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Finding appropriate systems with a large spin splitting of metallic surface-state band which can be fabricated
on silicon using routine technique is an essential step in combining Rashba-effect based spintronics with
silicon technology. We have found that originally poor structural and electronic properties of the
Au=Si 111ð Þ

ffiffiffi
3
p

|
ffiffiffi
3
p

surface can be substantially improved by adsorbing small amounts of suitable species
(e.g., Tl, In, Na, Cs). The resultant surfaces exhibit a highly-ordered atomic structure and spin-split metallic
surface-state band with a momentum splitting of up to 0.052 Å21 and an energy splitting of up to 190 meV at
the Fermi level. The family of adsorbate-modified Au=Si 111ð Þ
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surfaces, on the one hand, is thought
to be a fascinating playground for exploring spin-splitting effects in the metal monolayers on a
semiconductor and, on the other hand, expands greatly the list of material systems prospective for
spintronics applications.

G
eneration of spin-polarized electrons on the basis of Rashba spin splitting in the two-dimensional
electron-gas systems on semiconductors is considered to be an essential step in developing semi-
conductor spintronics applications1. To reach the goal, three requirements have to be satisfied as follows.

First, spin splitting should be large enough to allow operations of the device at room temperature. Second, the
surface-state band has to be metallic to allow significant spin transport. Third, the substrate should be a semi-
conductor as a large bulk current in metallic substrate would sweep off the surface spin signal. In addition, due to
device application reasons it is highly desirable that the substrate would be a silicon, the most widely used
semiconductor material. The last demand is that the structure could be easily fabricated using routine technique,
e.g., molecular beam epitaxy.

The last decade has been marked by the step-by-step progress in this direction. The surface Rashba effect was
first found on the metal surfaces like Au(111)2,3 and Bi(111)4,5 and a giant spin splitting was detected on Bi-
covered Ag(111)6,7. The latter finding indicates that a large spin splitting is possible (and even enhances) when
only a monolayer of a heavy element is placed on a surface of a light element. This discovery stimulated expanding
the search area to semiconductor surfaces such as Si and Ge covered by heavy-metal monolayers. Large Rashba
splitting has been found on Bi/Si(111)8–10, Bi/Ge(111)11, Tl/Si(111)12,13, and Pt/Si(110)14 surfaces but it occurs in
the non-metallic surface-state bands. The first metal/semiconductor reconstruction with a spin splitting of
metallic surface-state band found was the Pb=Ge 111ð Þ
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15,16 followed by the Au=Ge 111ð Þ
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17–19.
As indicated in Ref. 15, the spin-splitting effect does not depend on any peculiar property of Ge, hence it seems
possible to realize a similar electronic structure on a Si surface. In this respect, the Au=Si 111ð Þ
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recon-
struction is thought to be a promising candidate as its atomic arrangement (described by the conjugated
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honeycomb chained-trimer (CHCT) model20,21 (see Fig. 1e)) is sim-
ilar to that of the Au=Ge 111ð Þ
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22,23 and a strong Rashba-type
spin-orbit splitting in it has already been predicted theoretically21.
Substantial Rashba effect observed for self-assembled Au nanowires
on vicinal Si surfaces24,25 also supports the suggested prospects of the
Au/Si material systems. However, the structural and electronic prop-
erties of Au=Si 111ð Þ
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surface are actually poor due to a pres-
ence of random domain walls. Fortunately, the breakthrough way
was found to improve the surface, namely, adding small amount of In
eliminates completely domain walls26 and enhances metallic surface
band filling27. It has been recognized that after the transformation the
basic CHCT structure of the original Au=Si 111ð Þ
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surface is
preserved, while the indium adsorbate forms a 2D gas of adatoms on
it21,26,27.

In the present study, we have revealed that the above effect is not a
peculiar feature of only In, but is a common trait for a set of adsorbate
species (e.g., Na, Cs, and Tl). Scanning tunneling microscopy (STM)
and low-energy electron diffraction (LEED) observations have
shown that adsorption of each above mentioned species onto the
Au=Si 111ð Þ

ffiffiffi
3
p

|
ffiffiffi
3
p

produces a homogeneous well-ordered surface.
In addition, angle-resolved photoelectron spectroscopy (ARPES)
and spin-resolved ARPES data as well as first-principles calculations
clearly demonstrate occurrence of the well-defined metallic surface-
state band with a large spin splitting. Thus, finding such a family of
adsorbate-modified Au/Si(111) systems (having the same
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reconstruction) paves a way to combine Rashba-effect based spin-
tronics with a silicon technology.

Results
Figure 1a illustrates structural and electronic properties of the pris-
tine Au=Si 111ð Þ
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surfaces. One can see that the main char-
acteristic structural feature of the surface is a disordered meandering
domain-wall network28. Such a surface displays the
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LEED
pattern with cloudlike diffraction streaks in between
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spots27,29. As
for its electronic properties, the surface is known to be metallic29, but
its metallicity is not strongly expressed: the surface-state spectral

features are smeared due to the domain walls and electron filling
of the metallic S1 surface band is rather low, ,0.1 electrons per unit
cell27. In the ARPES spectra, the S1 band is invisible in the first surface
Brillouin zone (SBZ) (Fig. 1a) and its faint traces can be detected only
in the higher SBZs27.

Adding 0.15 6 0.05 ML of Tl, In, Na or Cs atoms to this surface
produces strong effect on its structure, namely, the domain walls
disappear and homogeneous well-ordered surface forms (Fig. 1b–d,
upper panel). Consequently, a sharp
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LEED pattern without
any other features develops (not shown). STM observations reveal
that the adsorbed species are present at the surface as adatoms which
are mobile at room temperature but can be frozen at fixed positions
by cooling the sample down to ,100 K (except for Cs atoms which
motion is frozen only at ,30 K).

ARPES observations demonstrate that upon adding adsorbates
(Fig. 1b–d, lower panel) all spectral features of the initial
Au=Si 111ð Þ
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surface are preserved but become noticeably
sharp due to removal of domain walls. All bands are shifted down
towards the higher binding energy and the well-defined metallic S1

surface state band develops (being clearly seen even in the first SBZ).
Electron filling of the S1 band increases three to seven times (up to
,0.3–0.7 electrons per unit cell). Next important feature is that the
metallic S1 surface state is split. The splitting being modest along the
�C-�K direction becomes substantial along the �C- �M direction (Fig. 2a).
To reveal a spin-split character of the metallic surface states, we have
performed the spin-resolved ARPES measurement on Tl-adsorbed
system. Figure 2b shows the spin-resolved energy distribution curves
of SA

1 and SB
1 subbands at kjj 5 0.30 Å21 (here and below we refer

inner and outer subbands as SA
1 and SB

1 , respectively). This result
clearly shows that the S1 state is spin-split and the spin orientations
are opposite in A and B subbands.

Figure 3 summarizes the results for various adsorbate species. All
spectra have a qualitatively similar appearance but the splitting value
varies. Momentum splitting at the Fermi level Dkjj ranges from
,0.018 Å21 obtained for Cs to that of ,0.052 Å21 for Tl.
Consequently, energy splitting DEF changes in the range from

Figure 1 | Adsorbate-induced transformations in structural and electronic properties of Au/Si(111). STM images and ARPES spectra taken in the firstffiffiffi
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surface Brillouin zone (SBZ) along the M-C0-M direction from (a) pristine Au=Si(111)
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surface and the same surface after adsorption of

0.15 6 0.05 ML of (b) Tl, (c) In, and (d) Na. Scale of the STM images is 250 3 250 Å2, that of the insets is 50 3 50 Å2. Note that ARPES data are confined to

the interior of SBZ as exact position of the M point is at 0.546 Å21. (e) Atomic arrangement (CHCT model) of the Au=Si(111)
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surface consisting

of Au trimers (shown by orange circles) and Si trimers (shown by blue circles) residing on Si(111) bilayer (shown by black circles) and sketch of reciprocal

space geometry with boundaries of the first
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SBZ given by black lines (dashed hexagon depicts the 1 3 1 SBZ). The high symmetry points are

marked by circles.
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,100 meV to ,190 meV. From the graph shown in Fig. 3b one can
conclude that the splitting value is essentially controlled by position
of the Fermi level, i.e., by the electron filling of the S1 band. The
concept is illustrated in Fig. 3c where the experimental dots from
Fig. 3b are superposed on the SA

1 and SB
1 dispersion curves of the

calculated band structure. One can see that by choosing appropriate
adsorbate species the Fermi level position can be tuned within the
range of ,350 meV (shown by the pink shaded area in Fig. 3c).
Position of Fermi level also varies slightly depending on concentra-
tion of a given adsorbate.

Figure 4a shows the ARPES Fermi surface of the Tl-adsorbed
Au=Si 111ð Þ
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. One can clearly see the two Fermi contours
of which the outer (corresponding to the SB

1 band) has an almost

circular shape while the inner (corresponding to the SA
1 band) has a

shape of a smoothed hexagon. As the hexagon corners lies at the �C-�K
directions, these are the directions of the minimal splitting, while the
greatest splitting is at the hexagon sides (i.e., along the �C- �M direc-
tions). One can see that the calculated constant energy contours
(Fig. 4b) properly reproduce all the principal features of the experi-
mentally derived Fermi surface map. The only small deviation that
can be noticed is the discrepancy between the calculated and experi-
mental splitting along the �C-�K direction where theory yields slightly
underestimated value (Fig. 4c).

Figure 4b also shows the clockwise and counterclockwise spin
helicity for the inner and outer contours, respectively, with abrupt
change of the sign for out-of-plane spin component at the �C{�K

Figure 2 | Splitting of dispersion curves measured by ARPES and spin-resolved ARPES. (a) Band structure along the M-C-K of the Tl-adsorbed

Au=Si(111)
ffiffiffi
3
p

|
ffiffiffi
3
p

surface determined with spin-unpolarized ARPES. Data are confined to the interior of SBZ as exact positions of the M and K points

are at 0.546 Å21 and 0.630 Å21, respectively. (b) Spin-resolved ARPES spectra taken for the same surface at a fixed k | | 5 0.30 Å21 in the C-M direction.

Figure 3 | Effect of adsorbate species. (a) Fragments of the ARPES spectra taken in the C-M direction near the Fermi level of the Tl-, In-, Na-, and Cs-

adsorbed Au=Si(111)
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surfaces. (b) Momentum splitting at the Fermi level Dk | | plotted as a function of the Fermi wave vector kF for SA
1 and SB

1
bands measured for various species (as indicated in the graph). (c) Calculated band structure along the M-C-K with the experimental dots from (b)

superposed on the SA
1 and SB

1 dispersion curves. Surface state bands are shown by filled yellow circles, shaded region indicates projected bulk bands. Range

of the varied Fermi level position is indicated by the pink shaded area.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1826 | DOI: 10.1038/srep01826 3



directions, which is intrinsic feature of the Rashba-split surface states
at hexagonal surfaces12. The detailed spin texture is illustrated in
Fig. 4d. Figure 4d (upper panel) shows the azimuthal dependencies
of in-plane components in the tangential and normal directions to
the SA

1 and SB
1 Fermi contours. One can see that tangential compo-

nents for both bands demonstrate a very similar behavior with sharp
maxima in the �C-�K directions and wide minima around the �C- �M
directions. The normal component (a signature of the Dresselhaus
term) is small for the inner SA

1 band but it becomes noticeable for the
outer SB

1 band and demonstrates an undulating behavior. Maximal
deviation of the in-plane spin component from a purely tangential is
,3u and ,16u for the SA

1 and SB
1 subbands, respectively. For both

bands, the out-of-plane z component (Fig. 4d, lower panel) remains
almost constant in the wide area near the �C- �M directions and
abruptly changes its sign going through zero while crossing the
�C-�K directions. As a result, spin has a fully in-plane alignment there.
The calculations have also revealed that changing the Fermi level
position affects the spin texture of the S1 band. Upon the downward

shift of the Fermi level from its highest position, corresponding to Tl-
adsorbed surface to its lowest position obtained on Cs-modified Au/
Si(111) surface (see pink stripe in Fig. 3c) the maximal deviation of
the in-plane spin component from a purely tangential increases up to
,24u for the SB

1 subband while that for the SA
1 subband remains ,3u.

At the same time this shift of the Fermi level leads to decreasing
maximal out-of-plane spin tilt angle from , 68(63)u to , 64(53)u
for the outer(inner) subband.

Discussion
Our results show that chemically very different species, alkali metals,
Na and Cs, and heavy group-III metals, In and Tl, when being
adsorbed onto the Au=Si 111ð Þ
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surface, affect its structural
and electronic properties in a very similar way, namely, eliminate
domain walls and donate electrons to the metallic S1 surface state
band. DFT calculations for In-adsorbed surface26 showed that
removal of domain walls is due to a stress-relieving effect produced
by In adsorption. However, origin of this effect was not disclosed.

Figure 4 | Fermi surface and spin texture. (a) Symmetrized Fermi surface of the Tl-adsorbed Au=Si(111)
ffiffiffi
3
p

|
ffiffiffi
3
p

surface determined with ARPES. The

k-space area where the ARPES measurements were carried out is outlined by a dashed blue line. (b) Constant energy contours at energy marked by dashed

blue line in Fig. 3c. Arrows along the contours and their length indicate the in-plane spin component. The out-of-plane spin component is indicated by

the colour with red and blue corresponding to the upward and downward directions, respectively. White colour indicates fully in-plane spin alignment.

(c) Azimuthal dependence of the Fermi wave vector kF for the SA
1 and SB

1 bands. Experimental and calculated data are presented by dots and solid lines,

respectively. (d) Azimuthal dependencies of the spin components, including in-plane components in the directions tangential and normal to the Fermi

contour (upper panel) and out-of-plane component (lower panel).

www.nature.com/scientificreports
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Typically, surface lattice stress changes when foreign atoms become
incorporated directly into the lattice and the greater the size differ-
ence between the host and foreign atoms the greater the stress. This
typical scenario is apparently not held for the present case where
foreign adatoms are not incorporated into the lattice and their atomic
size does not play a decisive role. As an alternative, we suggest that
adsorbates can affect the surface lattice stress by donating electrons
to the substrate surface layer. As a result, the top layer possesses a
non-compensated charge which means adding a Coulomb repulsion
term into the interactions between surface atoms, hence changing the
surface stress.

We have found a number of adsorbate species (Tl, In, Na, and Cs)
which make the Au=Si 111ð Þ
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surface suitable for observing
significant spin-orbit splitting. We believe that the list of such adsor-
bates can be extended (at least, at the expense of the left alkali metals).
The main requirements for candidate species seem to be as follows.
First, they are metals that could easily donate a sufficient amount of
electrons to the surface state band. This could be attained with spe-
cies like monovalent alkali metals with high electropositivity and/or
species having several valent electrons, as Group-III metals. In this
respect, it is worth noting the very recent finding that extra Au or Ge
atoms produce a similar doping effect on Au=Ge 111ð Þ
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sur-
face30, thus extending further the list of possible candidate species.
Second, they have to preserve the original Au trimer structure (which
is believed to be responsible for the spin-splitting effect18) or, in other
words, they should not form 2D alloys with Au on Si(111) surface.
For example, in contrast to In and Tl, the other group-III metals, Al
and Ga, are not suitable, as they form binary reconstructions with Au,
Au,Alð Þ=Si 111ð Þ3
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31, (Au,Al)/Si(111)2 3 231, and
Au,Gað Þ=Si 111ð Þ3
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.
As the list is open, many species are expected to produce a similar

effect on the structure and electronic properties of the Au=Si 111ð Þffiffiffi
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surface. However, similarity does not mean identity, that
makes the family of adsorbate-modified Au=Si 111ð Þ
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recon-
structions to be a promising playground for exploring spin-splitting
effects as a function of structural parameters tuned by adsorption of
particular species. On the other hand, they represent a wide set of
surface systems for the choice of the proper ones for spintronic device
applications.

Another degree of freedom for tailoring electronic properties
stems from ability to intermix Si and Ge into a desired SixGe1–x alloy
layer. Though Si and Ge are akin elements and their
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-Au
reconstructions have the same atomic arrangement, their electronic
structures exhibit essential differences. While the Au=Si 111ð Þffiffiffi
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surface has a single metallic S1 band, the Au=Ge 111ð Þffiffiffi
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surface in addition to the electronic S1 band has the hole
bands dispersing up to the Fermi level17,18. The spin textures of the S1

bands for these surfaces are similar but also not identical, namely,
contribution of the Dresselhaus terms for the Au=Ge 111ð Þ
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is substantially greater19. Thus, the variable Au=SixGe1{x 111ð Þffiffiffi
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surfaces might be a new interesting object for exploring
spin-splitting effects in metal monolayers on semiconductor.

Methods
Sample preparation method. The STM and ARPES experiments were performed in
an ultra-high-vacuum system with a base pressure of ,2.0 3 10210 Torr. Atomically-
clean Si(111)7 3 7 surfaces were prepared in situ by flashing to 1280uC after the
samples were first outgassed at 600uC for several hours. Pristine Au=Si 111ð Þ
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surfaces were formed by Au deposition onto Si(111)7 3 7 surface held at ,600uC.
The adsorbate-modified Au/Si(111) surfaces were prepared by adsorbing 0.15 6

0.05 ML of a given species, In, Na or Cs, onto the surface held at ,350uC. Due to
significant desorption, deposition of Tl was performed at room temperature followed
by annealing at ,350uC. Adsorbate deposition was terminated when STM shows
domain-wall-free surface and LEED displays a sharp
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pattern without any
other features.

STM. STM images were acquired using Omicron variable-temperature STM-XA
operating in a constant-current mode. Electrochemically-etched W tips and
mechanically cut PtIr tips were used as STM probes after annealing in vacuum.

ARPES and spin-resolved ARPES. ARPES measurements were conducted in the
ultrahigh vacuum chamber Omicron MULTIPROBE using VG Scienta R3000
electron analyzer and high-flux He discharge lamp (hn 5 21.2 eV) with toroidal-
grating monochromator as a light source. Spin-resolved ARPES and part of ARPES
measurements were performed at the novel SR-ARPES facility of RGL at BESSY,
U125-2_SGM beamline using VG Scienta R4000 analyzer with Mott detector
operating at 25 keV.

First-principles calculations. Our calculations were based on DFT as implemented
in the Vienna ab initio simulation package VASP32,33, using a planewave basis and the
projector augmented-wave approach34 for describing the electron-ion interaction.
The generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof
(PBE)35 has been used for the exchange correlation (XC) potential. The Hamiltonian
contains the scalar relativistic corrections, and the spin-orbit interaction (SOI) was
taken into account by the second variation method as has been implemented in VASP
by Kresse and Lebacq36. To simulate the

ffiffiffi
3
p

|
ffiffiffi
3
p

-CHCT reconstruction we use a slab
consisting of 12 bilayers. Hydrogen atoms were used to passivate the Si dangling
bonds at the bottom of the slab. Both bulk Si lattice constant and the atomic positions
within the three topmost bilayers of the slab were optimized including SOI
self-consistently. The silicon atoms of deeper layers were kept fixed at the bulk
crystalline positions.
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34. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979
(1994).

35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

36. Kresse, G. & Lebacq, O. The VASP manual. http://cms.mpi.univie.ac.at/vasp/
vasp/vasp.html. Retrieved April 22, 2013.

Acknowledgements
Part of this work was supported by the Russian Foundation for Basic Research (Grant Nos.
11-02-98515r, 12-02-00416, 12-02-00430 and 12-02-31745), the Ministry of Education and
Science of the RF (Grant Nos. 8022, 8581, 2.8575.2013 and 2.1004.2011), NSh-774.2012.2,
the Basque Country Government, Departamento de Educación, Universidades e
Investigación (Grant No. IT-366-07), the Spanish Ministerio de Ciencia e Innovación
(Grant No. FIS2010-19609-C02-00), German-Russian Interdisciplinary Science Center
(G-RISC) funded by the German Federal Foreign Office via the German Academic
Exchange Service (DAAD) and Helmholtz Zentrum Berlin fur Materialien und Energie for
support within a bilateral Program ‘‘Russian-German Laboratory’’ at BESSY-II. We thank
S.S. Tsirkin for help with graphical presentation of results. D.U. and A.F. acknowledge
support from SPbU grant.

Author contributions
D.V.G. and L.V.B. carried out ARPES and STM under the support of A.A.Y. and A.Y.T.
L.V.B., D.U., O.V. and A.F. carried out ARPES and spin-resolved ARPES at BESSY-II with
guidance from D.V.V. S.V.E. and E.V.C. carried out the theoretical calculation. D.V.G.,
A.V.Z. and A.A.S. analyzed the data and wrote the manuscript with input from S.V.E. and
E.V.C. and conceived and coordinated the project.

Additional information
Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Bondarenko, L.V. et al. Large spin splitting of metallic surface-state
bands at adsorbate-modified gold/silicon surfaces. Sci. Rep. 3, 1826; DOI:10.1038/
srep01826 (2013).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1826 | DOI: 10.1038/srep01826 6

http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
http://creativecommons.org/licenses/by-nc-nd/3.0

	Large spin splitting of metallic surface-state bands at adsorbate-modified gold/silicon surfaces
	Introduction
	Results
	Discussion
	Methods
	Sample preparation method
	STM
	ARPES and spin-resolved ARPES
	First-principles calculations

	Acknowledgements
	References


