieved from the NCBI ftp server (ftp://
ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/).
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