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A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data
among many pairs of users via a common data-transmission medium. We propose a solution by developing
a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically
encoded to spread its spectral content, and then decoded via chaos synchronization to separate different
sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple
access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used,
especially for very noisy quantum channels.

Q
Uantum networks for long distance communication and distributed computing require nodes which are
capable of storing and processing quantum information and connected to each other via photonic
channels1–3. Recent achievements in quantum information4–10 have brought quantum networking much

closer to realization. Quantum networks exhibit advantages when transmitting classical and quantum informa-
tion with proper encoding into and decoding from quantum states11–17. However, the efficient transfer of
quantum information among many nodes has remained as a problem yet to be solved18–24, which becomes more
crucial for the limited-resource scenarios in large-scale networks. Multiple access, which allows simultaneous
transmission of multiple quantum data streams in a shared channel, may provide a remedy to this problem.

Popular multiple-access methods in classical communication networks include time-division multiple-access
(TDMA), frequency-division multiple-access (FDMA), and code-division multiple-access (CDMA). See Fig. 1 for
an illustration of different multiple-access methods. In TDMA, different users share the same frequency but
transmit on different time slots, but timing synchronization and delays become serious problems in large-scale
networks. In FDMA, different users share the same time slots but operate on different frequency bands. However,
only a narrow band of the data transmission line has a low leakage rate and the bands assigned to different users
should be sufficiently separated to suppress interference. Unlike TDMA and FDMA, CDMA utilizes the entire
spectrum and time slots to encode the information for all users, while distinguishes different users with their own
unique codes. Therefore, CDMA is adopted as the key technology of the currently-used third generation mobile
communication systems, and can accommodate more bits per channel use25 compared with TDMA and FDMA.
It has achieved great success in commercial applications of classical communications.

Although FDMA has already been used in quantum key distribution networks26–30, to the best of our know-
ledge, CDMA has not yet been applied in quantum networks and internet1. A q-CDMA network would require
that the states sent by each transmitting node of the quantum network are encoded into their coherent super-
position before being sent to the common channel, and the quantum information for each of the intended
receiving node is coherently and faithfully extracted by proper decoding at the end of the common channel.
This, however, is not a trivial task but rather a difficult one.

In this paper, we propose a q-CDMA method via chaotic encoding and chaos synchronization among senders
and receivers, which require a quantum channel to transmit quantum superposition states and N classical
channels for chaos synchronization to decode the quantum signals at the receiver nodes. It can be seen that
the proposed q-CDMA provides higher transmission rates for both classical and quantum information, especially
in very noisy channels.
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Results
To present the underlying principle of our method, we consider the
simplest case, where two pairs of sender and receiver nodes com-
municate quantum information, encoded into quantized electro-
magnetic fields with the same frequencies, via a single quantum
channel [see Fig. 2(a)].

The schematic diagram of our strategy is shown in Fig. 2(b). The
quantum information sent by the nodes 1 and 2 is first encoded by
two chaotic phase shifters CPS1 and CPS2, whose operation can be
modelled by the effective Hamiltonian di tð Þ a{i ai, with di(t) being
time dependent classical chaotic signals and i 5 1, 2. This encoding
spreads the spectral content of the quantum information across the
entire spectrum. The two beams are then combined at the 50550
beamsplitter BS1 and transmitted via a common channel to the
receivers. At the end of the channel, the quantum signal is first

amplified by a phase-insensitive linear amplifier (LA), then divided
into two branches by a second 50550 beamsplitter BS2, and finally
sent to nodes 3 and 4 through two chaotic phase shifters CPS3 and
CPS4, which are introduced to decode the information by applying
the effective Hamiltonian {dj tð Þ a{j aj, with j 5 3, 4. Amplifier gain is
set as G 5 4 to compensate the losses induced by the beamsplitters.

The actions of the chaotic devices CPSi 5 1,2,3,4 induce the phase
shifts exp [2ihi(t)], where hi tð Þ~

Ð t
0di tð Þ dt. Thus, to achieve faith-

ful transmission between the senders and the receivers, the effects of
d1(t) and d2(t) on the quantum signals should be minimized in the
fields received by the nodes 3 and 4. Intuitively, this could be done by
simply adjusting the system parameters such that d1(t) 5 d3(t) and
d2(t) 5 d4(t). However, such an approach is impractical, because any
small deviation in the system parameters can be greatly amplified by
the chaotic motion, making it impossible to keep two chaotic circuits
with the same exact parameters and initial conditions. Instead, aux-
iliary classical channels between senders and the intended receivers
can be used to synchronize the chaotic circuit as shown in Fig. 2(b).
This classical chaotic synchronization helps to reduce the parameter
differences between the chaotic phase shifters and to extract the
quantum information faithfully.

Modelling of quantum CDMA network. Hereafter, for the sake of
simplicity, we assume that CPS1 (CPS2) and CPS3 (CPS4) have been
synchronized before the start of the transmission of quantum

Figure 1 | Illustration for different multiple-access methods. (a) TDMA:

the users share the same frequency at different time slots. (b) FDMA:

different frequency bands are assigned to different data-streams.

(c) CDMA: the entire spectrum is utilized to encode the information from

all users, and different users are distinguished with their own unique codes.

Each user in the network is represented by a different color.

Figure 2 | Diagrams of the quantum multiple access networks.
(a) Quantum information transmission between two pairs of nodes via a

single quantum channel. Quantum states from two senders are combined

to form a superposition state and input to the channel. At the receiver side,

they are coherently split into two and sent to the targeted receivers.

(b) Schematic diagram of the q-CDMA network by chaotic

synchronization. Wave packets from the sender nodes are first spectrally

broadened by using the chaotic phase shifters CPS1 and CPS2, and then

mixed at a beamsplitter (BS1) and input to the channel. After linear

amplification (LA) and splitting at the second beamsplitter (BS2),

individual signals are recovered at the receiver end with the help of CPS3

and CPS4, which are synchronized with CPS1 and CPS2, respectively.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2211 | DOI: 10.1038/srep02211 2



information, i.e., h1(t) 5 h3(t) [h2(t) 5 h4(t)]. The whole information
transmission process in this quantum network can be described by
the input-output relationship

a3~a1za2ei h1{h2ð Þz

ffiffiffi
6
p

2
eih1 a{LAz

1ffiffiffi
2
p eih1 aBS,

a4~a2za1ei h2{h1ð Þz

ffiffiffi
6
p

2
eih2 a{LA{

1ffiffiffi
2
p eih2 aBS,

ð1Þ

where a{LA and aBS are the creation and annihilation operators of the
auxiliary vacuum fields entering the linear amplifier LA and the
second beamsplitter BS2. For the pseudo-noise chaotic phase-shift
hi(t), we should take an average over this broadband random signal,
which leads to exp +ihi tð Þð Þ<

ffiffiffiffiffiffi
Mi
p

With

Mi~exp {p

ðvui

vli

dv Sdi vð Þ
�

v2

� �
: ð2Þ

In Eq. (2), Sdi vð Þ is the power spectrum density of the signal di(t), and
vli and wui are the lower and upper bounds of the frequency band of
di(t), respectively. Equation (1) can then be reduced to

a3~a1z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2
p

a2z

ffiffiffiffiffiffiffiffiffi
3M1

2

r
a{LAz

ffiffiffiffiffiffiffi
M1

2

r
aBS,

a4~a2z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2
p

a1z

ffiffiffiffiffiffiffiffiffi
3M1

2

r
a{LA{

ffiffiffiffiffiffiffi
M2

2

r
aBS:

ð3Þ

For a chaotic signal with broadband frequency spectrum, the factor
Mi is extremely small, and can be neglected in Eq. (3). This leads to a3

< a1 and a4 < a2, implying efficient and faithful transmission of
quantum information from nodes 1 and 2 to nodes 3 and 4,
respectively.

In our q-CDMA network, the information-bearing fields a1 and
a2, having the same frequency vc, are modulated by two different
pseudo-noise signals, which not only broaden them in the frequency
domain but also change the shape of their wavepackets [see Fig. 2(b)].
Thus, the energies of the fields a1 and a2 are distributed over a very
broad frequency span, in which the contribution of vc is extremely
small and impossible to extract without coherent sharpening of the
vc components. This, on the other hand, is possible only via chaos
synchronization which effectively eliminates the pseudo-noises in
the fields and enables the recovery of a1 (a2) at the output a3 (a4)
with almost no disturbance from a2 (a1). This is similar to the clas-
sical CDMA. Thus, we name our protocol as q-CDMA.

Quantum state transmission. Let us further study the transmission
of qubit states over the proposed q-CDMA network using a concrete
model. The qubit states { w1j i~

ffiffiffiffiffi
p1
p

g1j iz
ffiffiffiffiffiffiffiffiffiffiffiffi
1{p1
p

e1j i, and
w2j i~

ffiffiffiffiffi
p2
p

g2j iz
ffiffiffiffiffiffiffiffiffiffiffiffi
1{p2
p

e2j i, with p1, p2 g [0, 1]}, to be
transmitted are encoded in the dark states of two L-type three-
level atoms; i.e., atom 1 in cavity 1 and atom 2, in cavity 2, as
shown in Fig. 3(a). The qubit states are transferred to the cavities
by Raman transitions and are transmitted over the q-CDMA
network. At the receiver nodes, the quantum states are transferred
and stored in twoL-type atoms; i.e., atom 3 in cavity 3, and atom 4 in
cavity 4. We assume that the four coupled atom-cavity systems have
the same parameters. Let jgiæ, jeiæ, and jriæ be the three energy levels of
atom i. As shown in Fig. 3(a), the jgiæ R jriæ and jeiæ R jriæ transitions
are coupled with a classical control field and a quantized cavity field
with coupling strengths Vi (t) and gi (t). By adiabatically eliminating
the highest energy level jriæ, the Hamiltonian of the atom-cavity
system can be expressed as

Hi~gi tð Þ ci eij i gih jzc{i gij i eih j
� �

, ð4Þ

where ci is the annihilation operator of the i-th cavity mode; gi (t) 5

gVi (t)/D is the coupling strength which can be tuned by the classical

control field Vi (t); and D is the atom-cavity detuning. The cavity
fields ci are related to the travelling fields ai by

a1~
ffiffiffi
k
p

c1za1,in, a2~
ffiffiffi
k
p

c2za2,in,

a3,out~
ffiffiffi
k
p

c3za3, a4,out~
ffiffiffi
k
p

c4za4,
ð5Þ

where k is the decay rate of the cavity field; and a1,in, a2,in (both in
vacuum states) and a3,out, a4,out are the input and output fields of the
whole system, respectively.

The chaotic phase shifters CPSi 5 1,2,3,4 are realized by coupling the
optical fields to four driven Duffing oscillators, with damping rates c,
described by the Hamiltonian

HDuff ,i~
vo

2
p2

i z
vo

2
x2

i {mx4
i {f tð Þxi, ð6Þ

where xi and pi are the normalized position and momentum of the
nonlinear Duffing oscillators, v0/2p is the frequency of the fun-
damental mode, m is a nonlinear constant, and f(t) 5 fd cos (vdt)
is the driving force. The interaction between the field ai and the i-th
Duffing oscillator is given by the Hamiltonian

Hi~gf{oxia
{
i ai, ð7Þ

Figure 3 | Quantum state transmission over q-CDMA network. (a) The

broom-shaped or shovel-shaped purple symbols denote photon detectors.

The red arrow inside each (green) cavity denotes the classical driving field

with amplitude Vi(t) (i 5 1, 2, 3, 4). The green circles denote L-type three-

level atoms. (b) Schematic diagram of the chaotic synchronization realized

by the moving mirrors. (c) Chaotic encoding and decoding by electro-

optic modulators.
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where gf–o is the coupling strength between the field and the oscil-
lator. Under the semiclassical approximation for the degrees of free-
dom of the oscillator, the interaction Hamiltonian Hi leads to a phase

factor exp {i
Ð t

0gf{oxi tð Þdt
h i

for the field ai. To simplify the discus-

sion, we assume that all of the four Duffing oscillators have the same
v0, m, fd, and vd, but different initial states. Finally, the chaotic
synchronization between CPS1 (CPS2) and CPS3 (CPS4) is achieved
by coupling two Duffing oscillators by a harmonic potential V (x1, x3)
5 kI (x1 2 x3)2/2.

The nonlinear coupling between the optical fields and the Duffing
oscillators and the chaos synchronization to achieve the chaotic
encoding and decoding could be realized using different physical
platforms. For example, in optomechanical systems, the interaction
Hamiltonian (7) can be realized by coupling the optical field via the
radiation pressure to a moving mirror connected to a nonlinear
spring (see Fig. 3(b)). Chaotic mechanical resonators can provide a
frequency-spreading of several hundreds of MHz for a quantum
signal, and this is broad enough, compared to the final recovered
quantum signal, to realize the q-CDMA and noise suppression.
Chaos synchronization between different nonlinear mechanical
oscillators can be realized by coupling the two oscillators via a linear
spring. This kind of synchronization of mechanical oscillators have
been realized in experiments32, but it is not suitable or practical for
long-distance quantum communication. Chaos synchronization
with a mediating optical field, similar to that used to synchronize
chaotic semiconductor lasers for high speed secure communica-
tion33, would be the method of choice for long-distance quantum
communication. The main difficulty in this method, however, will
be the coupling between the classical chaotic light and the informa-
tion-bearing quantum light. This, on the other hand, can be achieved
via Kerr interactions. There is a recent report34 that proposes to use
Kerr nonlinearity in whispering gallery mode resonators to solve this
problem. Another approach for chaotic encoding and chaos syn-
chronization between distant nodes of the network could be the
use of electro-optic modulators (EOMs). See, e.g., Fig. 3(c). In this
case, the input information-bearing quantum signal is modulated by
the EOM driven by a chaotic electrical signal35. The EOM can prepare
the needed broadband signal, and there have been various proven
techniques of chaotic signal generation and synchronization in elec-
trical circuits. Indeed, recently experimental demonstration of chaos
synchronization in a four-node optoelectronic network was
reported36.

To show the efficiency of state transmission in q-CDMA, let us
calculate the fidelities F1 5 Æw1jr3jw1æ and F2 5 Æw2jr3jw2æ, where r3

and r4 are the quantum states received by atoms 3 and 4, and
w1j i~

ffiffiffiffiffi
p0
p

g1j iz
ffiffiffiffiffiffiffiffiffiffiffiffi
1{p0
p

e1j i and w2j i~
ffiffiffiffiffiffiffiffiffiffiffiffi
1{p0
p

g2j iz
ffiffiffiffiffi
p0
p

e2j i are
the two quantum states to be transmitted. By designing the control
parameters gi (t), using the Raman transition technique18, we find for
the particular chosen quantum states that the fidelities F1 and F2 can
be approximated as F1 5 F2 < 1 2 M. When the Duffing oscillator
enters the chaotic regime, we have M < 0, leading to fidelities F1, F2

< 1, which means that the qubit states can be faithfully transmitted
over the q-CDMA network.

We show the feasibility of the q-CDMA method using numerical
simulations with the system parameters vd/v0 5 5, gf–o/v0 5 0.03,
m/v0 5 0.25, c/v0 5 0.05, kI/v0 5 0.1, and p0 5 0.6. In Fig. 4(a), it is
seen that there are three distinct regions representing how the chaotic
motion affects the fidelity of the quantum state transmission. In the
periodic regime characterized by 0 , fd/v0 , 15, both F1 and F2

experience slight increases with increasing fd/v0, with 0.4 , F1 , 0.5
and 0.6 # F2 # 0.64. At fd/v0 5 15, the Duffing oscillator enters the
soft chaotic regime which is indicated by a positive Lyapunov expo-
nential l < 0.038 and a sudden jump in fidelities. In this regime,
delineated by 15 # fd/v0 # 33, both F1 and F2 are still below 0.7. The
dynamics of the Duffing oscillator enters the hard-chaos regime at fd/

v0 < 33, where both F1 and F2 suddenly jump to 1, which corre-
sponds to an almost 100% faithful state transmission. In Fig. 4(b), we
plot the trajectories of F1 and F2 as a function of p0 in the hard-
chaotic regime fd/v0 5 36, corresponding to M < 0.0103. It is seen
that F1 and F2 are very close to 1 2 M < 0.9897 and almost constant
regardless of the value of p0. There are small deviations from 1 2 M,
because here M2 terms are not neglected. The average fidelity
�F~ F1zF2ð Þ=2 is maximum at p0 5 1/2, which corresponds to an
equally-weighted superposition of the quantum states jw1æ and jw2æ.
In such a case, the crosstalk between the channels becomes min-
imum, inducing only a very slight disturbance on these indistin-
guishable states.

Information transmission rates. Next we consider the maximum
transmission rates of classical and quantum information over the
proposed q-CDMA network, and compare them, under certain
energy constraints, with the achievable bounds of transmission
rates in a q-FDMA network and in quantum networks without any
multiple access method (i.e., single user-pair network). Here the
classical information transmission rates are calculated in terms of
the Holevo information37,38 and the quantum information transmis-
sion rates are defined by the coherent information39–41. We assume
that the frequencies allocated to different user pairs in the FDMA
network are equally spaced such that the number of users is
maximized and cross-talks between adjacent channels are sup-
pressed. Moreover, we restrict our discussion to Gaussian channels
and Bosonic channels, respectively for the transmissions of quantum
and classical information.

We briefly summarize the main results here and in Fig. 5(a)–(c). (i)
For lossless channels (i.e., g 5 1 where g denotes the transmissivity of
the central frequency of the information-bearing field), upper
bounds of classical and the quantum information transmission rates
for the proposed q-CDMA network are higher than those of the
quantum FDMA and the single user-pair networks if the crosstalk

Figure 4 | Fidelities of quantum state transmission. (a) Fidelities F1 and

F2 versus the strength fd of the driving force acting on the Duffing oscillator

with p0 5 0.6, and t 5 2p/v0 as the unit of time. (b) F1, F2 and their average

(F1 1 F2)/2 versus p0 in the hard-chaotic region, with fd/v0 5 36. The

average fidelity is maximized at p0 5 0.5, which corresponds to | w1æ 5 | w2æ.
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in the q-CDMA is suppressed by setting M=1. (ii) With the increas-
ing number N of user-pairs in the networks, q-CDMA increasingly
performs better than the q-FDMA for classical and quantum
information. (iii) Information transmission rates for the q-CDMA
is more robust to noise. For fixed N, quantum information transmis-
sion rates of the q-FDMA and the single user-pair networks degrades
very fast to zero as the loss 1 2 g increases from zero (ideal channel)
to 1/2, whereas the q-CDMA network retains its non-zero rate even
for very noisy channels. For the classical information transmission,
the situation is similar except that the transmission rates of q-FDMA

and the single user-pair network drops to zero when g 5 0 which
corresponds to a completely lossy channel.

The robustness of the proposed q-CDMA network for noisy chan-
nel can be explained as follows. The chaotic phase shifters in the q-
CDMA network spread the information-bearing field across a broad
spectral band. Thus, the energy distributed in a particular mode is
almost negligible, and thus the photon loss is also almost negligible.
Therefore, increasing g has very small effect on the transmission
rates. In Fig. 5(b)–(c), we consider the noise to be broadband, and
shows that the transmission rates of classical and quantum informa-
tion over the q-CDMA network change only slightly.

Discussion
We have introduced a q-CDMA network based on chaotic synchron-
ization where quantum information can be faithfully transmitted
with fidelities as high as 0.99 between multiple pairs of nodes sharing
a single quantum channel. The proposed quantum multiple-access
network is robust against channel noises, and attains higher trans-
mission rates for both classical and quantum information when
compared to other approaches. A q-CDMA network based on our
proposal requires the realization of two important issues. First,
quantum interference of signals from different chaotic sources.
This has recently been demonstrated by Nevet et. al42. Second is
the implementation of chaotic phase shifters and their synchroniza-
tion. These could be implemented in various systems, including but
not limited to optomechanical, optoelectrical35, and all-optical sys-
tems33. In particular, whispering-gallery-mode (WGM) optical reso-
nators are possible platforms as chaotic behavior in a WGM
microtoroid resonator has been reported in Ref43. Although syn-
chronization of self-sustaining oscillations in directly coupled
microring resonators have been demonstrated44, and mechanical
mode synchronization in two distant resonators coupled via wave-
guides has been proposed45, demonstration of chaos synchronization
in such optomechanical resonators are yet to be demonstrated.
Although the tasks to be fulfilled are not trivial, we believe that we
are not far away from such realizations due to the rapid pace of
experimental and theoretical developments we have seen in the field
in the past few years. We think that our proposal will pave the way for
long distance q-CDMA networks, and will give new perspectives for
the optimization of quantum networks.

Methods
Averaging over the chaotic phase shift. A chaotic signal di(t) can be expressed as a
combination of many high-frequency components, i.e.,

di tð Þ~
X

a

Aia cos viatzwiað Þ, ð8Þ

where Aia, via, wia are the amplitude, frequency, and phase of each component,
respectively. Then the phase of the signal at any given time t can be written as

hi tð Þ~
ðt

0
di tð Þdt~

X
a

Aia

via
sin viatzwiað Þ:

Using the Fourier-Bessel series identity31:

exp ix sin yð Þ~
X

n

Jn xð Þexp inyð Þ,

with Jn(x) as the n-th Bessel function of the first kind, we can write

exp {ihi tð Þ½ �~P
a

X
na

Jna

Aia

via

� 	
e{inaviat{inawia

" #
:

If we take average over the ‘‘random’’ phase hi(t), the components related to the
frequencies via should appear as fast-oscillating terms and thus can be averaged out.
This treatment corresponds to averaging out the components that are far off-
resonance with the information-bearing field, and keeping only the near-resonance
components. Hence, only the lowest-frequency terms, with na 5 0, dominate the
dynamical evolution. Thus, we have

exp {ihi tð Þ½ �~P
a

J0
Aia

via

� 	� �
: ð9Þ

Since the chaotic signal di(t) is mainly distributed in the high-frequency regime, we
have Aia=via . Using the expressions J0(x) < 1 2 x2/4, log(1 1 x) < x for x=1, it is

Figure 5 | Quantum information transmission rates. (a) Fidelities F1 and

F2 versus the strength fd of the driving force acting on the Duffing oscillator

with p0 5 0.6, and t 5 2p/v0 as the unit of time. (b) Upper bounds of the

classical and quantum information transmission rates of different methods

for ideal channel with g 5 1 versus the number of the user pairs N. (c) and

(d) Upper bounds of classical (quantum) information transmission rates

of different methods for noisy channel with 0 , g , 1. The correction

factor in the q-CDMA network is M 5 0.01. FDMA is constrained by the

frequency bandwidth dv/v 5 0.2. All the methods are constrained with

the total energy E=v~1. Cg
c qð Þ,CDMA FDMAð Þ denote the classical (c) and

quantum (q) information transmission rates in q-CDMA and q-FDMA

networks with transmissivity g. The rates for the single user-pair channel

are Cg
c,sig and Cg

q,sig.
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easy to show that

P
a

J0
Aia

via

� 	
~exp

X
a

log J0
Aia

via

� 	" #

~exp {
1
4

X
a

A2
ia

v2
ia

 !

~exp {
p

2

ðvui

vli

Sdi vð Þ
v2

dv

� 	

~
ffiffiffiffiffiffi
Mi
p

,

ð10Þ

where

Mi~exp {p

ðvui

vli

Sdi vð Þ
v2

dv

� 	
:

Consequently, from Eqs. (9) and (10), we obtain the equation

exp {ihi tð Þ½ �~
ffiffiffiffiffiffi
Mi
p

: ð11Þ

Input-output relationship of the quantum CDMA network. Here we calculate the
input-output relationship of the quantum CDMA network shown in Fig. 6, we can
express the input-output relationships of the chaotic phase shifters CPSi 5 1,2,3,4 as

a’1~a1e{ih1 , a’2~a2e{ih2 ,

a3~a’3eih1 , a4~a’4eih2 ,
ð12Þ

and those of the two beam splitters BS1 and BS2 and the linear quantum amplifier
‘‘LA’’, respectively, as

a5~
1ffiffi
2
p a’1z 1ffiffi

2
p a’2, a6~

1ffiffi
2
p a’1{ 1ffiffi

2
p a’2, ð13Þ

a7~2a5z
ffiffiffi
3
p

a{LA, a8~
ffiffiffi
3
p

a{5z2aLA, ð14Þ
and

a’3~ 1ffiffi
2
p a7z

1ffiffi
2
p aBS, a’4~ 1ffiffi

2
p a7{

1ffiffi
2
p aBS: ð15Þ

Then, using Eqs. (12–15), we obtain the total input-output relationship of the
quantum network as

a3~a1za2ei h1{h2ð Þz

ffiffiffi
6
p

2
eih1 a{LAz

1ffiffiffi
2
p eih1 aBS,

a4~a2za1ei h2{h1ð Þz

ffiffiffi
6
p

2
eih2 a{LA{

1ffiffiffi
2
p eih2 aBS:

ð16Þ

where h1 and h2 are independent chaotic ‘‘noises’’ as we have not considered chaos
synchronization yet.
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34. Xiao, Y. F., Özdemir, S. K., Gaddam, V., Dong, C. H., Imoto, N. & Yang, L.
Quantum non-demolition measurement of photon number via optical Kerr effect
in an ultra-high- microtoroid cavity. Opt. Exp. 16, 21462 (2008).

35. Tsang, M. Cavity quantum electro-optics. II. Input-output relations between
traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011).

36. Williams, C. R. S. et al. Experimental observations of group synchrony in a system
of chaotic optoelectronic oscillators. Phys. Rev. Lett. 110, 064104 (2013).

37. Holevo, A. S. & Werner, R. F. Evaluating capacities of bosonic Gaussian channels.
Phys. Rev. A 63, 032312 (2001).

38. Keyl, M. Fundamentals of Quantum Information Theory. Phys. Rep. 369, 431–548
(2002).

39. Devetak, I. The private classical capacity and quantum capacity of a quantum
channel. IEEE Trans. Inf. Theory 51, 44–55 (2005).

40. Lloyd, S. Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622
(1997).

41. Shor, P. W. The quantum channel capacity and coherent information. Lecture
Notes, MSRI Workshop on Quantum Computation (2002).

42. Nevet, A., Hayat, A., Ginzburg, P. & Orenstein, M. Indistinguishable photon pairs
from independent true chaotic sources. Phys. Rev. Lett. 107, 253601 (2011).

Figure 6 | Input-output structure of quantum CDMA network. The

black dashed lines denote the desired chaotic synchronization channel. The

red lines show the quantum optical channels. ‘‘LA’’ refers to linear

amplifier. ‘‘BS’’ refers to beamsplitter. ‘‘CPS’’ denotes chaotic phase

shifter.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2211 | DOI: 10.1038/srep02211 6



43. Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-
chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203
(2007).

44. Zhang, M. et al. Synchronization of micromechanical oscillators using light. Phys.
Rev. Lett. 109, 233906 (2012).

45. Manipatruni, S., Wiederhecker, G. & Lipson, M. Long-range synchronization of
optomechanical structures. Quantum electronics and laser science Conference,
Baltimore, Maryland, May 2011.

Acknowledgements
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