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Compressive sensing is considered a huge breakthrough in signal acquisition. It allows recording an image
consisting of N2 pixels using much fewer than N2 measurements if it can be transformed to a basis where
most pixels take on negligibly small values. Standard compressive sensing techniques suffer from the
computational overhead needed to reconstruct an image with typical computation times between hours and
days and are thus not optimal for applications in physics and spectroscopy. We demonstrate an adaptive
compressive sampling technique that performs measurements directly in a sparse basis. It needs much fewer
than N2 measurements without any computational overhead, so the result is available instantly.

C
omputational ghost imaging (CGI) is a novel imaging technique that has received significant attention
during the last few years1. It is a consequent further development of conventional ghost imaging2,3 which
allows to record spatially resolved images using a detector without spatial resolution. In conventional

ghost imaging the image is recorded using two spatially correlated light beams, one object and one reference
beam. The object beam illuminates the object to be imaged and is then collected using a bucket detector. The
reference beam never interacts with the object and is recorded using a pixelated device offering spatial resolution.
As both beams are spatially correlated the coincidence count signal allows one to retrieve a ghost image of the
object. Ghost imaging using both entangled photons2 or classical light4–6 as the spatially correlated twin beam
source has been demonstrated. A seminal paper by Shapiro7 clarified that the sole purpose of the reference beam
lies in determining the illumination pattern at the object position at each instant, while the object beam gives data
about the transmission of this pattern through the object. Therefore, if one can create a deterministic illumination
pattern at the object position, the reference beam becomes obsolete and CGI using just a single beam and a single
pixel detector8 becomes possible. This approach has been realized using deterministic speckle patterns created
using a spatial light modulator (SLM)9. It has also been demonstrated that this technique also offers the possibility
to perform compressive sensing10,11, that is it is possible to reconstruct an image consisting of N2 pixels using much
less than N2 measurements by utilizing the fact that natural images are typically sparse12: When transformed to an
appropriate basis, they contain many coefficients that are zero or close to it. In practice, the transmission
measured for each speckle pattern constitutes a projection of the object image and compressive sensing is
performed by utilizing an algorithm which checks all the possible images which are consistent with the projec-
tions performed and finds the image which is the sparsest one. Usually the L1-norm serves as a measure of sparsity
and the image which minimizes it, is the optimal reconstruction of the object. However, this method still has some
drawbacks. The time taken by the reconstruction algorithm can become very long for large images and one needs
to compute the speckle pattern at the object position by using the Fresnel-Huygens propagator on the phase
pattern imprinted on the SLM. While the latter is not a big problem - one can calculate the speckle pattern once
and reuse the phase pattern masks - the computational overhead, given by the computational effort once all
measurements have been made, is a huge problem. The overhead becomes especially problematic considering
typical problems in spectroscopy (e.g. pump-probe spectroscopy), where many similar images need to be taken,
while one experimental parameter is changed. Here, it is desirable to have the reconstructed image directly, so one
can use this information when taking the next image. For example one could adaptively scan the previous image
for regions of large values or strongly varying values and scan these areas with higher resolution in the next image.

Results
The adaptive compressive CGI algorithm. We demonstrate an alternative way to perform compressive CGI
(CCGI) without any computational overhead once all measurements have been performed by using an adaptive
measurement scheme. We follow a promising strategy for adaptive compressive sensing that suggests replacing
the random speckle patterns by directly using the patterns that form the sparse basis13. We start the discussion of
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our strategy by recalling the properties of the 2D Haar wavelet
transform of square images consisting of N 3 N pixels. The
wavelet decomposition procedure is schematically depicted in
figure 1. The decomposition of the image I (x, y) is performed
seperately for rows and columns. At first each row is divided into
N
2

pairs of adjacent pixels. The partial wavelet transform T9(x, y) now

consists of the sum and the difference of these adjacent pixels

according to the following rules for xv

N
2

:
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Repeating that procedure for each column in T9 according to

similar rules for yv
N
2

gives the full transform T(x, y):
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The resulting transform now consists of four quadrants. The
upper left quadrant represents a coarse version of the original image,
while the other three quadrants contain information about hori-
zontal, vertical and diagonal edges. One may now continue and
perform another wavelet transform on the upper left quadrant and
iteratively repeat this procedure until the pixel in the upper left
corner contains the mean intensity of the picture and all other pixels
contain information about edges. Now each additional transform
performed corresponds to a coarser scale j with wavelet coefficients
spanning over larger regions, but carrying information over a smaller
range of frequencies. Such wavelet representations are efficient in
terms of image compression. Only a small portion of natural images
consists of edges and only wavelet coefficients corresponding to
regions with sharp edges are large, therefore only few large coeffi-
cients are sufficient to approximate the full image. As can be seen in
figure 1, the number of large wavelet coefficients (shown in white) is
rather small.

This strategy becomes interesting as the wavelet transformation is
hierarchic. Every parent coefficient at some coarse scale has four
children coefficients at the next finer scale covering the same spatial
region. As it is very likely that the children wavelet coefficients
belonging to parent coefficients which are small will also be small,
this offers a great opportunity for image compression in terms of
wavelet trees14 by cutting of these trees at an adequate scale. We
follow a similar strategy and first take a coarse image of size
N
j

|
N
j

. Experimentally, this is realized by inserting a phase-only

SLM (Holoeye-Pluto) in the path of a laser beam polarized such that
the SLM only introduces a phase shift to it. The phase pattern
imprinted on the SLM is the Fourier transform of a square super-
posed with the phase map of a lens. As a consequence, in the focal
plane behind the SLM the square is recovered in the spatial intensity
pattern of the light beam. We precomputed 87040 of such phase
patterns using an iterative numerical technique based on the adapt-
ive-additive algorithm15. 65536 of these form the pixels of a 256 3

256 ( j 5 1) pixel square. The other patterns form the pixels of
squares of the same size, but consisting of fewer (128 3 128
( j 5 2), 64 3 64 ( j 5 3) and 32 3 32 ( j 5 4)), but larger pixels of
size 2(2( j21)), respectively. The object to be imaged is placed at the focal
plane of the SLM ( f 5 36 cm) and the transmission through that
object is measured. Under the conditions used throughout the manu-
script, the whole square has a side length of 32 mm. When the coarse
image is taken, we perform a one-step wavelet transform on it. Now
we check the absolute values of the wavelet coefficients correspond-
ing to edges against a predefined threshold Ij. If the values are larger
than Ij, the four children wavelet values at the next finer scale j 2 1 are
measured too. As each wavelet coefficient spans over exactly four
pixels at its scale, it is never necessary to perform more than four
measurements in real space to determine any wavelet value. Once all
the measurements at the finer scale have been performed, a new finer
image can be constructed. It consists of the newly measured trans-
mission values for regions containing sharp edges and of the trans-
mission values already measured at a coarser scale for regions
without edges. Now another one-step wavelet transform is per-
formed on this finer image and again all wavelet values are checked
against a new threshold Ij21. This process is repeated until the finest
picture at scale j 5 1 is constructed. A summary of the imaging
process is presented in fig. 2.

Experimental results. We tested the CCGI algorithm using a metal
plate containing twelve holes as a test target. We chose to use a
threshold which becomes sharper at finer scales (Ij21 5 2Ij) and
varied the initial threshold I4, resulting in images of differing
quality. The results are shown in figure 3. Here the transmission
maps quantized to 256 greyscales are shown in terms of the
decreased acquisition rate a, which is the total number of
measurements performed on all scales divided by the total number
of pixels present on the finest scale (N2 5 65536). The transmission is
normalized to the empty space transmission to account for possible
inhomogeneities introduced by the SLM. As can be seen, the image is
reproduced quite well at relatively small a. At around 2% the quality
is already sufficient for distinguishing the holes and counting their
number. For a around 4% the image already looks reasonable. For a
around 7% the recorded image shows good quality. For larger a only
small improvements are seen. However, to get a more quantitative
measure of the recorded image quality, we calculated the mean
squared error

s2~
1

N2

X
i,j

T x, yð Þ{R x, yð Þ½ �2 ð5Þ

of the measured image as compared to the reference construction
drawing R(x, y) of the metal plate containing the holes. Results are
shown in figure 4. The impression that the image quality does not
improve significantly for a . 7% is verified. The mean squared error
roughly follows an exponential decay and saturates approximately at
a value of 0.055 for large a. A closer examination of this residual error
shows that it is mainly caused by the edges of the holes. In contrast to
the construction drawing, the edges between full transmission and
zero transmission are not positioned at pixel borders. Therefore the
pixels at the edges show some intermediate transmission and
introduce some deviations from the reference image. The number
of necessary measurements needed for near optimal reconstruction
of an image obviously depends on the number of large wavelet

Figure 1 | 512 3 512 pixel baboon test image (left panel) and its one-step
(middle panel) and complete (right panel) wavelet transform. For the

transform absolute values of the wavelet coefficients are shown. White

regions correspond to large wavelet values and mark regions with strong

edges. Every wavelet coefficient at scale j contains information about four

pixels of the coarse image of size
N
j

|
N
j

. Also, every wavelet coefficient has

four children wavelet coefficients at scale j 2 1 which contain information

about the same range of the image.
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coefficients that image carries. In order to demonstrate the adaptivity
of our technique, we kept the threshold setting used for measuring
the metal plate at a 5 0.131 in figure 3 and imaged a more complex
object - a 1951 USAF resolution test chart. The recorded image is
shown in figure 5. The image quality is still good, but the algorithm
automatically took almost three times more measurements than were
needed for the metal plate, resulting in a 5 36.9%. The image
resolution is reasonable. One pixel has a length of about 125 mm
in real space which is roughly the size of the lines on the test plate
which can still be resolved. Nevertheless the image shows some
artifacts. These are a consequence of a weakness of the algorithm
used. Strictly periodic structures like several parallel lines placed next
to each other may look like having no edge at all at a coarser scale.
However, such problems may be overcome by more advanced
algorithms relying on taking more than just the parent wavelet

value into account when deciding on whether a certain wavelet
value should be measured or not13.

Our technique offers a wide range of advantages. As it is adaptive,
one has control over the quality of the image in advance by choosing
the thresholds. The algorithm does not require any additional com-
putationally intensive recovery algorithms needed for standard
compressive sensing techniques using pseudorandom illumination
patterns. Our technique works reasonable fast. The SLM can be
operated at up to 60 Hz. Photodiodes and readout circuitry working
on the same timescale are common today, opening up the possibility
to record images of reasonable resolution and quality within few
minutes. In particular experimental techniques requiring single pixel
detectors like lock-in detection for sensitive pump-probe measure-
ments may benefit from our results. Spatially resolved measurements
are to the best of our knowledge not carried out with high resolution

Figure 2 | Summary of the CCGI scheme. First, a low resolution real space image is taken (upper right panel). The wavelet transform of that image is

created (middle left panel). Large wavelet coefficients are shown in white, small ones in black. For each wavelet coefficient larger than the chosen

threshold, its four children coefficients are determined. See the upper left panel for exemplaric parent (capital letters) and corresponding children

wavelets (corresponding lower case letters) across different scales. The measurement of a children wavelet coefficient requires four real space

measurements at a finer scale. After all target wavelet coefficients at the finer scale are measured (middle right panel), the procedure continues with the

next finer scale until the target scale j 5 1 is reached or no wavelet coefficient is larger than the threshold value (lower left panel). The result is then

converted back to a real space image using the inverse wavelet transform (lower right image). For this example the number of measurements needed is

roughly 40% of the number of pixels present in the image. Note that the upper right, lower left and lower right sector of the wavelet transform correspond

to horizontal, vertical and diagonal edges, respectively. Wavelet coefficients have been multiplied by 8 to enhance contrast.
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using such techniques due to the long measurement durations that
would be needed. Reducing the number of necessary measurements
by a factor of at least fifteen opens up the way to perform such
measurements with high spatial resolution. If the duration of the
measurement is more crucial than the image quality, our approach
also allows one to perform a fixed number of finer measurements for
a preset number of largest wavelet coefficients at each scale instead of
using thresholds. In that way it is possible to take an image in a fixed
amount of time.

Discussion
In conclusion we have developed an adaptive CCGI technique
that allows us to record images using a single pixel camera at an

acquisition rate fifteen to twenty times below the Shannon limit by
recording the image directly in a sparse basis. A number of further
research directions arise from our work. Compressive imaging tech-
niques are not limited to recording image information, but have also
found usage far beyond simple imaging applications in fields like
quantum process tomography16,17, optical encryption18, fluorescence
microscopy and hyperspectral imaging19. Also our approach is quite
generic. Optimized approaches which also take the magnitude of
neighboring wavelet coefficients into account13 instead of just the
parent wavelet coefficient may lead to increased image quality or
smaller values of a. Also, it is well known that especially designed
measurement matrices can drastically reduce the number of needed
measurements for exact image reconstruction using seeded belief
propagation techniques20. Finally, it is not strictly necessary to use
precomputed phase patterns, but one could compute them on the fly,
thereby allowing one to even choose an adaptive wavelet basis. Yet,
the greatest strength of our approach lies in drastically reducing the
needed measurement time for high-resolution images using single-
pixel detectors without having any need for computational image
reconstruction.

We would like to conclude this paper by a comparison between
CCGI and standard random Gaussian matrix based compressive
sensing techniques (RMCS) to identify the strengths and weaknesses
of our approach in more detail. Obviously, having the image available
once all the measurements are taken, is an advantage, but it is also
introduces a drawback: CCGI needs to use a predefined sparse basis,
while RMCS will automatically find an adequate sparse basis dur-
ing reconstruction. Accordingly, it is typically possible to achieve a
near-ideal reconstruction with fewer measurements using RMCS.
However, it should be noted that the exact number of measurements
needed for near-ideal reconstruction is usually not known a priori as
it depends on the sparsity of the image. The needed number of
measurements is also unknown in CCGI, but specifying the desired
image quality in terms of the threshold Ij ensures that not too many
measurements are made. The exact number of measurements needed
for CCGI is hard to predict as it depends on how sparse an image is in
the wavelength basis. For very sparse images, the penalty can be as
much as 50%. For less sparse images, the differences are less drastic.
However, for a comparable number of measurements, CCGI-based
methods tend to achieve a better signal to noise ration than RMCS
methods do. See Ref. 13 for a detailed comparison of a slightly modi-
fied version of CCGI with state of the art RMCS techniques. Another
important benchmark is the performance of compressive sensing
techniques in the presence of noise. In CCGI noise can become a
severe problem if the noise magnitude becomes comparable to the
threshold chosen. CCGI is therefore not the method of choice for

Figure 3 | Normalized transmission maps through a metal plate
containing twelve holes. The large holes have a diameter of 2 mm, while

the smaller ones have a diameter of 1 mm. a gives the decreased acquisition

rate. A faithful image of the plate is already possible with approximately

5–7% of the measurements required to record every single pixel in full

resolution.

Figure 4 | Mean squared error versus the number of measurements
taken. The residual error saturates for a . 7%.

Figure 5 | Normalized transmission map through a 1951 USAF
resolution test chart at a 5 0.369.
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measuring images containing strong noise or weak signals. Another
issue is scalabilty. Going to larger images, increases the necessary
number of measurements a computations during data acquisition
in CCGI and the complexity of the minimization problem in RMCS.
However, for all the image sizes we examined, the time needed for
performing the measurements was always so much longer than the
time needed for performing the wavelet transforms and building the
sampling queue that no delay was noticeable. In summary, although
other compressive sensing methods based on Gaussian random mat-
rices approaches typically need fewer measurements than most (but
not all21) techniques using deterministic matrices, having the result
immediately renders adaptive spatially resolved pump-probe spec-
troscopy and other delicate spectroscopic techniques with high reso-
lution possible. Therefore, we suggest that our technique is well
suited for specialized complex problems in physics and spectroscopy
which are a priori known to be reasonably sparse in the wavelet basis,
while RMCS methods are a much better choice for taking single
images, for images where noise is an issue and for images where
the sparsest basis is unknown.

Methods
The objects to be imaged were placed at the focal plane of the SLM ( f 5 36 cm) and
the transmission through the objects was measured by a standard commercial photo
diode onto which the transmission through the object was focused and a Keithley
2000 multimeter was used for measuring the photo diode output. The hole test plate
used consisted of twelve holes. Six of these holes had a diameter of 2 mm, while the
other six holes had a diameter of 1 mm. Their average separation was around 1.5 mm.
The laser used for the transmission measurements was a pulsed Ti:Sapph laser
emitting pulses wih a duration of approximately 2 ps at a wavelength of 800 nm.
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