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The optical behavior of gradient biaxial dielectrics has not been widely explored in the literature due to their
complicated nature, but the extra degrees of freedom in the index tensor have the potential of yielding useful
optical instruments which are otherwise unachievable. In this work, a design method is described in detail
which allows one to combine the behavior of up to four totally independent isotropic optical instruments in
an overlapping region of space. This is non-trivial because of the mixing of the index tensor elements in the
Hamiltonians; previously known methods only handled uniaxial dielectrics (where only two independent
isotropic optical functions could overlap). The biaxial method introduced also allows three-dimensional
multi-faced Janus devices to be designed; these are worked out in an example of what is possible to design
with the method.

I
t is remarkable in modern optics that there is still no general method of designing a gradient index device when
presented with a desired optical behavior and the correct form of the Hamiltonian, even in the isotropic case.
However, much can be learned from the case of spherical symmetry, where general design methods do exist,

both for isotropic and uniaxial cases1,2. Spherically symmetric lenses are also of wide interest because of their
unique ability to work equally well in all directions, and it stands to reason that there exist a number of spherically
symmetric lenses that are ‘‘named’’ because of their great utility, viz. Maxwell’s Fisheye3, the Eaton Lens4, the
Luneberg Lens5, the Invisible Sphere1,2, the Pendry Cloak6, and the Miñano Lens7, to name just a few. Spherical
symmetry is also important because ray Hamiltonians have the same form in all orthonormal coordinate
systems8,9, so results in Hamiltonian optics in this system can often be generalized to other coordinate systems.
In this work, we explore the design of gradient-permittivity biaxial dielectrics in this special system, which is much
more complicated than it may first seem: although the permittivity tensor contains only three diagonal elements,
they are not separable in the Hamiltonians that determine the ray trajectories8—light traveling through a biaxial
device will generally be affected by all three gradient index tensors, resulting in long and complicated
Hamiltonians. This occurs because light polarization can be continuously rotated in such a device. Though
complex, biaxial optical instruments represent a potentially important way to achieve certain kinds of function-
ality in optics that would otherwise be impossible. In this work, for example, it will be shown that one can take any
four independently-chosen spherically-symmetric lenses and combine their optical functions in an overlapping
spherical region of space with a single biaxial lens, with each function assigned to a specific polarization and set of
planes. We define ‘‘optical function’’ here to include the behavior of any possible lens or optical instrument
that can be designed with an isotropic permittivity. (Note that this is extremely general, since it encom-
passes anything that can be defined by a spatially-dependent refractive index profile.) Due to the mixing of
the tensor elements, it will also be shown that four is the maximum number of independent isotropic lens
functions that can be combined. If more lens functions were desired in an overlapping region of space, symmetry
would be broken.

A successful attempt to combine two optical functions into a single device with uniaxial symmetry was
previously shown in2 and such a device was realized experimentally in10. The work of2 was also general: it
combined arbitrary lens functions in overlapping physical space (where light entering an arbitrary point of a
lens may interact with the entire body of the lens, for all points on the lens) and it is this generality that made the
finding significant. In2, through a regressive formulation on the basis of transformation optics, a new degree of
freedom was induced into a dielectric uniaxial medium to make two polarizations do two different tasks simul-
taneously, while maintaining spherical symmetry. Lenses could be rotated arbitrarily without altering light
trajectories at all. But unfortunately the integration over the physical extent of the device to determine the
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transformation function in2 is not always convergent. And even in
the converging cases, that method can provide only one transforma-
tion function for each pair of functionalities which means that
method remains somewhat limited from an experimental point of
view.

The design method to be introduced here relaxes that constraint
somewhat, and can be readily applied to improve existing designs in
metamaterials. For example, devices designed with transformation
optics1,6,11 require a nonunity magnetic permeability resulting in either
loss or sacrifice of device functionality for one polarization2,12–15, but
this polarization can be ‘‘recovered’’ with the biaxial method to take
on new optical functions. Biaxial dielectrics could potentially be fab-
ricated by creating composite materials (asymmetric air inclusions in
glass, for example) that have practically no loss or dispersion at optical
wavelengths. The field of dielectric device design, with no need for
metals or chirality, remains rich for exploration.

Another application of the biaxial method is to build upon inter-
esting existing work in the area of ‘‘Janus’’ devices16, where two-
dimensional dielectric devices having two different optical functions
in two different directions can be made. The authors of16 employed
transformation optics in two vertical directions independently and
by invoking a quasi-conformal mapping technique11, they achieved a
nearly isotropic permittivity profile for their Janus device. However,
the designed metadevice, like almost all transformation optics
devices, was limited to only one polarization and furthermore is
restricted to only a few permissible optical functions. Here, we extend
this work to three dimensions and encompass both polarizations.

In this report, we summarize the biaxial method and then describe
it with two design examples. We first find and then factor the
Hamiltonian into two terms which are responsible for trajectories
of light rays in a plane of interest in a spherical system. Taking
advantage of the factorization, we examine the light rays in two
orthogonal planes with respect to all possible polarizations, and
relate the desired optical functions to the (non-independent) permit-
tivity tensor elements through careful spatial sorting of the rays by
polarization. The first design example is to combine four isotropic
lenses into one biaxial lens. We combine these lenses: an Eaton Lens,
a 135-degree universal ray rotator, a 90-degree universal ray rotator,
and an Invisible Sphere. Any lenses could have been chosen. The
second design example is to create a three dimensional polarization-
independent two-faced Janus device comprising an Eaton lens at one
face and an Invisible Sphere at the other. It should be noted that all of
our chosen lenses to be combined contain singularities in their ori-
ginal index profiles (they were chosen for simplicity); hence, the
resulting permittivity tensor will also contain singularities.

Results
We start with a standard spherical coordinate system. In a sphere the
principle planes are the equatorial and polar planes. The latitudinal
plane which slices the sphere into northern and southern hemi-
spheres is the equatorial plane and the longitudinal planes which
cross the north and south poles are called the polar planes. These
two plane sets and the basis vectors at their boundaries are shown in
Figure 1. It should be noted that in any sphere, we have a unique
equatorial plane and infinite number of polar planes. It is along these
two orthogonal sets of planes where, for each of two polarizations, we
will prescribe lens functions. Based on the factorization of the
Hamiltonian of the biaxial dielectric media, one can control the
ray trajectories for each polarization (in-plane and out-of-plane)
with respect to an orthogonal plane set of the meta-device; the set
of principal planes is a convenient choice. Before describing the
design details of the design process, it is worth understanding the
two example results.

The first designed spherical meta-device is presented in Figure 2.
Note that although two spheres are shown in Figures 2(c) and 2(d),
respectively, it is just a single device with rays for different polarizations

illustrated. The sphere (radius R 5 1) has three concentric layers of
radial thicknesses 0.51, 0.34 and 0.15 from the innermost to the out-
ermost layer, respectively. As seen in Figure 2(c), for the in-plane
polarizations all incoming rays are sorted into the middle layer and
are bent by 90 degrees or 180 degrees within this layer in the equatorial
or polar planes, respectively. For out-of-plane polarizations in
Figure 2(d), all incoming rays are sorted into the innermost layer
and are deflected by 360 or 135 degrees along equatorial or polar
planes, respectively. In aggregate we have four different lens functions
implemented simultaneously in orthogonal planes comprising the
entire sphere. The design method is complicated by the necessary
sorting of rays by polarization, and ensuring that correct sorting is
maintained for all planes.

Of course, the example just described is polarization-sensitive by
design. If we would instead like to obtain a two-faced Janus device
that works for unpolarized light, it is just necessary to equate the in-
plane and the out-of-plane polarization functionalities along each of
the equatorial and polar planes. Shown in Figure 3(c) are the ray
paths for such a Janus device along the equatorial plane, where each
incoming ray splits into two polarizations at R 5 0.85, travel in
different paths along the plane, recombine again, and exit with 360
degrees deflection. This splitting and recombining is necessary to
make the device work for arbitrary functions along the polar planes:
Figure 3(d) shows that in a polar plane, each unpolarized ray splits
into in-plane and out-of-plane polarized rays, recombines, and
achieves 180 degrees deflection. It should be noted that as the profiles
of the device are radially symmetric, the in-plane and out-of-plane
polarized rays are confined to their own equatorial and polar planes1.
The obtained profile indices for this Janus device are given in
Figure 3(a) and Figure 3(b). We now describe how such lenses can
be designed in general.

Discussion
It is known that in general the permittivity tensor e of a reciprocal
medium is symmetric and therefore we can always find a specific
orthonormal coordinate system (i.e. principle coordinate system)
in which the permittivity tensor can be written in the form of a
diagonal matrix. So in the principle coordinate system x1,x2,x3f g,
for a dielectric (i.e. permeability equal to one, m 5 1) biaxial
medium we have

e~diag n2
1, n2

2, n2
3

� �
ð1Þ

where n1, n2 and n3 are the refractive indices along the principle
axes and diag refers to the diagonal tensor elements. According to
the generalized method presented in9, the Hamiltonian of a biaxial
medium in the principle coordinate system is of the form
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Figure 1 | (a) Illustration of equatorial and polar planes in a sphere (the

solid circle is the equatorial plane and the dashed circles are polar planes);

(b) alignments of basis vectors along equatorial and polar planes.
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where ki (i 5 1,2,3) are the components of the wave vector. The
form of Equation (2) already illustrates why it is difficult to design
devices in biaxial dielectrics – the ray trajectories essentially depend
on all three indices simultaneously. One could not design a biaxial
device by independently choosing the three indices, for example, as
the resulting sphere would give unpredictable ray trajectories. The
Hamiltonian in a biaxial medium is of degree four for each ki and
hence in the wave vector domain it constructs a special surface
which intersects each axis at four conjugate points. This surface,
which is sometimes called the wave surface or optical indicatrix8, is
the combination of a sphere and an oval. Due to the structure of the
wave surface, an incident ray splits into two refracting rays at the
interface of a biaxial medium (double refraction), though in some
instances they may overlap or become evanescent. It should be
recalled that, as discovered by Hamilton17 at the diabolical points18,
where there is a degeneracy in the direction of the normal to the
Hamiltonian surface, conical refraction occurs and a cone of rays
appears within the medium. However, we can factor the
Hamiltonian into two terms which have nontrivial roots.
Following the method of Born and Wolf8 with detailed algebraic
steps provided in the Supplementary Information, we can express
the Hamiltonian as

~ a b c ð3Þ

where for a, b and c we have
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In equation (5), the positive branch is for b and the negative is for
c, where k2~k2

1zk2
2zk2

3. At diabolical points, we have b~

c~0 and the ray trajectories cannot be defined. Essentially the
Hamiltonian surface is now divided into outer and inner shells.
The features of these two shells as well as the whole Hamiltonian
surface are depicted in Figure 2S of the Supplementary Information.

In the factored form, the Hamiltonian is broken into two terms
b and c which individually describe either of the two orthogon-

ally-polarized rays along a plane of interest and therefore by manip-
ulating these two terms it is possible to control the ray trajectories.
( a is just a prefactor.) Unfortunately along any arbitrary plane, the
factored expressions in Equation (5) are complicated. However,
along principle planes (i.e. one of ki vanishes) of the biaxial medium
the factored terms b and c turn out to be simpler, so it is con-
venient choice for setting the lens functions. Even along these planes,
however, the expressions share many terms and in order to control
the ray trajectories, we cannot simply play with the permittivity
elements ad hoc to achieve our desired lens functions, as random

Figure 2 | (a,b) Index profiles for nr , nh and nw. The middle and the inner layer radii are 0.85 and 0.51, respectively. The profile nr within the inner

layer is undefined, as it has no role in the shown functionalities. (c) The performance of the device for the in-plane polarization along polar (red rays)

and equatorial (blue rays) planes. (d) The performance of the device for the out-of-plane polarization along polar (red rays) and equatorial (blue rays)

planes.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2055 | DOI: 10.1038/srep02055 3



guessing may not lead to interesting functions for all polarizations.
To get around this problem, we make use of transformation optics to
open space in the physical domain (the principle planes) for correct-
ing the paths of the rays with the out-of-plane polarizations, while the
opened space cannot be seen by the in-plane polarizations. This
corresponds to the sorting-by-layer described above. Although we
believe this method can work in any orthogonal coordinate geo-
metry, we will now use the spherical coordinate system as a specific
example frame to depict the validity of this method.

According to Figure 1(b) the Hamiltonian of a biaxial dielectric
medium with permittivity tensor e~diag er~n2

r ,eh~n2
h,ew~n2

w

n o
in a spherical geometry along the equatorial and polar planes can be
written as

equatorial~ k2
r zk2

w{n2
h

� �
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r {n2
w

� �
n2

r

� �
ð6Þ

polar~ k2
r zk2

h{n2
w

� �
k2

hn2
hz k2

r {n2
h

� �
n2

r

� �
ð7Þ

where ~k~êrkrzêhkhzêwkw is the wave vector. It should be noted
that we assume our spherical device is radially symmetric, i.e.
ni~ni rð Þ where i~r,h,w, and the sphere radius is R 5 1. The device
radius could always be changed, and all the equations and parameters
would be rescaled accordingly. Equation (6) indicates that along
the equatorial plane, one ray (with the out-of-plane polarization)
behaves like it would in an isotropic medium of index nh (the first
factor), and the other ray with the in-plane polarization behaves as if

it were in a complicated singly refracting medium influenced by both
nr and nw (the second factor). For polar rays (equation (7)), it is as if
there were an isotropic medium nw (the first factor) and another
complicated medium of nr and nh (the second factor). Indeed four
different functions can theoretically be achieved for equatorial and
polar rays, but only through careful design because the four terms
share some of the permittivity tensor elements.

Methods
Transformation optics is used to open a hole of radius a at the center of the sphere to
have some space to correct the ray trajectories for the out-of-plane polarizations. Now
suppose for the in-plane polarizations we would like the spherical device to offer
function ‘‘A’’ for equatorial rays and function ‘‘B’’ for polar rays. And also suppose
that these two functions can be individually implemented via isotropic and radially
symmetric index profiles. Let us take the isotropic profiles of functions A and B as
ne(r) and np(r), respectively, where these two profiles are assumed to be impedance
matched with the vacuum at the boundary. Considering ne(r) and np(r) as virtual
indices, if we employ transformation functions rrw~rrw Rð Þ and rrh~rrh Rð Þ, where
0ƒrrwƒ1 and 0ƒrrhƒ1 refer to virtual space along equatorial and polar planes
respectively and aƒRƒ1 denotes the physical space, then after normalization we
have

e~diag n2
r ~n2

e

rrw

R

� �2
~n2

p
rrh

R

� �2
, n2

h~n2
p

drrh

dR

� 	2

, n2
w~ n2

e

drrw

dR

� 	2
( )

ð8Þ

Similar to2, as we would like to work with dielectrics, we let m~ 1,1,1f g in physical
space. From the first expression in (8), we obtain nerrw~nprrh leading to
dne(r)=dr r~1j ~dnp(r)



dr r~1j . Not any arbitrary pair of profiles satisfy this equality.

In order to overcome this obstacle, we break each of the ne(r) and np(r) profiles into
two layers; outer layers r1ƒrƒ1 with similar profile indices and inner layers
0ƒrƒr1 with different profile indices. The outer profile should be designed so that

Figure 3 | (a,b) The profile indices nr , nh and nw for the Janus device. In this design, the middle and the inner layer radii are 0.85 and 0.45, respectively.

(c) The ray trajectories for in-plane (brown rays) and out-of plane polarizations (black rays) along the equatorial plane. (d) The ray trajectories

for in-plane (brown rays) and out-of plane polarizations (black rays) along polar planes.
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incoming rays all spiral into the inner layer. Any function which is equal to one at r 5

1 and larger than 1/r in the range r1ƒrƒ1 can do the job for the outer layer2. In order
to design the profile indices within the inner layers, we use an implicit integral
equation derived from conservation of angular momentum19–21 (see Supplementary
Information). Then afterwards, with careful choice of transformation functions rrw

and rrh, we open a hole at the center of the inner layer into which the out-of-plane
polarized rays should spiral. Since the out-of-plane rays are governed by nw and nh

along polar and equatorial planes, respectively, we should have

nw Rð Þ, nh Rð Þw 1
R

for avRvr1 ð9Þ

Then considering two other arbitrary functions like ‘‘C’’ and ‘‘D’’ for the out-of-
plane polarized rays along equatorial and polar planes, we can calculate the required
turning angles for each function and resort to the implicit integral equation method
again to find nh(R) and nw(R) in the region 0vRƒa. It should be said that nr in the
range 0vRƒa remains unchosen and can be any well-defined mathematical func-
tion, as it plays no role in the functionalities of the device along equatorial and polar
planes. It also turns out that one cannot design arbitrary functions for other planes
through the sphere, as they will influence choices already made for the index profiles
in a dependent way. Additional explanation is in the Supplementary Information.

In conclusion, the general Hamiltonian for biaxial dielectric media was factored
into two terms. On the basis of this factorization and with the use of transformation
optics, a method of designing a radially symmetric biaxial dielectric device was
described which allows one to simultaneously combine four isotropic lens functions
in an overlapping spherical region. This is the greatest number of arbitrary isotropic
lens functions that can be accommodated in a biaxial dielectric medium while
maintaining symmetry. Because of this maximum functionality, the method may help
to alleviate some problems traditionally associated with the use of transformation
optics in dielectric media (no wasted polarizations) and aid future existence proofs on
the possibility or impossibility of certain lens types.

Based on the method described, a Janus device having two different lens functions
for unpolarized light along equatorial and polar plane ‘‘faces’’ was designed. The
developed method of making use of biaxiality in dielectrics may lead to other inter-
esting and useful optical devices in the future.
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