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Quantum entanglement can help to increase the precision of optical phase measurements beyond the shot
noise limit (SNL) to the ultimate Heisenberg limit. However, the N-photon parity measurements required to
achieve this optimal sensitivity are extremely difficult to realize with current photon detection technologies,
requiring high-fidelity resolution of N 1 1 different photon distributions between the output ports. Recent
experimental demonstrations of precision beyond the SNL have therefore used only one or two
photon-number detection patterns instead of parity measurements. Here we investigate the achievable
phase sensitivity of the simple and efficient single interference fringe detection technique. We show that the
maximally-entangled ‘‘NOON’’ state does not achieve optimal phase sensitivity when N . 4, rather, we show
that the Holland-Burnett state is optimal. We experimentally demonstrate this enhanced sensitivity using a
single photon-counted fringe of the six-photon Holland-Burnett state. Specifically, our single-fringe
six-photon measurement achieves a phase variance three times below the SNL.

Q
uantum information technologies promise to revolutionize the way we communicate and process
information, providing new levels of security1 and the ability to tackle a range of intractable computa-
tional problems2. The same physics concepts also provide for schemes to measure3 and manipulate4 the

world with precision far beyond that possible with classical techniques.
A particularly important example is the case of optical interferomtery, where information on displacement,

velocity, materials properties etc. is obtained by detecting a phase shift. Here, photon statistics appear to limit the

sensitivities of N-photon interferometry to phase uncertainties of Dw~1
. ffiffiffiffi

N
p

. However, this shot noise limit

(SNL) can be overcome by entangling the photons in a single, fully quantum-coherent state3,5. The ultimate limit
of phase sensitivity can then be expressed in terms of an uncertainty relation between the phase w and the photon
number difference n1 2 n2 between the two interferometer paths: DwD n1{n2ð Þ§1. For N photons, the maximal
uncertainty is D(n1 2 n2) 5 N, resulting in a minimal phase uncertainty Dw 5 1/N, the Heisenberg limit (HL)3.

The N-photon state that achieves this limit is the NOON state yj iNOON~
1ffiffiffi
2
p N0j iz 0Nj ið Þ, where the photons

are either all in one path or all in the other path6. For high N, this state describes a quantum superposition of
macroscopically distinguishable states. It is therefore not surprising that the generation of NOON states for high
N is extremely difficult. To date, optical NOON experiments have only been realized with up to five photons7–12.
Initial methods were based on low efficiency post-selection from down-converted photon pairs, resulting in
exponentially poor scaling. Recently, a more favourably-scaling scheme has been demonstrated for postselecting
NOON states from entangled states of uncertain photon number12,13, but this method is still technically difficult
since it requires phase-stabilized interference between two very different light sources. Heralded generation14 and
amplification15 of path-entangled states have also been demonstrated, again for small N.

Due to the experimental difficulties of generating NOON states, there have also been considerable efforts to
exploit the phase sensitivity of states that can be created deterministically from unentangled inputs. As early as
1993, Holland and Burnett pointed out that multiple photon pairs created in parametric down-conversion result
in a highly phase sensitive N-photon state when the two beams with N/2 photons each are injected into each input
port of an interferometer16. After passing through the first beam splitter of the interferometer, and the phase shift
w to be estimated, the input state jN/2, N/2æ is transformed to
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yj i~
XN=2

n~0

Cn 2n,N{2nj i, with Cn~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð Þ! N{2nð Þ!

p
2N=2n!

N
2

{n

� �
!

exp 2inw½ �:ð1Þ

Due to photon bunching arising from nonclassical interference, the
uncertainty of the photon number difference between the paths
inside the interferometer is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N Nz2ð Þ=2

p
, only about

ffiffiffi
2
p

lower
than the maximal uncertainty of NOON states. For appropriate out-
put measurements, it should therefore be possible to achieve phase
uncertainties below

ffiffiffi
2
p �

N , an enhancement over the SNL that scales
like the HL as N increases. (The use of single photons in multiple
modes has also recently been considered via a deterministic
scheme17, building on previous nondeterministic NOON state pre-
paration schemes of this type18,19.) A 4-photon HB experiment has
recently been performed20. Unfortunately, the claim of near-optimal
sensitivity in that work was somewhat misleading, since the authors
assumed an experimentally urealisitic quantum state fidelity of 100%
to define their peak probability, resulting in an overestimate of the
phase sensitivity around the peak. Nevertheless, that work suggested
that the uncertainty limit of phase resolution might be achieved by
measuring only the probability of the equal photon number output21.
As we show here, this is a significant feature of the HB state that
actually makes it more suitable for single fringe phase estimations
than the NOON state.

Results
Single fringe measurements. Since much of the theory of quantum
metrology has focussed on the properties of the input state, it is often
implicitly assumed that the optimal measurement strategy for a given
input state can be implemented with available technologies. As a
result, the technical challenges involved in the experimental reali-
zation of the output measurement have not yet received as much
attention as the problem of quantum state preparation. However, an
experimental demonstration of phase sensitivity is not complete un-
less the proper output measurement has been realized. For NOON
states of any photon number, the optimal phase sensitivity is
obtained from a two-outcome measurement that assigns a value of
11 to even photon numbers in the outputs, and 21 to odd photon
numbers in the output. Ideally, this kind of parity measurement
could be performed by a quantum circuit that identifies whether
the number of photons at one output is odd or even, without
actually counting them. At present, it is not known how to realize
such a measurement. Practically, therefore, it is necessary to count
the precise photon number at one of the outputs to determine if it is
odd or even. In the absence of unit-efficiency photon-number-
resolving detectors, this is very difficult to do.

On the other hand, efficient postselection of a particular photon
number can, in principle, be more easily realized with high, but non-
unit, efficiency detectors. Exisiting demonstrations with N . 2 have
therefore relied on projecting the output of the interferometer onto
just one or two states of definite photon number in each output
arm—e.g. j31æ or j13æ in the case of a four-photon experiment8.
Here, we will refer to the results of a single projection of this kind
as a ‘‘single fringe’’, meaning the phase-dependent projection prob-
ability for one pattern of photon counting at the interferometer’s
outputs. Since single fringe measurements test only a single ‘‘yes/
no’’ condition, the experimental requirements for their realization
are much simpler than those for the realization of a detection
stage that can separate all N 1 1 photon number distributions in
the output.

Another advantage of single fringe measurements is that the phase
sensitivity is directly related to the resolution of the characteristic
features in the experimentally determined fringe. Although many
experimental demonstrations cite the N-fold increase of the fringe
oscillation period as the characteristic feature of path-entangled

states, it has recently been noted that the efficiency of the measure-
ment must be taken into account when trying to demonstrate phase
sensitivities beyond the SNL8,22. Consequently, the small number of
experiments that have meanwhile demonstrated (generally small)
improvements in precision beyond the SNL7–9,20,23–26 have focussed
on the evaluation of phase sensitivity, and not on the shape of the
fringes. Here, our single fringe analysis can help to establish a very
general relation between intuitively accessible features of multi-
photon interference and fundamental issues of phase sensitivity.

Fisher information analysis. To understand the precise require-
ments for phase super-sensitivity in single fringe measurements, it
is useful to quantify the amount of phase information that is lost
when the remaining N measurement outcomes are lumped together
in a single negative outcome. This can be done by expressing phase
sensitivity in terms of the Fisher information (FI), denoted F 5.
According to the Cramer-Rao bound27, the Fisher information
determines the lowest phase uncertainty achievable for a given set
of phase dependent measurement probabilities: Dw§1

� ffiffiffiffi
F
p

. In
terms of the N 1 1 photon-counted fringes that correspond to an
N-photon state, the Fisher information F~F wð Þ (and hence the
phase sensitivity) is given by

F wð Þ~
XNz1

i~1

pi wð Þ L
Lw

ln pi wð Þ
� �2

ð2Þ

In quantum metrology, the Fisher information also depends on the
measurement strategy28. Fortunately, it can be shown that precise
photon counting in the output is an optimal strategy for path-sym-
metric pure states such as the HB and NOON states29. Therefore, the
Fisher information of the N 1 1 fringes would ideally result in a
phase-independent Fisher information F~ D n1{n2ð Þð Þ2. For un-
correlated photons, this results in a phase independent sensitivity
corresponding to the SNL ofF~N , a result that has been confirmed
experimentally using photon number resolving detectors30. For
NOON states, the maximal photon number uncertainty would
similarly result in a phase sensitivity at the HL of F~N2. How-
ever, experimental imperfections reduce this ideal value, intro-
ducing a phase dependence of the Fisher information, as can be
seen in recent results obtained for all 5 fringes of an N 5 4 photon
experiment26.

Since a single fringe i contains only a subset of the phase informa-
tion available in the phase-shifted multi-photon state, the Fisher
information F i obtained from the single fringe will usually be lower
than the complete Fisher information obtained from all N 1 1
fringes. Specifically, the Fisher information of a single fringe is given
by the contribution of the fringe i to the sum in Eq. (2), combined
with the information from its null fringe:

F i wð Þ~pi wð Þ L
Lw

ln pi wð Þ
� �2

z 1{pi wð Þð Þ L
Lw

ln 1{pi wð Þð Þ
� �2

ð3Þ

The limited information contained in a subset of photon-counted
fringes is one of the reasons that few experiments to date have
demonstrated sensitivities below the SNL - most experiments use
just one or two of the N 1 1 fringes to obtain an estimate of the
phase sensitivity of their states. The success of such experiments
depends on the possibility of beating the SNL with just a single
measurement fringe, i.e. to obtainF iwN for a specific measurement
setting i. It is therefore important to understand the theoretical limits
on phase sensitivity imposed by single fringe measurements.

Optimality of the Holland-Burnett state. Quantum mechanically, the
single fringe probability is determined by pi wð Þ~ mih jÛ wð Þ yj i

�� ��2,
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where Û wð Þ is the unitary transformation that describes the phase
shift. For a fixed outcome i, the roles of measurement outcome mi

and initial state y are perfectly symmetric. As a result of this
symmetry, the phase sensitivity of single fringe measurements is
not only limited by the photon path uncertainty of the initial state
jyæ, but also by the corresponding uncertainty in the photon number
difference between the paths associated with the output state jmiæ.
This measurement dependent uncertainty limit can be expressed in
terms of the operator n̂1{n̂2 of photon number difference between
the paths inside the interferometer as

F iƒ mi n̂1{n̂2ð Þ2
�� ��mi

� �
, ð4Þ

where the possible choices of jmiæ depend on the available
measurement technologies. For photon counting in the output,
single fringe measurements cannot exceed a sensitivity given by
the path uncertainties of the detected photon number states. With
N
2

zm photons in one port and
N
2

{m photons in the other port,

this uncertainty limit is equal to
1
2

N Nz2ð Þ{m2. The output state

with the maximal path uncertainty is the state with equal photon
numbers in each port (m 5 0), corresponding to a projective
measurement of the HB state. Therefore, the maximal phase
sensitivity of single fringe detection is equal to the Fisher
information of the HB state, indicating that any higher input state
sensitivity will be lost in the measurement. Oppositely, it is relatively
easy to show that the m 5 0 fringe of the HB state itself does achieve
the maximal phase sensitivity. (See Methods for details). The HB
state is therefore the optimal input state for single fringe
measurements, and its Fisher information of F i 0ð Þ~F~
1
2

N Nz2ð Þ is the maximal single fringe Fisher information F i for

any N-photon state.
By contrast, the NOON state is not optimal for phase estimation

with single photon detection fringes, since the selection of a single
fringe severely reduces its phase sensitivity. For even photon num-
bers, the optimal single fringe sensitvity is obtained from the output
with equal photon numbers in both ports. However, NOON states
only achieve the output uncertainty limit of Eq. 4 for N 5 2 (where
NOON state and HB state are the same state) and for N 5 4. At N .

5, NOON states actually perform less well than HB states in single
fringe measurements, and do not even achieve the same scaling as the
HL, as shown in Fig. 1.

Experimental 6-photon single fringe measurements. We experi-
mentally demonstrate the phase sensitivity obtained using a single-
fringe measurement on a six-photon HB state in a polarization-mode
interferometer, as shown in Fig. 2. Spontaneous parametric down-
conversion supplies the interferometer with pairs of 780 nm trip-
hotons—that is, three indistinguishable photons in each of two
spatial modes (see Methods). One horizontally polarized mode and
one vertically polarized mode are combined into a single spatial
mode using a polarizing beam splitter. A transformation to the
right- and left-circular polarization modes is equivalent to the first
beam splitter in a Mach-Zehnder interferometer, leading to the
Holland-Burnett state

3H3Vj i~ 1
4

ffiffiffi
5
p

6R0Lj i{
ffiffiffi
3
p

4R2Lj i
	

z
ffiffiffi
3
p

2R4Lj i{
ffiffiffi
5
p

0R6Lj i



Thus the right- and left-circular polarization modes of this single
spatial mode constitute the arms of the interferometer, and contain
the 6-photon entangled states. Phase shifts w between these circular
polarizations are performed using a half-wave plate with the optic
axis at angle w/4. We implement photon number detection at the
outputs of the interferometer by evenly splitting each beam into an
array of five single-photon detectors at each output (see Methods).

We measure the projection onto j3H3Væ as w is varied, as shown in
Fig. 3, representing a measurement of 3 photons at each of the output
modes of the interferometer. Theoretically, we expect a probability
fringe

p33 wð Þ~ 5
8

cos 3w½ �z 3
8

cos w½ �
� �2

: ð5Þ

As shown in Fig. 3, a least-squares fit to a curve of this form has
visibility 94 6 2%. Here we weight the fit by the poissonian counting
error in each data point. From this fitted fringe, we can determine an
experimental phase sensitivity, characterized by the Fisher informa-
tion, Eq. (3), and shown in Fig. 4. Although the theoretical optimum
FI is achieved at w 5 0, the phase information actually goes to zero at
that point because of the zero gradient in, and non-unit value of, p33

at that phase. Instead, the experimental maximum value of
Fmax

33 ~20:0+0:9 is found at wmax 5 15u. At this point, the phase
variance is more than three times smaller than the SNL.

The peak Fisher information significantly exceeds that for the 6-
photon SNL, and also exceeds the maximum theoretical single-fringe
NOON state FI of 16.91 for the same visibility. Using several data
points in the range w g [9u, 30u], we calculated the Fisher informa-
tion directly from the data, findingF direct

33 19:60ð Þ~17+5. This value
is consistent with the value obtained from fitting, F f it

33 19:60ð Þ<19:4,

Figure 1 | Performance of the NOON and HB states with single fringe
measurements. The figures show the Fisher information vs. N small

(Nƒ40) and large N respectively. Note that HB states are only defined for

even N. (a). Small N. Front: SNL; middle: NOON; back:HB. Note that the

advantange of the HB state grows as N increases. (b). In the asymptotic

limit, the single-fringe HB Fisher information scales with the HL, while the

NOON state scales worse.

www.nature.com/scientificreports
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although the low 6-photon counts leads to a large error in the directly
determined value.

Discussion
Since single fringe measurements preserve the simplicity of the ‘‘yes/
no’’ result of single photon detection at arbitrarily high photon num-
bers, the present system of HB state generation and single fringe
detection can be applied to increasing photon numbers without
increasing the complexity of the data evaluation. Essentially, the

increase in phase sensitivity is directly observed in terms of a sharper
central peak in single fringe measurement. HB states therefore pro-
vide a more direct and intuitive access to the non-classical enhance-
ment of phase sensitivity by multi-photon entanglement. Since HB

Figure 2 | Schematic of the experiment. The input photon pairs are from a spontaneous parametric down-conversion (SPDC) source and biphotons

which implement our dual
N
2

~3 Fock states, | yæin 5 | 33æ, are guided to the interferometer with single-mode polarization maintaining optic fibres. These

photon states are incident on a polarizing beam splitter and undergo a phase shift between left- and right-circular polarization modes due to the w half-

wave plate. The final beam splitter recombines the two circularly-polarized interferometric modes, and the output states are measured in the photon

number basis by single-photon counting module (SPCM) arrays.

Figure 3 | Single measurement fringe corresponding to the | 33æ
projection at the output of the interferometer, as the phase shift w is
varied. Error bars are derived from poissonian counting statistics. The

solid blue curve is a weighted least-squares fit to the fringe, yielding

visbility 94 6 2%.

Figure 4 | Inferred Fisher information. Fisher information F 33 (solid

blue line) calculated from the fit in Fig. 3 for the single-fringe output of our

6-photon Holland-Burnett state. The light blue shading represents one

standard deviation of uncertainty, derived from uncertainty in the fit

parameters. All uncertainties were derived using standard uncertainty

propogation techniques. The solid red curve is the optimal theoretical

single-fringe Fisher information for a | 33æ measurement on the 6-photon

HB state. The dashed horizontal line is the SNL, the dotted curve is for a

NOON state single fringe with ideal visbility, and the dot-dash curve is for a

single-fringe NOON state with visibility equivalent to our experimental

data.

www.nature.com/scientificreports
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states are also easier to generate than NOON states, this simplifica-
tion of the detection requirements indicates that HB states may be the
more reliable option in a wide range of practical applications. While
the present realization of HB state generation by spontaneous para-
metric down-conversion has its limits, the development of bright,
high-quality Fock state sources (e.g. refs. 31–33) may provide the
means for preparing high photon number HB states with improved
reliability34. Given suitable Fock state resources and photon detectors
with high efficiency (presently under development2,35), it should be
possible to realize phase measurements near the HL with even larger
photon numbers, with applications to sensitive optical measure-
ments across the spectrum of science and technology.

Methods
Source and detection. A type-I BBO crystal is pumped by a frequency-doubled
mode-locked Ti:Sapphire laser operating at 400 mW average power, with 80 MHz
repetition rate and with a pulse length of approximately 150 fs. The degenerate
spontaneous parametric downconversion outputs from the crystal, at 780 nm, are
coupled to polarization-maintaining optical fibres. These modes are combined into a
single spatial mode on a polarizing beam splitter. We restricted the bandwidth of the
photons using 3 nm FWHM interference filters.

Each of the two interferometer outputs enters a balanced fan-out array of 5 single
photon counting modules, simulating a number-resolving detector. Filtering on
detections of 3 photons in each of the interferometer outputs selects out the 6-photon
term from the downconversion source. Assuming equal splitting probability amongst
each of the 5 detectors in an interferometer output port, the probability that no more
than one photon goes to any detector is 0.48 per output.

Indicative values for the source and detection performance are as follows. The pair
generation probability, per pulse, is approximately 0.028. The arm efficiency (also
called the coincidence efficiency) represents the probability that a photon generated
by the source will result in a registered detection event in one of the detectors, and
takes on a value of approximately 0.15 in our experiment. The arm efficiency is
governed by scattering and absorption losses from components, fiber coupling effi-
ciencies, and the detector quantum efficiency of about 0.55.

Thus, an indicative value for the expected maximum detected six-fold counts in
4 h is:

C6<80|106|0:0283|0:156|0:482|3600|4<66: ð6Þ

This is in agreement with the observed value of about 80 counts (as per Fig. 3). Note
that, in practice, the different paths through the experiment have slightly different
efficiencies arising from small differences in fiber coupling, detector efficiency, and
splitting ratios within the fan-out detection scheme.

Maximal single fringe phase sensitivity and proof of optimality of the Holland-
Burnett state. A single fringe is given by the probability of a single measurement

outcome, p(w) 5 jÆmjy(w)æj2. The phase dependence is described by a unitary

operation defined by the generator ĥ~ n̂1{n̂2ð Þ=2, so that Û~ exp {iwĥ
h i

. Here, n̂1

and n̂2 are the photon number operators in the paths of the interferometer. The phase
derivative of the probability p(w) is then given by

L
Lw

p wð Þ~2Im y mjh i m ĥ
��� ���yD Eh i

: ð7Þ

The Fisher information of the single fringe is

F wð Þ~

L
Lw

p

� �2

p 1{pð Þ ƒ4
m ĥ
��� ���yD E��� ���2

1{p
: ð8Þ

For all real superpositions of jmæ (path-symmetric states), the inequality achieves its

bound and becomes an equality. Since ĥ~{i â{b̂{b̂{â
	 
.

2 for output photon

number creation and annihilation operators, m ĥ
��� ���mD E

~0 and ĥ mj i~{iDhm dj i,
where Dhm is the path uncertanty (or ĥ uncertainty) of the detected state jmæ, and jdæ
is a state orthogonal to jmæ. The optimal single fringe resolution is obtained by a
superposition of jmæ and jdæ, such that

F~4
Dh2

m dyh ij j2

1{ m yjh ij j2
~4Dh2

m: ð9Þ

Therefore, the single fringe sensitivity is limited by the generator uncertainty of the
output state. In terms of the photon numbers n̂1 and n̂2 in the paths of the
interferometer, h2

m~4 m n̂1{n̂2ð Þ2
�� ��m� �

, so that the limit of single fringe sensitivity is
given by the photon path uncertainty of the output state, as shown in eq. (3) of the
paper. The maximal path uncertainty of the output is obtained for m 5 0, which
corresponds to a projection on the HB state in the output. To actually achieve the
output uncertainty limit, the input state must be in a real superposition of this state

and the orthogonal state given by {iĥ m~0j i. The straightforward way to meet this
requirement is to use the HB state itself as the input. Small phase shifts then produce
real superpositions of jm 5 0æ and ĥ m~0j i, ensuring that the maximal phase
sensitivity is observed within a sufficiently wide range of phases around w 5 0.

In summary, the discussion above shows that the HB state achieves the maximal
phase sensitivity possible with a single photon detection fringe (specifically, the fringe
with equal photon numbers at m 5 0). Moreover, this limit can only be achieved by
the HB state or by real superpositions of the HB state and the state {iĥ m~0j i, such
as the superpositions generated from the initial HB state by small phase shifts. It is
therefore impossible to achieve this limit with other states. In particular, NOON states
cannot achieve the maximal single fringe sensitivity, because they overlap only par-
tially with the jm 5 0æ and ĥ m~0j i states at N . 5. Specifically, the maximal
sensitivity of a single NOON state fringe obtained from photon detection is obtained
when the output probability p(m) of the fringe is close to zero. This maximal sens-
itivity is limited by the efficiency g that corresponds to the maximal value of the
output probability p(m). This probability is equal to two times the symmetric bino-
mial distribution at that point. For equal photon numbers,

F
N2

~
N!

N=2ð Þ! N=2ð Þ!
1
2

� �N{1

: ð10Þ

In the limit of high photon number, the Sterling formula results in a scaling with N3/2

for F,

F<
ffiffiffi
8
p

r
N3=2: ð11Þ

Therefore the NOON state cannot achieve Heisenberg limited scaling in single fringe
inteferometry. Instead, the Fisher information scales with N3/2, the geometric mean of
SNL and HL.
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