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Oscillating chemical reactions are common in biological systems and they also occur in artificial
non-biological systems. Generally, these reactions are subject to random fluctuations in environmental
conditions which translate into fluctuations in the values of physical variables, for example, temperature.
We formulate a mathematical model for a nonisothermal minimal chemical oscillator containing a single
negative feedback loop and study numerically the effects of stochastic fluctuations in temperature in the
absence of any deterministic limit cycle or periodic forcing. We show that noise in temperature can induce
sustained limit cycle oscillations with a relatively narrow frequency distribution and some characteristic
frequency. These properties differ significantly depending on the noise correlation. Here, we have explored
white and colored (correlated) noise. A plot of the characteristic frequency of the noise induced oscillations
as a function of the correlation exponent shows a maximum, therefore indicating the existence of
autonomous stochastic resonance, i.e. coherence resonance.

C
hemical oscillators, which are the canonical example for non-equilibrium chemical dynamics, are found in
many natural and synthetic systems (notable examples are the Krebs cycle1, the circadian clock2, the cell
cycle3,4, and the Belousov-Zhabotinsky reaction5). Such systems are unavoidably subject to stochastic

fluctuations in the values of some environmental physical variables, such as pressure or temperature. These
fluctuations can generically be classified as noise, and can potentially affect system behavior by modifying its
parameters, for example of the kinetic coefficients of a chemical reaction. Since its first introduction in the realm
of science, noise and its effects have been intensively studied in many different fields6 including chemistry and
biochemistry. For example, it has been suggested that noise could have played a significant role in the emergence
of bistability in regulatory feedback circuits7 and played a role in the origin of life8. Another remarkable noise-
induced phenomenon, originally proposed to explain the periodicity in the Earth’s ice ages, is stochastic res-
onance9. In fact, stochastic resonance has been experimentally observed in a number of biological and chemical
systems (e.g. sensory neurons10, ion channels11, mechanoreceptors12, Belousov-Zhabotinsky reaction13). It has
also been extensively studied theoretically14–19.

In general, oscillations in nonlinear chemical systems may arise around unstable steady states (such as unstable
focuses or multiple stable attractors separated by unstable saddle points), which can arise due to feedback
interactions such as autocatalysis and positive or negative feedback loops20. These interactions are being con-
sidered as fundamental mechanisms maintaining functionality of living systems and could have played a signifi-
cant role in the course of prebiotic evolution21. Notable examples of mathematical models of oscillators include
the Sel’kov model of self-oscillations in glycolysis22, the ‘‘Brusselator’’23, and the ‘‘Oregonator’’5 that models the
Belousov-Zhabotinsky reaction. In fact, sustained limit cycle oscillations can be generated by a single negative
feedback loop. This mechanism was first suggested to describe enzymatic regulation of gene expression24–26.
Importantly, a strong nonlinearity of the inhibition is necessary in this model20,26. In biochemistry, two fun-
damental phenomena that can lead to strong nonlinearities are allosteric cooperativity27,28 and covalent modi-
fication of proteins29. In inorganic chemistry, highly nonlinear reaction kinetics can arise in heterogeneous
catalysis30,31, including in some cases sigmoidal kinetics32. In fact, recently, heterogeneous catalysis has been
considered as one of the prerequisites for the emergence of life33.

Any chemical or biological system depends on temperature, which affects it in a very nonlinear way because of
the Arrhenius dependence (remarkably, recent studies showed measurable gradients of temperature within a
single living cell, due to heat generation in mitochondria34). However, nonisothermal effects are commonly not
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considered in studies of chemical and biological oscillators. For
example, it has been suggested that the oscillatory Belousov-
Zhabotinsky reaction could have some temperature compensation
mechanism35. Effects of temperature on this system were studied
both experimentally and theoretically36–38. However, a common fea-
ture of these studies is that temperature was considered as a para-
meter, not a variable. A notable example from biology is temperature
compensation in the circadian clock, which has been studied the-
oretically employing the Goodwin oscillator model39–41 but, again,
using isothermal formulation (temperature is a parameter).

In this paper, we explore the effects of temperature dependence
explicitly by formulating a mathematical model of a minimal non-
isothermal chemical oscillatory system, whose dynamics is governed
by a single, threshold-controlled, negative feedback loop. We study
numerically the effects of stochastic fluctuations in the system’s envir-
onment temperature in the absence of a deterministic limit cycle. We
intentionally do not refer to any particular system, but study a gen-
eric scheme of a minimal oscillator and trying to understand the basic
mechanism of the system response to noise. Our results show that
due to the nonisothermal character of the model, fluctuations in
temperature can induce sustained limit cycle oscillations. These
noise-induced oscillations turn out to have a characteristic frequency
and a magnitude that depend on both the noise amplitude and its
correlation. We also observe and characterize the phenomenon of
autonomous stochastic resonance, which can be parametrically
described as a function of the correlation exponent of the colored
noise.

Results
We now describe the mathematical formulation of our idealized
model, its main characteristics and the specific features related to
noise-induced behavior.

Model formulation. Let us consider a hypothetical enclosed
chemical system subject to a constant flow of matter (for example
through a semipermeable membrane) with temperature Tf and
substrate concentration CS. For an exothermic system, heat will be
generated and dissipated to the environment whose temperature is
Tex (Fig. 1A). The state of this nonisothermal system is described by
the concentrations of i compounds (Ci) and its temperature (T).
Now, let us assume that the system is oscillatory and that its
dynamics can be described well enough by an elementary network
of limiting interactions shown in Fig. 1B (in doing this we assume
that other interactions are very fast and that intermediates are
sufficiently abundant): a negative feedback loop with an input
(assumed to be constant). When there are no internal gradients of
concentrations or temperature (e.g., due to small system size and fast
homogeneous mixing) the system can be described using the
formalism of an ideal continuously stirred tank reactor (CSTR)42.
Then, the equations for this system (we are using a dimensionless
formulation) are

ei
dCi

dt
~gi exp ({bi=T)z(Cif {Ci) i:A,M,I ð1Þ

eT
dT
dt

~
X

i

aigiexp({bi=T)z(Tf {T)zw(Tex{T) ð2Þ

gA~gA0H(hAI{CI) ð3Þ

gM~H(CA{hMA) ð4Þ

gI~H(CM{hIM) ð5Þ

In the above equations, the dynamics for each variable (Ci and T) is
governed by the sum of a nonlinear generation term (gi) and a linear
decay term (which represents the continuous removal of matter,

Fig. 1A); t and e denote dimensionless time and time constant,
respectively. For generality, we have included an additional term in
the heat balance, to account for heat dissipation (Fig. 1A). An
Arrhenius temperature dependence of kinetic rates (gi) is assumed,
and bi and ai stand for the dimensionless activation energy and
reaction enthalpy, respectively. We assume that heat dissipation
follows Newton’s law of cooling, with an effective heat transfer
coefficient w. The network of interactions (Fig. 1B) is composed of
an activator (A), a mediator (M), and an inhibitor (I), with a constant
input S (gA0 5 const in equation (3)). This configuration ensures the
existence of sustained limit cycle oscillations which, according to
Bendixon’s criterion20,26,43, cannot exist with only two interme-
diates. An additional requirement for oscillatory behavior in our
model is nonlinearity of reaction rates20,26. To be taken as an asymp-
totic approximation, we represent such nonlinearities through a step
function44, an idealization, which is frequently used in mathematical
models of biochemical regulation45. This is realized in our model by
using the Heaviside step function H(x). Since in equations (3–5) H(x)
is equal to 0 when its argument is negative and 1 otherwise and, the
production of A, M, and I switches on and off at their corresponding
thresholds hAI, hMA, and hIM. We point out the resemblance between
our model without temperature dependence and the Goodwin
oscillator model25.

Deterministic oscillations. Typical simulation results are shown in
Fig. 1C–E. We set the reactions of production of A and I to be
exothermic (aA . 0 and aI . 0 in equation (2)) and, for simplicity,
assume that the activation energy and reaction enthalpy of produc-
tion of M are negligibly small, as compared to corresponding
parameters for A and I (values of all parameters are listed in the
figure caption). We select exothermic reactions rather than endo-
thermic, because endothermic effects are expected to suppress the
system by reducing its temperature due to the heat consumption in
chemical reactions, as an opposite to exothermic effects leading to
heat generation. For simplicity, we assume that production of both
the activator and the inhibitor is exothermic. It should be pointed out
at this point that exothermic chemical oscillators have been
extensively studied in heterogeneous catalytic systems, e.g. CO and
NH3 oxidation on Pt and Pd46–48.

In the absence of any fluctuations, the system generates sustained
limit cycle periodic oscillations in concentrations and temperature,
independently on initial conditions and in a wide range of para-
meters (as it was confirmed by numerical simulations). Note that
limit cycle oscillations are also generated in the isothermal version of
our model, i.e. T 5 const, due to the inherent ability of the negative
feedback loop to generate periodic solutions20. Indeed, accumulation
of A switches on the production of M, which starts accumulating and,
eventually, activates the production of I, which then suppresses the
production of A. However, as we demonstrate in the next section,
mutual interactions between chemical and thermal dynamics, i.e.
nonisothermal effects, are necessary for generation of noise-induced
limit cycle in the absence of deterministic oscillations (Fig. 3). The
oscillation frequency increases with Tex (Fig. 2A), which is expected,
because higher T results in faster accumulation of A due to exo-
thermic effects. Because of this, we have selected the external tem-
perature (Tex) as a bifurcation parameter and identified the
bifurcation point (Fig. 2B).

Noise-induced oscillations. In order to study the system response to
fluctuations in temperature, we selected Tex 5 0.9, the point where no
deterministic limit cycle exists (Fig. 2B), and applied noise in the
vicinity of this value, by setting Tex 5 0.9 1 gw(t), where gw(t) is a
zero-mean Gaussian distributed white noise with standard deviation
s and amplitude modulation frequency of 10 (in all simulations value
of gw changes every 0.1 unit of dimensionless time). While small
amplitude perturbations have no effect (Fig. 2C), increasing the noi-
se amplitude leads to oscillations in temperature and concentrations
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(Fig. 2D, E). Interestingly and surprisingly, noise with amplitude of s
5 0.25 recovers almost completely the deterministic limit cycle
obtained at Tex 5 0.95 (Fig. 2F, other parameters are identical).

The ability of the system to generate the noise-induced limit cycle,
which is very similar to the deterministic cycle, can be therefore
attributed to the nonisothermal effects, as it is shown in Fig. 3. A
typical example of the numerical simulation with constant heat gen-
eration (Qh 5 0.5), which was adjusted in such a way that the mean
value of temperature was equal to the mean baseline value for the
temperature in Fig. 2D (T < 1.35), is shown in Fig. 3A, B (note that in
such formulation temperature does not depend on concentrations,
while reaction rates still depend on temperature). As expected for the
system near the bifurcation point and subject to noise, there are
excursions in concentration, but they are random (Fig. 3A) and no
limit cycle is generated (Fig. 3B). With the same noise amplitude and
mean baseline temperature, but including nonisothermal effects due

to the heat generation dependence on the reaction rates, noise-
induced limit cycle oscillations are generated (Fig. 3C, D).

A mechanism to account for this phenomenon could be as follows.
For constant heat generation, equation (2) has a single stable steady
state (Fig. 4A, where Qg and Qr stand for heat generation and removal
respectively). For a particular set of parameters used in Fig. 3 and as
long as CI # hAI (no repression of A), this solution corresponds to CA

5 gA0exp(2bA/T) 5 0.5 (Fig. 4A), which is the threshold for M
activation (parameter values are listed in figure captions).
Fluctuations in the heat removal caused by noise in Tex (these fluc-
tuations are bounded as indicated by dashed blue lines in Fig. 4A)
induce random fluctuations in the term gA0exp(2bA/T) (production
rate of CA, equations (1,3)) around the stable steady state. This can
only lead to random initiation and termination of production of M
and, consequently, I (Fig. 3A). In the nonisothermal case, the heat
generation term is nonlinear and depends on the production of both

Figure 1 | Minimal nonisothermal chemical oscillator. (A) A hypothetical oscillatory chemical system subject to a constant flow of matter and heat.

The heat is dissipated to the external environment, which is at temperature Tex; (B) A network of chemical interactions – a negative feedback loop with an

input; (C) Time series of concentrations of the activator (CA), mediator (CM), and inhibitor (CI); (D) Corresponding time series of temperature (T);

(E) The phase plane portrait showing a deterministic limit cycle. Parameters: ei 5 eT 5 1, hMA 5 hIM 5 hAI 5 0.5, aM 5 bM 5 0, aA 5 aI 5 bA 5 bI 5 1, gA0

5 1.05, w 5 0.35, Tf 5 1, Tex 5 0.95, Cif 5 0, CA(0) 5 CM(0) 5 CI(0) 5 0, T(0) 5 1.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2404 | DOI: 10.1038/srep02404 3



Figure 2 | Noise-induced sustained limit cycle oscillations. (A, B) Deterministic oscillations: effect of external temperature (Tex) on oscillation frequency

(A) and bifurcation point (B) are shown; (C–F) Noise-induced oscillations: no oscillations are observed for low noise amplitude, s 5 0.02 (C), while for

large noise amplitude (s 5 0.25) oscillations are induced (D, E) and a limit cycle is created (F). Other parameters are as in Figure 1, except for Tex in A and

B and Tex 5 0.9 1 gw(t) in (C–F).
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Figure 3 | Noise-induced limit cycle is due to nonisothermal effects. (A) Time series of the applied noise (s 5 0.15) and of the resulting temperature and

inhibitor concentration with constant heat generation (Qh 5 0.5) – the system responds randomly and no limit cycle is generated (B); (C) Time series of

the applied noise (s 5 0.15) and the resulting temperature and inhibitor concentration, with the heat generation term dependent on concentrations

(nonisothermal system); (D) corresponding noise-induced limit cycle. Other parameters are as in Figure 2.
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A and I (equation (2)). This results in two solutions, depending on
whether only A, or both A and I are produced (Fig. 4B). The upper
state (T < 1.85) is unstable: when both A and I are produced, even-
tually I unavoidably represses production of A, leading to a transition
to the lower state (T < 1.32). This state is stable to weak noise
(Fig. 2C), but unstable to large perturbations which can induce a
positive feedback on heat generation due to the exothermicity (equa-
tions (1,2)), leading to production of both A and I again. Therefore,
fast transitions between the states may occur (Fig. 4B), generating a
limit cycle that resembles the deterministic limit cycle. Note that the
values of the temperature for two solutions (Fig. 4B) correspond to
the baseline and peak temperatures in Fig. 3C.

This mechanism of noise-induced limit cycle generation is
expected to apply for exothermic negative feedback loop oscillators
in general. The only requirement for reaction rates is the existence of
a sharp transition between virtually no production and production at
nearly maximal rate. An additional requirement is that this transition
should result in a significant change in the rate of heat generation. In
such a system, after the transition from the lower state to the upper
curve of heat generation takes place (as shown by the up-pointing
arrow in Fig. 4B), the heat generation rate is higher than the rate of
heat removal. As a result, temperature will increase and the system
will tend to the upper state. The transition from the upper state to the
lower curve of heat generation (as shown by the down-pointing
arrow in Fig. 4B) results in the heat generation rate, which is lower
than the rate of heat removal. In this case, due to decreasing temper-
ature the system will tend to the lower state. Examples of noise-
induced sustained limit cycle oscillations obtained in our model with
Heaviside function in the reaction rates replaced by a more realistic
Hill function dependence are shown in Supplementary Information
(see Supplementary Figs. S1–S4 online). Since oscillations occur in
the isothermal version of our model (see section Deterministic oscil-
lations), the endothermic version is also expected to generate deter-
ministic periodic orbits (see Supplementary Fig. S5 online).
However, due to absence of the accelerating effect of the exothermic
reaction the response of the endothermic system to noise is irregular
(see Supplementary Figs. S5 and S6 online).

Characteristic frequency of noise-induced oscillations and effect
of colored noise. The obtained noise-induced oscillations have a
relatively narrow frequency distribution with some characteristic
frequency, as it is shown in Fig. 5A–C. A typical example of the
numerical simulation, performed with Tex 5 0.9 1 gw(t) for 1000

dimensionless units of time, is shown in Fig. 5B. The corresponding
time series of stochastic input (Tex) are shown in Fig. 5A (note high
frequency of amplitude variation: gw changes every 0.1 unit of
dimensionless time). The frequency distribution (Fig. 5C) is
calculated as the reciprocal of the distribution of the inter-spike
intervals calculated from Fig. 5B. Some characteristic frequency
can be recognized in Fig. 5C.

The shape of the frequency distribution and the location of the
characteristic frequency change significantly when colored (corre-
lated) noise is applied instead of white noise. A typical example is
shown in Fig. 5D-F (note that in both cases random sequences are
Gaussian–distributed with the same standard deviation). We use the
same procedure for numerical simulations as for the white noise, i.e.
using Tex 5 0.9 1 gc(t), except that now gc(t) is zero-mean power-
law correlated noise, which is, in addition to the Gaussian distribution
standard deviation s, characterized with a correlation exponent c:

C(t): gigizt

� �
*(1zt2){c=2 ð6Þ

To generate correlated sequences, we used an algorithm, which is
based on the modified Fourier filtering method49 (see the Methods
section for details). For colored noise, the frequency distribution is
left-skewed and there is a very significant shift of the characteristic
frequency towards higher values. Note that Fig. 5 shows typical
examples of 20 repeated simulations for each type of noise (each
one for 1000 units of time), and the characteristic trend of the left-
skewed distribution with higher characteristic frequency for colored
noise was obtained in all cases. Importantly, these substantial dis-
similarities in system response to white and correlated noise are not a
consequence of the idealized and rather artificial reaction rates
we used in our formulation (Heaviside function), since similar dif-
ferences are observed with more realistic reaction rates (see
Supplementary Fig. S4 online). These differences can be therefore
attributed to noise correlation (we discuss this point in the next
section).

Figures 6A and 6B show the averaged results of repeated simula-
tions for different noise amplitudes (the error bars show standard
deviation between measurements). Numerical simulations (each run
is for 1000 dimensionless units of time, as in Fig. 5B, E) were per-
formed until there was no further significant change (more than
10%) in accumulated standard deviation error between the measure-
ments, although at least 10 runs were performed for each type of
noise and each value of the noise amplitude. We calculated the

Figure 4 | Noise-induced limit cycle generation mechanism. Steady state solution of temperature balance (equation (2)) with (A) constant heat

source (Qg 5 0.5) and (B) with the heat generation function dependent on kinetic terms (Qg 5 aAgA0exp(2bA/T) 1 aIexp(2bI/T)). The heat removal

function is Qr 5 (T 2 Tf) 1 w(T 2 Tex) in both cases. Dashed blue lines correspond to the range of Qr fluctuations for s 5 0.15; gA0exp(2bA/T)

corresponds to the production term of A (when the concentration of I is below repression threshold). Other parameters are as in Figure 3.
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Figure 5 | Noise-induced frequency distribution. (A–C) Frequency distribution of white noise-induced oscillations, showing the time series of the

applied noise (Tex 5 0.9 1 gw(t)) with corresponding random sequence distribution (A), the induced oscillations (B), and the corresponding frequency

distribution (C); (D–F) Frequency distribution of colored noise-induced oscillations (Tex 5 0.9 1 gc(t)), showing the time series of the applied correlated

noise (correlation exponent is y 5 0.5) with corresponding random sequence distribution (D), the induced oscillations (E), and the corresponding

frequency distribution (F). Noise amplitude is s 5 0.15 in both cases; other parameters are as in Figure 1.
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characteristic frequency as the median of the frequency distribution
(such as shown in Fig. 5C, F), denoted as fm in Fig. 6A, B, where the
median absolute deviation (MAD) is also shown. It can be seen that
the frequency distribution is relatively narrow, while the MAD mag-
nitude is slightly higher for colored noise. Furthermore, the char-
acteristic frequency increases with increasing noise amplitude, and
attains a relatively constant value for intermediate noise amplitudes.
We verified that there is no optimum in the fm vs. s plots even for
very large noise amplitudes (as high as s 5 1), for a range of the
correlation exponent of 0.1 # c # 2.5. We restrict our representation,
however, for s # 0.3 since for s . 0.3, temperature (Tex) attains
negative values. Interestingly enough, the characteristic frequency
was significantly higher for colored noise (compare Fig. 6A and B).

Coherence resonance. A plot of the characteristic frequency as a
function of the correlation exponent (c) showed a pronounced
maximum for different values of noise amplitude; typical examples
are shown in Fig. 6C (error bars show standard deviation between the

measurements). This indicates the existence of stochastic resonance,
occurring in the absence of any periodic forcing, therefore, such
phenomenon can be classified as autonomous stochastic reso-
nance, also known in the literature as coherence resonance17,50.
Note that (not surprisingly) for high values of the correlation
exponent (poorly correlated noise) the characteristic frequency
magnitude tends to that induced by white (uncorrelated) noise
(compare Figs. 6C and 6A). The occurrence of coherence
resonance as a function of correlation exponent can be attributed
to dissimilarities in spectral densities of noise with different
correlation. For white noise (and for large values of c) spectral
density is equally distributed over the frequency spectrum. In
contrast and depending on its correlation, colored noise has
enhanced spectral density for certain ranges of frequencies (see
Supplementary Figs. S7 and S8 online). Overlap between these
enhanced frequencies and the natural frequency of the oscillator
can result in an optimum in the plot of the characteristic noise-
induced frequency versus the correlation exponent.

Figure 6 | Frequency dependence and coherence resonance. (A, B) The dependence of the characteristic frequency of noise-induced oscillations

(calculated as the median of the frequency distribution) on the noise amplitude for white (A) and colored noise (B); error bars show standard deviation

between the measurements and MAD is the median absolute deviation; (C) Plots of the characteristic frequency vs. correlation exponent for two different

noise amplitudes; error bars show standard deviation between the measurements. Parameters are as in Figure 1, except for Tex 5 0.9 1 gw(t) and Tex 5 0.9

1 gc(t) for white and colored noise, respectively.
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In its classical formulation, stochastic resonance is recognized in a
dynamical system subject to both weak periodic forcing and random
perturbation, as the emergence of periodic behavior, which is absent
when either the forcing or the perturbation are absent9. Such systems
are commonly bistable, with the probability of occupation of a certain
stable state being affected by noise, while some "optimal" noise may
lead to quasiperiodic switching between these two states. In the
model presented here we have found that sustained limit cycle oscil-
lations are created by stochastic fluctuations in temperature in the
absence of any periodic forcing in the oscillatory system which does
not have multiple stable states. These noise-induced oscillations are
due to the presence of the negative feedback loop in the kinetic terms
(equations (3–5) and Fig. 1B) and the mutual interaction between the
chemical and thermal dynamics. That is, they are due to nonisother-
mal effects, while coherence resonance is observed as a function of the
amplitude of colored noise-correlated temperature fluctuations.

Discussion
Motivated by the ubiquitous presence of oscillatory behavior in the
chemistry of complex systems and by their natural exposure to vari-
ous sources of noise, we have formulated a nonisothermal mathemat-
ical model of a minimal chemical oscillator subject to noise in the
form of temperature fluctuations. We performed a numerical ana-
lysis for this system using the formalism of an ideal continuously
stirred flow reactor (CSTR), which promotes the temperature into a
system variable. Temperature variations affect the reaction rate con-
stants via the highly non-linear Arrhenius factor, leading to interplay
between thermal and chemical dynamics. In order to discard poten-
tial built-in causes for our results, we have studied the effects of
stochastic fluctuations in temperature in the absence of any periodic
forcing. We have found that noise in temperature can induce sus-
tained oscillations in the absence of any deterministic limit cycle.
Furthermore, temperature fluctuations can recover deterministic
limit cycles.

For white noise, the noise-induced oscillations that set in have a
relatively narrow frequency distribution and a characteristic fre-
quency that increases with noise amplitude, although no optimum
is observed. Instead, the characteristic frequency reaches a relatively
constant value. Because the idealization to white noise (with zero
correlation) is unlikely to be realized in the real world where stoch-
astic fluctuations are expected to have at least some degree of cor-
relation, we have also considered colored (power-law correlated)
noise. Colored noise is defined by some fixed scale called "correlation
length" and by the "correlation exponent", which is essentially a
logarithmic measure of the preponderance of scales in relation to
the correlation length. Not surprisingly, we have discovered that
there exist marked differences in both the induced frequency distri-
bution and characteristic frequency magnitude depending on
whether the noise is white or colored.

Our calculations show that given identical noise amplitude and
random sequence distribution, colored noise fluctuations can result
in a significantly higher characteristic frequency than what is
induced for white noise temperature fluctuations. This underscores
the role of the noise correlation and points to its use as a "control
knob" for the selection of induced phenomenological behaviors via
noise correlation. When we plotted the characteristic frequency of
the colored noise induced oscillations as a function of the colored
noise correlation exponent, we found a pronounced maximum with
an optimal range that results in the highest frequency for the noise
induced oscillations. Because this resonance appears in the absence
of any periodic forcing, we interpret it in terms of the existence of
autonomous stochastic resonance also known as coherence res-
onance17. The coherence resonance observed in our study is very
different from the stochastic resonance in its classical formulation9,
which refers to a bistable system subject to a weak subthreshold
periodic signal and stochastic fluctuations, for which the probability

of the occupancy of a certain state may be affected by noise. In our
model, sustained limit cycle oscillations are induced in the absence of
any form of periodic forcing, purely by stochastic fluctuations in
temperature.

Our findings highlight the importance of the mutual interplay
between chemical and thermal dynamics, which is frequently omit-
ted in models of chemical and biological oscillators. To the best of our
knowledge, this is the first numerical study showing sustained limit
cycle oscillations induced by temperature fluctuations in the non-
isothermal chemical oscillator. Our results are clearly a consequence
of the nonisothermal character of our model: when reaction heat
dependence on reaction rates is not accounted for the system simply
responds in a random manner and no limit cycle is created (Fig. 3).

We believe that the results presented here could be useful for a
fundamental understanding of noise-induced phenomena in oscil-
latory systems. Newly emerging fields, such as synthesis of artificial
metabolic cycles and transcriptional networks51–53 can benefit from
studies of minimal mathematical models, such as the one we present
here. Such studies could provide new ideas or illuminate new strat-
egies for experimental investigations. Understanding the dynamics
of simple chemical oscillators, while accounting for reaction heat and
external noise (both of which are always present in natural environ-
ments), may help to understand the emergence of prebiotic meta-
bolic cycles, as well as the pervasive presence of metabolic oscillators
in biological systems.

Methods
We use a dimensionless form of equations (Eqs 1–5) in order to reduce a number of
parameters. In the dimensionless representation, time is scaled by a typical decay rate
of the problem, while time constants (ei and eT) compare the decay rate of each model
variable to the typical decay rate. Model variables (Ci and T) and kinetic rates (gi) are
normalized to their maximum values and kinetic thresholds (hij) vary from 0 to 1.
Parameters bi, ai and w stand for dimensionless activation energy, reaction enthalpy
and heat transfer coefficient, respectively. The set of ODEs given by Eqs 1 and 2 was
integrated using a standard integration routine (COMSOL Multiphysics) with
adaptive time stepping, with initial conditions Ci(0) 5 0 and T(0) 5 1. The following
values of parameters were used in all the simulations: ei 5 eT 5 1, hMA 5 hIM 5 hAJ 5

0.5, aM 5 bM 5 0, aA 5 aI 5 bA 5 bI 5 1, gA0 5 1.05, w 5 0.35, Tf 5 1. Correlated
noise was generated using an algorithm based on the modified Fourier filtering
method49. Briefly, a sequence of random numbers with power-low correlation is
generated by filtering the Fourier components of an uncorrelated sequence of random
numbers (Gaussian-distributed).
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and coherence resonance in a generic model of the nonisothermal chemical oscillator. Sci.
Rep. 3, 2404; DOI:10.1038/srep02404 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-nd/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2404 | DOI: 10.1038/srep02404 10

http://creativecommons.org/licenses/by-nc-nd/3.0
http://creativecommons.org/licenses/by-nc-nd/3.0
http://creativecommons.org/licenses/by-nc-nd/3.0

	Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator
	Introduction
	Results
	Model formulation
	Deterministic oscillations
	Noise-induced oscillations
	Characteristic frequency of noise-induced oscillations and effect of colored noise
	Coherence resonance

	Discussion
	Methods
	Acknowledgements
	References


