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Quantum mechanics predicts that certain stationary potentials can sustain bound states with an energy
buried in the continuous spectrum of scattered states, the so-called bound states in the continuum (BIC).
Originally regarded as mathematical curiosities, BIC have found an increasing interest in recent years,
particularly in quantum and classical transport of matter and optical waves in mesoscopic and photonic
systems where the underlying potential can be judiciously tailored. Most of our knowledge of BIC is so far
restricted to static potentials. Here we introduce a new kind of BIC, referred to as Floquet BIC, which
corresponds to a normalizable Floquet state of a time-periodic Hamiltonian with a quasienergy embedded
into the spectrum of Floquet scattered states. We discuss the appearance of Floquet BIC states in a
tight-binding lattice model driven by an ac field in the proximity of the dynamic localization regime.

A
t the birth of quantum mechanics, von Neumann and Wigner1 suggested rather surprisingly that certain
spatially oscillating attractive potentials can sustain normalizable states at a positive energy, i.e. embedded
into the spectrum of scattered states. Because of their unusual geometry, such potentials were earlier

regarded as mathematical curiosities with low physical relevance, and for many years BIC did not attract the
interest of the scientific community. Subsequent theoretical and experimental studies showed that BIC can be
found in a wide range of different quantum and classical systems, including atomic and molecular systems2–5,
semiconductor and mesoscopic structures6–12, graphene13, quantum Hall insulators14, optical structures15–18, and
Hubbard models19,20. Generally, BIC are fragile states, which decay into resonance states by small perturbations.
However, they can play an important role in quantum transport on the nanoscale with application to nanoelec-
tronics21 and spintronics22, or in the design of photonic structures for enhancement of nonlinear phenomena with
application to biosensing and impurity detection7. In some cases BIC possess a certain degree of robustness
against hybridization into the continuum14,19,23, and can survive under harmonic modulation21. As the existence of
BIC states in static potentials is well established, the possibility to observe BIC states in time-periodic
Hamiltonians has not received great attention to date. Time periodic Hamiltonians are found in a wide range
of different physical fields and describe important physical phenomena, for example driven quantum tunneling,
scattering from oscillating potentials and quantum transport on the nanoscale24,25. Application of ac fields has
become a very promising tool to engineer quantum systems, for example to effectively simulate properties of
undriven systems in higher dimensions26, to control topological states of matter and to induce topological
insulators27,28.

Here we introduce a new kind of BIC, referred to as Floquet BIC, which correspond to breathing normalizable
Floquet states of a time-periodic Hamiltonian with a quasienergy embedded into the spectrum of Floquet
scattered (non-normalizable) states. We discuss the existence of such BIC states for a quantum particle in a
tight-binding lattice model driven by an ac field. Floquet BIC are found under certain driving conditions in the
neighborhood of the dynamic localization regime. In the high-frequency limit, such states can be explained as a
result of selective destruction of tunneling.

Results
Driven lattice model. As a model system, we consider the coherent hopping dynamics of a quantum particle on a
one-dimensional tight-binding lattice driven by an external sinusoidal field with inhomogeneous hopping rates,
which is described by the Hamiltonian (with 5 1)

Ĥ~
X

n

kn nj i nz1h jz nz1j i nh jf gzF tð Þa
X

n

n nj i nh j ð1Þ

where jnæ is the Wannier state localized at lattice site n (n 5 0,61,62,…), kn is the hopping rate between sites n
and (n 1 1), a is the lattice period, and F(t) 5 F0 cos(vt) is the external sinusoidal force of period T 5 2p/v. This
model has been investigated in different physical contexts. It describes, for example, coherent transport of
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ultracold atoms in periodically-shaken optical lattices29, coherent
electronic transport in irradiated semiconductor superlattices30,
and light propagation in arrays of periodically-curved optical wave-
guides31,32. We assume that the lattice is asymptotically homogene-
ous, i.e. that kn R k as n R 6‘, and that in the absence of the driving
force, i.e. for F(t) 5 0, the static Hamiltonian Ĥ has a purely con-
tinuous spectrum, i.e. that hopping inhomogeneities do not intro-
duce bound states, neither outside nor inside the tight-binding
energy band (22k, 2k). For example, such a condition is satisfied
by assuming kn 5 k for n ? 21, 0 and k21 5 k0 5 r , k, see
Fig. 1(a). In the presence of the periodic forcing, the eigenstates jy(t)æ
of the Hamiltonian are Floquet states of the form y tð Þj i~ u tð Þj i
exp {i t=ð Þ, where ju(t 1 T)æ 5 ju(t)æ and is the quasi-energy,
which is assumed to vary in the interval (2v/2, v/2). A Floquet BIC
state can be defined as a normalizable Floquet state of Ĥ with a quasi-
energy buried in the continuous quasi-energy spectrum of scattered
states of the lattice. For a homogeneous lattice (kn 5 k), the problem
is integrable33 and the quasi-energy spectrum turns out to be purely
continuous and defined by the dispersion relation30 pð Þ~2kJ0 Cð Þ
cos pð Þ, where 2p # p , p, C 5 aF0/v is the normalized forcing
parameter, and J0 is the Bessel function of first kind and zero order.
The two linearly-independent Floquet scattered states with quasi-
energy +pð Þ in the ac-driven homogeneous lattice are given by
the backward and forward propagating plane waves

y+p tð Þ
��� E

~
X

n

exp +ipn{iH +p, tð Þ½ � nj i, ð2Þ

whereH p, tð Þ~W tð Þz2k
Ð t

0 dt’ cos p{W t’ð Þ½ � andW(t) 5C sin(vt).
As is well known, the quasi-energy spectrum shrinks and collapses as
C R 2.405, at which J0(C) 5 0 and dynamic localization (DL) is
attained33. Hence, in a homogeneous lattice the role of the external
force is to re-normalize the bandwidth of the undriven lattice band,
however the spectrum remains purely continuous. Lattice defects or
boundary effects make DL imperfect and bound states outside the
continuum (BOC) can be induced by the ac field, as discussed in34–36.
Here we show that, besides BOC states, under certain driving
conditions Floquet BIC states can appear as well.

Floquet bound states in the continuum. To this aim, we considered
the lattice model of Fig. 1(a) assuming r/k 5 0.7, and numerically
computed the quasi-energy spectrum and associated Floquet
eigenstates for a few values of the ratio k/v and for a normalized
driving amplitueC spanning the interval (2, 2.8), near the DL pointC

5 2.405. The lattice comprises N 5 201 sites. To avoid lattice trun-
cation effects, periodic boundary conditions have been assumed in
the numerical analysis (see Methods). The degree of localization of
the Floquet states ju(t)æ is described by the participation ratio R(t),
which is defined as R(t) 5 Æu(t)ju(t)æ2/Æu2(t)ju2(t)æ. Note that R(t) is
periodic with period T, with R , 1 for localized modes while R , N
for extended states. For the undriven lattice, all the modes are
extended (with R , 134), and there are no signature of resonances;
see Fig. 1(b). The scenario is fully modified when the driving field is
switched on. Figure 2 shows the numerically-computed quasi-energy
spectrum and participation ratio R(t) (in a log scale) at t 5 0 of the
corresponding N Floquet modes versus the normalized forcing C for
the three values k/v 5 2, k/v 5 1 and k/v 5 0.3. The eigenmode
number of Floquet states is ordered for increasing values of the quasi
energies. An inspection of the quasi energy diagrams shows that, in
the neighborhood of the DL regime C 5 2.405, Floquet BOC emerge
in pairs, above and below the band of scattered states, which are
clearly visible as isolated dispersion curves that detach from the
continuous band of scattered states. In the participation ratio dia-
grams, the BOC modes correspond to the dark stripes at the upper
and lower boundaries of the domain. The number of field-induced
BOC states typically increases as the ratio k/v increases, according to
previous studies35. As C is pushed far from the DL condition, the
dispersion curves of the BOC states go inside the band of scattered
states, and resonance states, i.e. unbounded states which retain a
certain degree of localization, are clearly visible in the participation
ratio diagrams as darker lines internal to the domain. Examples of
BOC and resonance states are shown in Figs. 3(a) and (b),
respectively.

As BOC states are bound states with exponential decay tails as n R
6‘, resonance states show non-decaying (oscillatory) tails, which far
from the defect region (i.e. as n R 6‘) are asymptotically given by a
superposition of the forward and backward propagating plane waves
jy6p(t)æ of the ac-driven uniform lattice, defined by Eq.(2). The wave
number p of the oscillating tails is related to the quasi energy of the
resonance state via the relation ~2kJ0 Cð Þcos p. Obviously for a
resonance state, like for any unbounded state, R diverges as N R
‘. A degree of localization of a resonance state, which is independent
of the number N of lattice sites, can be defined by the ratio 1/D 5 h1/
h2 between the absolute maximum, at the reference time t 5 0, of the
site occupation probabilities jÆy (t 5 0)jnæj2, i.e. h1 5 maxnjÆy(t 5

0)jnæj2, and the maximum of the same quantity in the tails of the
mode, i.e. h2~max nj j?1 y t~0ð Þ nj ihj j2, see Fig. 3(b). A BIC state
corresponds to the limit of a resonance state with D R 0, i.e. to the

Figure 1 | (a) Schematic of an ac-driven tight-binding lattice with inhomogeneous hopping rate r , k between lattice sites | 0æ and | 61æ.
(b) Participation ratio R of the eigenstates of the undriven lattice comprising N 5 201 sites for r/k 5 0.7. The mode number on the horizontal axis is

ordered for increasing values of the energy E, from E~{2k (lower axis limit) to E~2k (upper axis limit). (c) Effective static lattice model in the

high-frequency regime. The effective hopping rates ke, a and b are given in the text by Eq.(3).
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absence of excitation of lattice sites far from the defective region.
Such a circumstance is unlikely, and indeed for a general driving
force C BIC can not be found. However, extended numerical simula-
tions showed that, at some special values of C, resonances with

extremely small values of D (D , 1026) arise, which can be regarded
as BIC states within numerical accuracy. As a general rule, like for
BOC states the number of BIC states increases as the ratio k/v is
increased, i.e. in the low-frequency regime. BIC appear in pairs, at

Figure 2 | Numerically-computed quasi-energy spectrum versus the normalized forcing amplitude C 5 F0a/v (upper panels) and corresponding
maps of the participation ratio R(t) at time t 5 0 of the N 5 201 Floquet eigenstates (lower panels) in the ac-driven lattice of Fig. 1(a) for (a) k/v 5 2,
(b) k/v 5 1, and (c) k/v 5 0.3. The mode number on the vertical axis in the lower panels is ordered for increasing values of the quasi energy E.

In the upper panels, the dispersion curves that detach from the continuous band correspond to Floquet BOC modes. The circles in the lower panels

indicate Floquet BIC states. The BIC modes are found at the forcing amplitudes C 5 1.9940, 2.3121475, 2.35972, 2.49582, 2.6815 in (a), C 5 2.2904,

2.356951, 2.5195 in (b), and C 5 2.3800, 2.42875 in (c).

Figure 3 | Behaviour of occupation probabilities | Æy(t) | næ | 2 of Floquet eigenstates at time t 5 0 (upper panels) and over one oscillation cycle
(maps in the lower panels) in the ac-driven lattice of Fig. 1(a) corresponding to (a) a BOC mode, (b) a resonance state, and (c–e) the three BIC states
labelled by letters A, B and C in Fig. 2. Parameter values are: (a,b) k/v 5 2, C 5 2.28; (c) k/v 5 2, C 5 1.9940; (d) k/v 5 1, C 5 2.5195; (e) k/v 5 0.3,

C 5 2.3800. The insets in the upper panels (c–e) show an enlargement of the tails of the BIC modes, corresponding to D 5 h2/h1 , 1026.
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quasi energies + , or as isolated states with quasi-energy ~0. In the
high-frequency regime, the number of BIC states is always 2, and
they appear as isolated states with quasi energy ~0. They are found
at two values of the driving fieldC, one below and the other above the
DL condition. The physical origin of such two BIC states will be
discussed below and related to the phenomenon of selective destruc-
tion of tunneling. As the modulation frequency is decreased, addi-
tional pairs of BIC states are generated. Specifically, the number of
BIC states found as the forcing C is spanned over the range (2, 2.8) is
two, four and eight for k/v 5 0.3, k/v 5 1 and k/v 5 2, respectively.
The locations of such BIC states are indicated by open circles in the
diagrams of Fig. 2. In Fig. 3(c), (d) and (e) we show a few examples of
the occupation probability distributions jÆy(t)jnæj2 of BIC states at t
5 0 (upper panels) and over one oscillation cycle (lower panels), in
the low [Fig. 3(c)], intermediate [Fig. 3(d)] and high-frequency
[Fig. 3(e)] regimes, corresponding to the states labelled by A,B and
C in Fig. 2.

Selective destruction of tunneling. For static Hamiltonians, several
mechanisms of formation of BIC states have been suggested,
including symmetry constraints of the system18,37 and destructive
interference of resonance modes coupled to a common conti-
nuum4. The latter mechanism is generally at the origin of BIC
modes in stationary tight-binding lattice models10,11,13,15. What is
the physical mechanism leading to Floquet BIC states observed in
the ac-driven lattice? Before answering to this question, let us first
notice that the undriven lattice model (1) does not sustain any BIC,
nor BOC modes or long-lived resonance states. Hence, the
mechanism of field-induced BIC formation is a genuine non-
perturbative effect of the time-periodic Hamiltonian, and can not
be mapped into the topology of the undriven lattice (like, for
example, in the model discussed in Ref. 21). The effect of the
driving field is to extend the effective dimensionality of the lattice
because of the different Floquet channels introduced by the ac field26.
Precisely, Floquet BIC states of the ac-driven 1D lattice model (1) can
be mapped into BIC states of a static 2D lattice model with non-
neighboring hopping rates and an effective electric field applied
along the Floquet channels, see Ref. 26. In such an effective static
2D lattice model, the appearance of BIC states can be rather generally
explained as a result of destructive interference among different
tunneling paths that enables to localize the excitation in a finite
number of lattice sites. Regrettably, the complexity of the hopping
rates in the effective 2D lattice does not permit to provide a simple
description of BIC formation. However, in the high-frequency limit
the ac-driven lattice model can be mapped into an effective static
lattice model with the same dimensionality of the undriven lattice38,
and the mechanism of BIC formation can be explained as a result of
selective destruction of tunneling that occurs at special driving
conditions38,39. In fact, in the high-frequency limit v=k?1, the ac-
driven lattice of Fig. 1(a) is equivalent to the static 1D lattice of
Fig. 1(c) with hopping rates ke, a and b given by (see Methods)

ke Cð Þ~kJ0 Cð Þ

a Cð Þ~kJ0 Cð Þ{kQ Cð Þ r2{k2
� �

b Cð Þ~rJ0 Cð ÞzrQ Cð Þ r2{k2
� � ð3Þ

where the function Q(C) is defined by Eq.(7) given in the Methods.
When C varies in the interval (2, 2.8), the function Q(C) turns out to
be negative and bounded from below, namely Q(C) . 20.305. On
the other hand, J0(C) changes sign as the DL point C 5 0 is crossed.
For r , k, it follows that there exist two values C1 and C2 of C, the
former below and the latter above the DL point C 5 2.405, at which
a(C1) 5 0 and b(C2) 5 0. The appearance of the two BIC states found
in Fig. 2(c) can be then explained on the basis of the effective lattice
model of Fig. 1(c) as a result of selective destruction of tunneling that
occurs at C 5 C1 or at C 5 C2. In fact, at C 5 C1, one has a 5 0, so

that the three sites j21æ, j0æ and j1æ are effectively decoupled from the
other lattice sites. The three eigenstates of the trimer correspond to
two BOC states and to one BIC state, namely yj i~ 1

� ffiffiffi
2
p� �

{1j i{ð
1j iÞ, which is precisely the BIC state shown in Fig. 3(e) with quasi

energy e~0. For C 5 C2, one has b 5 0, i.e. the site j0æ is effectively
decoupled from the other lattice sites. In this case the BIC merely
corresponds to the excitation localized in the j0æ lattice site, whereas
four BOC states are sustained at the boundary of the two semi-
infinite lattices decoupled from the site j0æ. Selective destruction of
tunneling provides a simple explanation of the appearance of BIC
states in the high-frequency regime, however in the intermediate or
low frequency regimes BIC Floquet states do not arise from coherent
suppression of tunneling. In fact, selective destruction of tunneling
implies that the lattice is effectively broken, and a wave packet
propagating along it is fully reflected at the lattice site where the
effective hopping rate vanishes. Indeed, this is what we observed
in the high-frequency regime, in agreement with the effective
lattice model of Fig. 1(c). In Figure 4(a) we show the numerically-
computed evolution of an initial Gaussian wave packet that
propagates along the ac-driven lattice with momentum p 5 p/2
and mean quasi-energy ~0, for k/v 5 0.3 and C 5 2.308. As
expected, the wave packet is fully reflected when it reaches the site
j22æ, because in the effective lattice model the hopping rate a
vanishes and the wave packet is forbidden to cross the lattice.
Figure 4(b) shows the numerically-computed evolution of the
same Gaussian wave packet, but in the ac-driven lattice correspond-
ing to k/v 5 2 and C 5 1.994, i.e. in the low-frequency regime. At
this forcing amplitude the lattice sustains two BIC modes, see
Fig. 2(a) and 3(c). However, as opposed to the case of Fig. 4(a), the
wave packet can propagate along the lattice, and reflection at the
defective region is rather small. This shows that the ac field does
not suppress tunneling among adjacent sites in the lattice, like in
the case of Fig. 4(a). Hence in the low-frequency regime the
appearance of Floquet BIC states is not trivially related to selective
destruction of tunneling, and the ac-driven lattice behaves effectively
as a 2D lattice with non-trivial states26.

Discussion
Transport and scattering dynamics in periodically-driven systems is
of fundamental importance in different areas of physics. In time
periodic Hamiltonians, the energy of the particle is not conserved
owing to the absorption or emission of quanta from the driving field.
This can disclose a wide range of important physical phenomena,
such as chaotic scattering and chaos-assisted tunneling, coherent
destruction of tunneling, Fano resonances, and field-induced topo-
logical insulators, just to mention a few. Here we have introduced a
new phenomenon peculiar to a time-period quantum system,
namely the appearance of Floquet bound states in the continuum.
Floquet BIC are bound (normalized) Floquet states of a time-peri-
odic Hamiltonian with a quasi energy buried in the quasi energy
spectrum of scattered (non-normalized) Floquet states. The concept
of BIC was proposed in the early days of quantum mechanics by
Neumann and Wigner in a seminal paper1, and BIC have been found
in a wide range of different physical systems, including atomic and
molecular systems, semiconductor and mesoscopic structures,
quantum dot chains, and photonic systems. However, until now
the concept of BIC was limited to time-independent Hamiltonians.
Here we have considered a widely studied time-periodic Hamil-
tonian on a lattice, which describes coherent hopping dynamics of
a quantum particle in an ac-driven one-dimensional tight-binding
lattice. Our main result is that under special driving conditions
Floquet BIC can be found in this very simple model, provided that
the periodicity of the lattice is broken by the introduction of a defect.
In the high-frequency regime, the mechanism responsible for the
appearance of Floquet BIC is selective destruction of tunneling. In
this case the BIC confines the excitation in a few lattice sites, which
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are effectively decoupled from the other lattice sites thus interrupting
the transport along the lattice. However, in the low-frequency regime
the BIC states are transparent, and the mechanism of their formation
is a nontrivial one and should be traced back to the higher dimen-
sionality of the lattice induced by the ac field. As compared to BIC in
a static lattice, the appearance or disappearance of Floquet BIC in a
periodically-driven lattice can be externally controlled by the ac field.
It is envisaged that the idea of Floquet BIC states disclosed in this
work can be extended to a wider kinds of time-periodic
Hamiltonians, thus motivating further theoretical and experimental
studies. On the experimental side, Floquet BIC states should be
observable in quantum or classical simulators of the the tight-bind-
ing Hamiltonian (1), such as ultracold atoms trapped in a periodic-
ally-shaken (accelerated) optical lattice or light transport in
periodically-curved waveguide arrays.

Methods
Numerical method. Bound Floquet states and corresponding quasi energies of the
lattice Hamiltonian (1) have been computed by expanding the vector state of the
system jy(t)æ on the Wannier basis jnæ as y tð Þj i~

P
N
n~1 cn tð Þ exp inW tð Þ½ �jni and

by numerically solving the following coupled equations for the occupation
amplitudes

i
dcn

dt
~kncnz1 exp iW tð Þ½ �zkn{1cn{1 exp {iW tð Þ½ �: ð4Þ

Equations (4) are solved over one oscillation cycle (0, T) with initial conditions cn(0)
5 dn,m, m 5 1, 2, 3, …, N. To avoid lattice truncation effects, periodic boundary
conditions have been used by assuming c0(t) 5 cN(t) and cN11(t) 5 c1(t) in Eq.(4). The
Floquet quasi energies and corresponding Floquet eigenmodes are computed from
the eigenvalues and eigenvectors of the N 3 N propagator matrix Sn,m, where Sn,m is
the value cn(T) obtained after solving Eq.(4) with the initial condition cl(0) 5 dl,m. The
degree of localization of a Floquet eigenstate is measured by its participation ratio

R(t), which is defined by R tð Þ~
P

n cn tð Þj j2
� �2

.P
n cn tð Þj j4. For unbound states, R

diverges as N R ‘, whereas it remains bound for a localized state. A resonance state is
defined as a Floquet eigenstate which is unbounded and shows oscillating (non-
decaying) tails, however excitation is preferentially localized at the defective region
near the n 5 0 lattice site. A degree of localization of a resonance state, which does not
diverges as the number N of lattice sites increases, is the ratio 1/D 5 h1/h2, where h1

and h2 are defined in Fig. 3(b). A BIC Floquet state corresponds to a resonance state
with D 5 0. In our numerical simulations, Floquet BIC states were identified with
accuracy D , 1026.

Effective stationary lattice in the high-frequency regime. In the high-frequency
limit ~k=v=1, the ac-driven 1D lattice model (1) can be mapped into an
equivalent 1D static lattice with modified hopping rates. This can be formally shown
by a multiple-time-scale asymptotic analysis of Eq.(4), after introduction of the
normalized time t 5 vt38. We look for a solution to Eq.(4) in the form of a power
series cn tð Þ~An tð Þz c 1ð Þ

n tð Þz 2c 2ð Þ
n tð Þz . . ., where the amplitudes An(t) vary on

slow time scales. Assuming a driving force C close to DL point, such that J0 Cð Þ* 2,
the evolution of the amplitudes An occurs on the slow time scale * 3t and is found by
pushing the asymptotic analysis up to the order * 338. The resulting evolution

equations for the slowly-varying amplitudes An describe an effective stationary 1D
lattice with Hamiltonian

Ĥeff ~
X

n

Dn nj i nz1h jz nz1j i nh jf g ð5Þ

where the effective hopping rate Dn between lattice sites jnæ and jn 1 1æ is given
by

Dn~knJ0 Cð Þ{Q Cð Þ knk2
nz1{2k3

nzknk2
n{1

� �
ð6Þ

and where we have set

Q Cð Þ:{ 1
�

v2
� �X

l,j=0

Jl Cð ÞJj Cð ÞJj{l Cð Þ
,

lj: ð7Þ

For the lattice of Fig. 1(a), i.e. for kn 5 k for n ? 0, 21 and k0 5 k21 5 r, the effective
static lattice, described by the Hamiltonian (5), is the one depicted in Fig. 1(c) with
effective hopping rates ke, a and b defined by Eqs.(3).
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25. Köhler, S., Lehmann, J. & Hänggi, P. Driven quantum transport on the nanoscale.
Phys. Rep. 406, 379–443 (2005).

26. Gomez-Leon, A. & Platero, G. Floquet-Bloch theory and topology in periodically
driven lattices. Phys. Rev. Lett. 110, 200403 (2013).

27. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in
semiconductor quantum wells. Nature Phys. 7, 490495 (2011).

28. Rechtsman, M. C., Zeuner, J. M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F.,
Nolte, S., Segev, M. & Szameit, A. Photonic Floquet topological insulators. Nature
496, 196200 (2013).

29. Lignier, H., Sias, C., Ciampini, D., Singh, Y., Zenesini, A., Morsch, O. & Arimondo,
E. Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev.
Lett. 99, 220403 (2007).

30. Holthaus, M. Collapse of minibands in far-infrared irradiated superlattices. Phys.
Rev. Lett. 69, 351–354 (1992).

31. Longhi, S., Marangoni, M., Lobino, M., Ramponi, R., Laporta, P., Cianci, E. &
Foglietti, V. Observation of Dynamic Localization in Periodically Curved
Waveguide Arrays. Phys. Rev. Lett. 96, 243901 (2006).

32. Garanovich, I. L., Longhi, S., Sukhorukov, A. A. & Kivshar, Y. S. Light propagation
and localization in modulated photonic lattices and waveguides. Phys. Rep. 518,
1–79 (2012).

33. Dunlap, D. H. & Kenkre, V. M. Dynamic Localization of a Charged Particle
Moving Under the Influence of an Electric Field. Phys. Rev. B 34, 3625–3633
(1986).

34. Holthaus, M. & Hone, D. Quantum wells and superlattices in strong time-
dependent fields. Phys. Rev. B 47, 6499–6508 (1993).

35. Garanovich, I. L., Sukhorukov, A. A. & Kivshar, Y. S. Defect-Free Surface States in
Modulated Photonic Lattices. Phys. Rev. Lett. 100, 203904 (2008).

36. Szameit, A., Garanovich, I. L., Heinrich, M., Sukhorukov, A. A., Dreisow, F.,
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