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South China, composed of the Yangtze and Cathaysia Blocks and the intervening Jiangnan orogenic belt, has
been central to the debate on the tectonic evolution of East Asia. Here we investigate the crustal structure
and composition of South China from seismic data employing the H-k stacking technique. Our results show
that the composition and seismic structure of the crust in the Jiangnan orogenic belt are identical to those of
the Cathaysia Block. Our data reveal a distinct contrast in the crustal structure and composition between the
two flanks of the Jiujiang-Shitai buried fault. We propose that the Jiujiang-Shitai buried fault defines a
geosuture between the Yangtze and Cathaysia Blocks, and that the felsic lower crust of the Cathaysia Block
and the Jiangnan orogenic belt may represent fragments derived from the Gondwana supercontinent.

T
he continental assembly of China, one of the cores of East Asia, is composed of the North China Craton, the
Tarim Craton and the South China Block (Figure 1). The South China Block is composed of two sub-blocks,
the Yangtze in the NW and Cathaysia in the SE (Figure 1), which collided and amalgamated during the

Neoproterozoic, giving rise to the Jiangnan Orogen1–10. Collision zones such as this are critical to our under-
standing of orogenic process and the evolution of the continents11,12.

The South China continent abuts the western margin of the Pacific plate, and has witnessed plate subduction
beneath the China mainland13. Since Grabau14, who first coined the term Cathaysia to describe the geology of
southeastern China and part of the coastal region of West Pacific, debate has continued for over 80 years
regarding the regional tectonics13, and the spatio-temporal evolution of the Cathaysia Block14–16. Several workers
consider that the boundary (geosuture) between the Yangtze and Cathaysia Blocks is defined by the Shaoxing-
Yichun-Pingxiang fault6,17,18.

In this study, we determine bulk crustal seismic properties and use these to infer the differences in structure and
composition across the South China Block. Our study provides new seismic evidence for the precise location of
the geosuture between the Yangtze Block and Cathaysia Blocks.

Results
We used the H–k stacking method to determine the average crustal thickness (H) and the ratio of P- and S-wave
velocities (Vp/Vs ratio, or k) under each station19. This method treats the crust as a single homogeneous layer, and
constrains H and k of the crust by searching the most energetic stack of the direct Ps phase and multiples such as
PpPs, PsPs 1 PpSs of the Moho according to the predicted delays relative to the incident P wave.

Before H-k stacking was performed, a reasonable bulk crustal Vp and search range of H and k were adopted.
Based on deep seismic sounding investigation, the value of bulk crustal Vp in the study area should be approxi-
mately 6.3 km s21 20. Therefore, we assume a mean crustal P-wave velocity (VP) of 6.3 km s21 and perform H-k
stacking19,21 (search range: H 5 25–50 km; Vp/Vs 5 1.4–2.5). Finally, we obtained 251 estimates on robust crustal
thickness and Vp/Vs ratios (Table S1). The resulting bulk crustal Vp/Vs ratios range from 1.53 to 2.11 with an
average of 1.72. The Jiangnan orogenic belt and the Cathaysia Block are characterized by lower Vp/Vs ratio of
1.66–1.73, as compared to the Vp/Vs ratios of 1.74–1.79 in the SECCLMVZ (Southeast China coastal late
Mesozoic volcanic zone). The Vp/Vs ratios of 1.76–2.11 in the Yangtze Block in Northwestern part of this study
area are even higher (Figure 2, Table S1).

Our study shows that the average crustal thickness of South China is 33 km. However, locally the values vary
widely between 25.5 and 56.9 km. Thinner crust of 25.6–32 km is observed in the Jiangnan orogenic belt and the
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Cathaysia Block, with a relatively flat Moho. A thick crust of 40–
56.9 km is observed beneath the Yangtze Block in the northwestern
part of the study area (Figure 3, Table S1).

Discussion
For lower-crustal rocks, low s (,0.26) (Vp/Vs,1.75), intermediate s
(0.26–0.28) and high s (.0.28) (Vp/Vs.1.81) are characteristic of
felsic, intermediate and mafic compositions21–23,25, respectively. If the
bulk value of the entire crust is s.0.28, the lower crust must have a
value of ,0.30 and therefore, the low Poisson’s ratio (s 5 0.25) for
the Mesozoic-Cenozoic crust is considered to indicate a predomi-
nantly felsic compostion21. The VP/VS values are around 1.73 for
felsic rocks, whereas for mafic rocks, this value tends to be greater
than 1.7322–24. The values of bulk crustal Vp/Vs ratio are slightly less
than that of lower crustal Vp/Vp ratio (about 0.02 or so)21,22,24,25.
Therefore, we can use bulk crustal Vp/Vs ratio to estimate the lower
crust Vp/Vs ratio24,26.

The distribution of bulk crustal Vp/Vs ratio indicates that the
Jiangnan orogenic belt and the Cathaysia Block are characterized
by felsic lower crust and the Yangtze Block by intermediate and
mafic-ultramafic lower crust21,25. Notably, the bulk Vp/Vs ratio in
the Jiangnan orogenic belt is lower than 1.70, which might be related
to the collisional orogenesis. The similar crustal thickness on both
sides of Shaoxing-Jiangshan-Pingxiang fault implies that the moun-
tain root has been completely lost, or that the lower crust delamina-
tion beneath the Jiangnan orogenic belt was more intense, leading to
the lower Vp/Vs values. The late Mesozoic coastal volcanic zone in
Southeast China shows dominantly intermediate lower crust21,25, and
the narrow distribution of these strips might reflect deep-seated
magmatism associated with tectonic processes.

The distribution of the Vp/Vs presented here indicates that along
the boundary of the Jiujiang-Shitai buried fault, there is a marked
difference between the Jiangnan orogenic belt, the Cathaysia Block
and Yangtze Block. The distribution of crustal thickness also assigns
the Jiangnan-Shitai buried fault as the major boundary, with the
crustal thickness increasing northwards in the Yangtze Block. The
crustal thickness in the Jiangnan orogenic belt and the Cathaysia
Block shows minor change laterally with a smooth variation of the
Moho28 (Figure 3 and Figure 4). The depth domain profiles from our
study at various stations bring out the presence of an important
boundary in crustal structure between the BJT and AST (profile 1),
HOJ and YOZ (profile 2), TAY and YIY (profile 3), and XNI and
DUC stations (profile 4). Notably, this boundary line almost pre-
cisely coincides with the Jiangnan-Shitai buried fault. In figure 4, the
crust beneath the Jiangnan orogenic belt and the Cathaysia Block
along the red lines is characterized by a simple crustal structure. In
contrast, the crust above the red lines, relating to the Yangtze Block, is
dominantly featured by a complex crustal structure. A relatively large
offset, of around 5 km, exists on both sides of the Jiujiang-Shitai
buried fault above and below the red (or yellow) lines.

Our results clearly indicate the absence of prominent differences
in crustal structure on the two flanks of the Shaoxing-Jiangshan-
Pingxiang fault (Figure 2, Figure 3, and Figure 4: above and below
the dotted line). However, the Jiangshan-Shitai buried fault
obviously defines an important boundary based on crustal composi-
tion and structure (Figure 1, Figure 2, Figure 3, Figure 4, Figure 5).
Therefore, we propose that the Jiangshan-Shitai buried fault defines
the boundary between the Yangtze and Cathaysia Blocks.

Recent studies have proposed that all the East and SE Asian
continental terranes/blocks were directly or indirectly derived from
the eastern margin of the Gondwana supercontinent29. There is

Figure 1 | The distribution of seismic stations in South China and the general tectonic framework. F1: Shaoxing-Jiangshan-Pingxiang fault, F2:

Zhenghe-Dapu fault, F3: Tanlu fault, F4: Xiangfan-Guangji fault, F5: Lu’an fault, F6: Longmenshan fault, F7: Jiujiang-Shitai buried fault27; P1, P2, P3 and

P4: profile, blue font: the seismic stations at the profiles; black triangle: seismic stations; SECCLMVZ: Southeast China coastal late Mesozoic volcanic

zone. Inset figure (right-upper corner): Distribution of selected event. For each event-station pair, data were selected within the distance ranges of 30u–95u
(The figure is generated using Generic Mapping Tool (http://gmt.soest.hawaii.edu/) by Chuansong He).
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increasing evidence to consider the South China block, including the
Yangtze Block, as an integral part of East Gondwana in early
Palaeozoic, rather than as a discrete continental block in the
Palaeo-Pacific or a fragment of Laurentia30–33. If this model is true,
the Jiangnan orogenic belt and the Cathaysia Block, with broadly
consistent crustal characteristics and thickness, might represent frag-
ments from the Gondwana assembly.

An active continental-margin model, with the subduction of the
paleo-Pacific plate beneath the South China Craton, has been
invoked in several studies to account for the extensive magmatic zone
in southeastern China during the Mesozoic3,34–38. This has led to the
popular concept that the Mesozoic low-angle subduction of the
Pacific Plate has played a major role in the thinning of the South
China Land Mass39,40.

Subduction and collision tectonics may generate local topography
on Moho which may survive for a long time41,42. The dipping Moho
topography is considered as an indication of the remnants of deep
collision and subduction43. Our studies show little lateral variations
in crustal thickness and a flat Moho in the Cathaysia block and
Jiangnan orogenic belt. These results do not support the model of
low-angle subduction of the Pacific Plate and resultant crustal
thinning.

Delamination refers to the loss and sinking of the portion of the
lower crust and (or) the lowermost lithosphere from the tectonic
plate to which it was attached. This can occur when the lower crust
and (or) the lower portion of the lithosphere becomes denser than the
surrounding mantle. Because of the instability of higher density (e.g.
thickening lower crust) material above lower density material, the
lower crust and (or) the lower lithosphere separates from the tectonic
plate and sinks into the mantle44–46, which results in asthenospheric

upwelling into the space previously occupied by thickened litho-
sphere. Flow of hot mantle material encounters the base of the thin
lithosphere and often results in melting and a new phase of volcan-
ism44–46.

Since the Mesozoic, the South China region has been located at the
center of a triangular area surrounded by westward subduction of the
Pacific plate (Cenozoic, about ,50 Ma), northward subduction of
the India Plate beneath the Eurasia Plate (Cenozoic, about ,50 Ma),
and collision of the North and South China blocks along the Central
China Orogen (Permian-Triassic, about 290–250 Ma)28. This region
(including the Yangtze and Cathaysia blocks) thus marks the frontier
of a super-convergent regime. Within the super-convergence
domain, the compressional structures in the center of the South
China Block are mainly characterized by shortening, thrusting and
decollement47.

The collision between the Yangtze and Cathaysia Blocks generated
a thick lithospheric root in the Hercynian-Indosinian period (409–
205 Ma). Subsequently, in Yanshanian (208–135 Ma), delamination
and asthenospheric upwelling led to extensive lithospheric extension
and thinning48,49. The collision between the Yangtze and the
Cathaysia Block in the Triassic as well as crustal detachment of the
eastern Yangtze Block might have led to the thickening of lower crust
and delimanition50.

The lower Vp/Vs ratio in the bulk lower crust of the Jiangnan
orogenic belt and Cathaysia Block might suggest deep process such
as lower crustal delamination, which resulted in the dominantly felsic
lower crust21,25,26 beneath the Jiangnan orogenic belt and Cathaysia
Block. Therefore, we favor lower crustal delamination of the
Cathaysia Block and crustal thinning associated with mantle upwel-
ling44–46,51 as the most plausible scenario to explain the extensive

Figure 2 | Distribution of Vp/Vs ratios in South China. F1: Shaoxing-Jiangshan-Pingxiang fault, F2: Zhenghe-Dapu fault, F3: Tanlu fault,

F4: Xiangfan-Guangji fault, F5: Lu’an fault, F6: Longmenshan fault, F7: Jiujiang-Shitai buried fault27; P1, P2, P3 and P4: profile; black triangle:

effective data point; SECCLMVZ: Southeast China coastal late Mesozoic volcanic zone (The figure is generated using Generic Mapping Tool

(http://gmt.soest.hawaii.edu/) by Chuansong He).
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magmatic activity in this region. A recent S receiver function study
indicates lithospheric thinning in Southern China52, which supports
the delamination model for this area53,54. Therefore, we consider that
the lower crust/lithosphere delamination55 beneath the Cathaysia
Block might have led to lithospheric thinning in this area and the
surrounding regions.

In summary, we envisage the following processes: (1) tectonic
thickening of the crust and lithosphere by convergence; (2) astheno-
spheric upwelling and infiltration of the lithosphere; (3) subsequent
weakening of the lithosphere by this infiltration, resulting in delami-
nation of the lower crust and mantle. The thickened lower crust was
eclogitic, hence denser than the underlying mantle. The geosuture
between the Yangtze and Cathaysia Blocks is defined by Jiujiang-
Shitai buried fault. The Cathaysia Block, dominated by felsic bulk
lower crust21,24,25, is probably a fragment of the Gondwana super-
continent. The large offset between the Yangtze and Cathaysia
Blocks lends support to the notion of collisional assembly of these
two discrete blocks (Figure 6).

Methods
Teleseismic receiver functions56 are very sensitive to the S-wave velocity beneath the
station and have proven to be a useful tool for estimating crustal thicknesses and Vp/
Vs ratios beneath individual seismic stations19,57,58. The P-to-S converted phase at the
Moho and the first reverberated phases in the crust are generally apparent in the
receiver function waveforms, and their relative travel times can then be employed to
constrain the crustal thickness and the bulk Vp/Vs ratio below the recording sta-
tion21,57. Deciphering the geological evolution of the Earth’s continental crust requires
knowledge of its bulk composition and global variability21. Average Vp/Vs or
Poisson’s ratio (s 5 0.5[12((Vp/Vs)221)21]), can be used to complement petrolo-
gical studies of crustal composition58.

This study performs a careful analysis of the receiver functions in South China, in
order to characterize the bulk seismic properties of crust with local estimates for the

crustal thickness and Vp/Vs ratio19,21. For this purpose, we apply the stacking pro-
cedure of Zhu and Kanamori19 (2000) to 281 seismic stations located in South China
(Figure 1).

These stations have been in operation between from July 2008-present. We selected
a total of 424 events with magnitude mb $ 6.0 recorded by those stations59 (Figure 1
and Table S2). For each event-station pair, data were selected within the distance
ranges of 30u–95u and initially windowed 15 s before and 120 s after the P-wave pick.
Only signals with a good signal-to-noise ratio and a clearly identifiable P-wave arrival
were used. Data are filtered using a zero-phase Butterworth bandpass filter with
corner frequencies of 0.03–3 Hz.

In our study we use a modified frequency domain deconvolution56,60, which is
implemented by dividing the spectrum R(v) of the teleseismic P waveform by the
source spectrum S(v):

r tð Þ~ 1zcð Þ
ð

R(v)S�(v)

S vð Þ2zcs2
0

�� �� e{v2

4a2 eivtdv ð1Þ

Where S*(v) is the complex conjugate of S(v), the Gaussian-type low-pass filter

e{v2 4a2= is added to remove high-frequency noise. The quantity cs2
0 is used to suppress

‘‘holes’’ in the spectrum S(v), thus stabilizing the deconvolution where r(t) is the
radial receiver function. The 1 1 c factor is used to compensate the amplitude loss due
to the water level19. In this study, the Gaussian factor and water level were set to 3 and
0.01, respectively.

The time separation between Ps and P can be used to estimate crustal thickness,
given the average crustal velocities,
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Where p is the ray parameter of the incident wave and the crustal velocity is given, we
can obtain the thickness estimation; however, one problem is the trade-off between
the thickness and crustal velocities.

H~
tPpPsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
V2

s
{p2

r
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V2
p
{p2

s ð3Þ

Figure 3 | Distribution of crust thickness. F1: Shaoxing-Jiangshan-Pingxiang fault, F2: Zhenghe-Dapu fault, F3: Tanlu fault, F4: Xiangfan-Guangji fault,

F5: Lu’an fault, F6: Longmenshan fault,F7: Jiujiang-Shitai buried fault27; P1, P2, P3 and P4: profile; black triangle: effective data point, SECCLMVZ:

Southeast China coastal late Mesozoic volcanic zone (The figure is generated using Generic Mapping Tool (http://gmt.soest.hawaii.edu/) by

Chuansong He).
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The trade-off influence can be reduced by using the later phases, which provide
additional constraints. The precise crustal H and Vp/Vs ratios can be estimated by (3)
and (4)19,21.

The stacking is usually done in the time domain for a cluster of events60. We
propose a straightforward H-k domain stacking defined as below:

s H,kð Þ~w1r t1ð Þzw2r t2ð Þ{w3r t3ð Þ ð5Þ

Where r(t) is the radial receiver function, t1,t2 and t3 are the predicted Ps, PpPs and
PpSs 1 PsPs arrival time corresponding to crustal thickness H and Vp/Vs ratios (ratio
k), as given in (2)–(4). The wi are weighting factors, and

P
wi 5 1. The s(H,k) reaches

a maximum when all of these phases are stacked coherently with the correct H and k21.
Here, we chose unequal weights (0.6, 0.3 and 0.1) for Ps, PpPs and PpSs 1 PsPs phases

of the Moho, respectively. Using the Taylor expansion of s(H,k) at the maximum and
omitting the higher-order terms, one gets the variances of H and k:
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Where ss is the estimated variance of s H,kð Þ from stacking19. On the other hand,
the study shows that the uncertainty of H is ,0.5 km for a 0.1 km/s uncertainty in
Vp19.

To quantitatively estimate the uncertainty of our results, we measured error bars
for h and k of the profile 2, which line up with longitude, by taking into account
uncertainties (Figure 5). Their uncertainties are estimated using (6) and (7)19. Here we
show two examples of H-k stacking computed at two stations located at the study area
(Figure S1).

Figure 4 | Profiles in the depth domain. P1: profile 1, P2: profile 2, P3: profile 3, P4: profile 4. Blue lines: the crust-mantle boundary of the Yangtze

block, yellow lines: the crust-mantle boundary of the Jiangnan orogenic belt and the Cathaysia block, dotted line: the boundary between the Jiangnan

orogenic belt and the Cathaysia block, yellow dotted line: Jiujiang-Shitai buried fault. The red line on all profiles almost precisely coincides with the

Jiangnan-Shitai buried fault except for profile 2. The Jiangnan orogenic belt and the Cathaysia Block are characterized by a relatively flat Moho. The large

offset between the Yangtze and Cathaysia Blocks lends support to the notion of collisional assembly of these two discrete blocks (The figure is generated

using Generic Mapping Tool (http://gmt.soest.hawaii.edu/) by Chuansong He).

Figure 5 | Blue dots and error bar represent the best estimates of crustal thickness (h) and Vp/Vs ratios (k) and errors of profile 2 in the H–k stacking of
receiver function. (a) Crustal thickness with error bars. (b) Vp/Vs ratios with error bars. Yellow arrow: Jiujiang-Shitai buried fault. Red arrow: the

boundary between the Yangtz and Cathaysia Block from this studies, dotted arrow: the boundary between the Jiangnan orogenic belt and Cathaysia block

(The figure is generated using Generic Mapping Tool (http://gmt.soest.hawaii.edu/) by Chuansong He).
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We migrate the receiver functions to depth using the iasp91 velocity model61. The
amplitude itself is proportional to the velocity or, more precisely, the impedance
contrast at that location. Based on it, we converted the time domain receiver functions
into the depth domain after corrections for the incidence angle effect (correcting the
move out of Ps conversions to same incidence or near vertical incidence)62.

By stacking all depth domain receiver functions from different backazimuths at
each station respectively, we obtain the average receiver function at each station
(multi-events to stack their receiver function)60. The average (stacked) receiver
function can clearly delineate Moho interface which is usually the largest discon-
tinuity63. We then get a rough estimation of the Moho depth variation beneath each
station from the average receiver function (Figure S2–S3).
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