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Quantum networks provide access to exchange of quantum information. The primary task of quantum
networks is to distribute entanglement between remote nodes. Although quantum repeater protocol enables
long distance entanglement distribution, it has been restricted to one-dimensional linear network. Here we
develop a general framework that allows application of quantum repeater protocol to arbitrary quantum
repeater networks with fractal structure. Entanglement distribution across such networks is mapped to
renormalization. Furthermore, we demonstrate that logarithmical times of recursive such renormalization
transformations can trigger fractal to small-world transition, where a scalable quantum small-world
network is achieved. Our result provides new insight into quantum repeater theory towards realistic
construction of large-scale quantum networks.

B
y exploiting the probabilistic prediction nature of quantum mechanics and the nonlocal correlation of
entanglement1,2, new technology of quantum communication has been developed3. For example, quantum
teleportation allows faithful teleportation of unknown quantum states, and quantum cryptography

(Ekert91 protocol) enables truly secure communication3. Quantum nodes can store and manipulate photons
locally, and their interconnection via quantum channel, e.g., optical fiber, gives birth to quantum networks.
Quantum networks are backbone of quantum communication and distributed quantum computing4. A pro-
totype of quantum network has been reported recently5. Quantum networks can be seen as large and complex
system of quantum states. How to characterize and understand such quantum system remains a challenge. It is no
longer effectively described by a global density operator r4. However, complex networks which describe a wide
range of natural and social system6–8, provide conceptual basis for in-depth investigation of topological properties
of quantum networks. It involves exciting phenomena. For instance, entanglement percolation9–11 and the
peculiar behavior of quantum random networks12 have received much attention. What’s more, it has opened
new perspective for study of entanglements: map complex networks into entangled states, and vice versa13,14.

As essential ingredients for quantum information, however, entanglement is such fragile resource that suffer
fatal photon loss, decoherence caused by noise, and imperfection of quantum local operations3,15–17. In con-
sequence, the state fidelity or degree of entanglement decreases exponentially with channel length. Quantum
repeater protocols (QRP) are one of most promising solutions designed to tackle such challenging problem3,15–20.
The general principle of QRP is illustrated in Fig. 1(a)–(c). In principle, QRP allow one to establish long-distance
entanglement with fidelity close to unity, while the required time increases, e.g., polynomially with channel length
(it depends on specific QRP). Thereby quantum repeaters hold promise for building large-scale quantum net-
works. Then a fundamental problem comes to us: what’s the possible topology of quantum repeater network
(QRN), and how to perform QRP on such network?

In this work, we address this problem, with focus on the interplay between entanglement distribution and
topology of quantum networks. A practical scenario of entanglement distribution has to consider the complex
topology of quantum networks. Recent studies suggest that the topology of quantum networks strongly affects
their performance9–11. How well can we say about the topology of QRN? It’s a problem that has not been seriously
considered. Motivated by the rich and intriguing topology of complex networks, we envisage the topology of QRN
as follows. The exponential decay of fidelity requires that QRN be fractal. And scale-free network is a plausible
option for QRN6,7,21. Moreover, as a generic characteristic of real-world networks, small-world effect6,7,22 is able to
reinforce the scalability of quantum networks11. We combine these elements with QRN. Next, so far, QRP have
been elucidated for one-dimensional linear network. In order to apply QRP to fractal QRN, we draw on concepts
and methodology from statistical physics. We find a clue to relate implementation of QRP to renormalization
transformation. As a result, entanglement distribution over arbitrary fractal QRN corresponds to a process of
successive renormalization transformations.
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Results
Relationship between QRP and renormalization transformation.
Here we offer a new perspective on QRP. As shown in Fig. 1(a)–(c),
the operations of QRP exhibit a hierarchical characteristic and self-
similarly nested structure. Using standard box-counting method, it’s
easy to compute fractal dimension dB 5 1. Historically Kadanoff’s
seminal picture that spin blocks hierarchically nest in a self-similar
manner basically stimulated Wilson’s renormalization group theory,
which is renowned as a powerful tool to the problem of phase transi-
tion23,24. Here we point out that the implementation of QRP with
nested structure actually corresponds to renormalization process in
network setting.

As shown in Fig. 1(a)–(c), the quantum channel between nodes A
and B is divided into N segments, and every ,c consecutive segments
are grouped together into a unit which is extended to larger length-
scale. This procedure is repeated with n nesting levels, where
N~‘n

c
3,15,16. If we interpret ,c as a parameter which is none other

than the transforming length-scale, then above procedure can be
viewed as real space renormalization transformation. Guided by this
remarkable idea, we present an universal framework which allows
one to apply QRP to arbitrary QRN with fractal structure.

We find clear correspondences between one-dimensional and
high dimensional quantum repeaters. Undoubtedly, the exponen-
tial decay of fidelity imposes strong constraint on the way nodes
are interconnected. Basically nodes are interconnected in accord-
ance with local attachment: a node prefers to link to neighboring
nodes via intermediate repeater nodes, rather than distant nodes.
This connection fashion gives rise to fractal structure25. Then
fractal QRN can be substituted for the 1D linear network. And
the length of 1D chain is replaced by the diameter of underneath
fractal QRN

D0*N1=dB , ð1Þ

namely, largest distance between nodes (in graphic sense, the
distance between two nodes is defined as the number of links
along the shortest path6,7). Compared with segmentation fashion

of 1D chain, the entire network is divided into boxes, whose size is
equal to ,c, see Fig. 1(e). It will be desirable if the nesting level
takes a similar form:

N1=dB ~‘nc
c : ð2Þ

We will prove that it is indeed the case. It answers an intuitive
problem: how many nesting levels nc are required for quantum
networks with N nodes? Also we will show that it implies a struc-
tural transition where small-world is obtained.

Renormalization was successfully introduced into complex net-
works by Song et al., uncovering the self-similarity of complex net-
works26. A network is renormalized according to the box-covering
technique26 (see Fig. 1(e)–(f)). The basic idea is as follows: tile the
entire network with minimum number of boxes NB, where the dis-
tance between nodes within any box is smaller than the box size,
namely, the transforming length-scale ,B. Each box is then replaced
by a supernode. These supernodes are connected if there is at least
one link between nodes in their respective boxes. It defines the fractal
dimension dB in terms of a power law:

NB

N
*‘{dB

B : ð3Þ

Apply this transformation R‘B to a fractal network G0, which is scale
invariant, then we have R‘B G0ð Þ~G0.

Several algorithms28,29 have been proposed to coarse-grain com-
plex networks, nevertheless, not all of them are useful here. We
choose the MEMB algorithm to divide the entire network into
boxes29. It’s a geometric algorithm which has the advantages of guar-
anteeing connectivity within boxes, isolating hubs of different boxes
and avoiding overlap between boxes.

We then introduce some modifications. For clarity, this is reph-
rased in network language. We select the hub of a box (most con-
nected node) as representative node, playing the role of supernode. If
there is one link between two boxes, then add one link connecting
their hubs. Otherwise, no links are attached. Above presentation
instructs us to create shortcuts (long-distance entangled state with

Figure 1 | Renormalization and its relationship with quantum repeaters. Top three panels (also see Ref. 16): principle of quantum repeaters.

(a) The entire channel is divided into N auxiliary segments, avoiding exponential attenuation of fidelity. Entanglements are repeatedly created for each

segments. (b) and (c) Nested purification that combines entanglement swapping and purification are successively performed in a hierarchical way.

Adjacent segments are connected and extended to longer distance, eventually two remote nodes are connected via perfect entanglements. Bottom panel:

schematic illustration of coupled renormalization. (d) Quantum node (circle) is a composite system composed of ensembles of qubits (dots). A pair of

quantum nodes is connected by multiple copies of bipartite entangled states (solid lines) . For simplicity, they are represented by single dashed lines in

Fig. 1(e) and (f). (e) Nodes are assigned to different boxes according to the MEMB algorithm. (f) Single level CR is performed.
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high fidelity) between which pair of representative nodes. As shown
in Fig. 1(f), the corresponding shortcuts denoted by pink links form a
coarse-grained network (CGN). As a result, the CGN is recon-
structed and coupled to the initial network. Because of the self-sim-
ilarity of underling network, the resulting CGN is topologically
equivalent to the original one, and above renormalization processing
can be iteratively applied to previous CGN with fixed ,c, and so on
until the critical nesting level (see Eq. (8)). Notice that the require-
ment of local attachment is fulfilled throughout entire process.
Eventually, the superposition of each level CGN forms a new net-
work, namely, the coupled network (CN). For the sake of distinction
between the standard and this modified renormalization, we name
the later coupled renormalization (CR).

We have generalize quantum repeaters to arbitrary high but finite
fractal dimension, in the sense that when dB 5 1, CR is automatically
reduced to 1D quantum repeaters. One possible application of CR for
1D linear network is shown in Fig. 1(c). In 1D case, each represent-
ative node is merely connected to two representative nodes (nodes
below arrows). In regard to fractal QRN, however, a representative
node (red circles) has probability P(k9) to link k9 representative nodes
(it depends on the degree distribution) via the short path composed
of entangled links between two boxes (green links). For instance, in
Fig. 1(f), hubs A and B are connected through a path B-C1-C2-A,
whose length is ,c 5 3. Each of such a path corresponds to one unit of
1D case (segments between two arrows in Fig. 1(c)). Then shortcuts
are established between representative nodes, with quantum opera-
tions identical to 1D case. In other words, its definite physical real-
ization relies on which QRP is utilized. Entanglement swapping30 and
purification31–33 are two most important quantum operations. By
entanglement swapping, adjacent entangled links are connected
and extended to two representative nodes. To obtain high fidelity
entangled states, entanglement purification is required, which
extracts nearly perfect entangled states from states with lower degree
of entanglement. Alternatively, some QRP use quantum error cor-
rection18–20. This class of QRP could circumvent the probabilistic
fashion of purification-based protocols, and relax the strong require-
ment of long-lived quantum memory34–36. Thus they have potential
to extend entanglement to longer distance and speed up commun-
ication rate.

Why small-world and scale-free properties are relevant for
quantum networks. Despite the great diversity of real-world
networks, they share some common features. Most of real-world
networks are scale-free networks with small-world property6,7. A
network is scale-free if the probability to find a node with k links
P(k), follows a power law P(k) , k2c (for real-world networks, 2 , c
, 3). This is quite different from Poisson distribution for Erdős-
Rényi random graphs6,7,21. Small-world is an influential concept
describing such a phenomenon: despite the large size of networks,
on average, any two nodes are separated by relatively short distance,
which typically scales as: �‘* ln N6,7,22. These features play a
dominant role on dynamic functions of complex networks. One
naturally wonders whether the two fundamental characteristics
make a difference to quantum networks.

The realistic significance of small-world can be illustrated from the
perspective of limited-path-length entanglement percolation11.
Without quantum processing such as entanglement purification,
the fidelity of communication along a long noisy path of imperfect
entangled states decreases exponentially11,16. Thus it yields a very
short distance , of faithful communication, which severely limits
effective size of quantum networks Ne. Things seem to be bad.
However, if �‘v‘, it turns out that most of nodes are reachable within
the distance of reliable communication. For d-dimensional regular
lattice, �‘*N1=d , and we have Ne , ,d. In contrast, Ne , e, for
small-world networks. We therefore need a quantum small-world
network, so that without further quantum processing, this desirable

topological effect alone suffices to effectively mitigate the limitation
of noise, and enhance the scalability of quantum networks.

The striking effect of small-world originates from the existence of
shortcuts between remote nodes. A quantum network without short-
cuts is not small-world network. Consequently, it’s rather difficult to
extend the influential concept of small-world to large-scale quantum
networks, where shortcuts are not directly available. CR can generate
a set of shortcuts, which eventually leads to small-world transition at
a relatively small nesting level. We will clarify it in subsequent sec-
tion. While CR can be applied to fractal networks such as Erdős-
Rényi random graphs at criticality26, apparently, such topology is not
a realistic option. We propose that QRN are scale-free and fractal
observed at arbitrary spacial scale. We justify this proposal with
twofold reasons.

Entanglement percolation is a combination of entanglement
swapping and classical entanglement percolation9. In their frame-
work, the threshold actually depends on the final topology. Notably,
the percolation threshold for scale-free networks can be vanish-
ing37–39. It means that, as far as scale-free networks, classical entan-
glement percolation is such a good strategy that the critical amount
of entanglement required for the presence of giant cluster is zero in
asymptotic limit. Therefore, scale-free QRN has exceptional ability to
preserve connectivity in the presence of noise. In addition, it’s
strongly supported by three facts. Other than local operations, clas-
sical communication is indispensable between quantum nodes. And
entangled photon pairs can be transmitted through commercial tele-
com fiber. Thus, to some extent, QRN is embedded in classical com-
munication networks. Whereas both phone call networks and
Internet are scale-free networks6,7. If QRN is scale-free, we can make
full use of the existing network infrastructures, without significantly
altering them. Above facts suggest that scale-free network is a plaus-
ible and eligible candidate for QRN.

Without loss of generality, we apply CR to a scale-free fractal
network generated by the minimal model (see Methods). Let Gn be
the nth level CGN. According to renormalization group theory,
Gn~R‘c Gn{1ð Þ~Rn

‘c
G0ð Þ~R‘n

c
G0ð Þ. So Gn can be seen as larger-

scale network enlarged from Gn21, or equivalently it arises from
single level CR with transforming length-scale ‘n

c . Larger-scale
CGN here collectively act as shortcuts of the underlying smaller-scale
ones, which drastically change the topology in such a way that nodes
are globally separated by short path of entangled links. This can be
further unveiled by the squeezed distance distribution which follows
Gaussian distribution (see Fig. 2(b)). Hence, in the end, a hierarch-
ically nested quantum small-world network is produced.

Proof of fractal to small-world transition. We proceed to make it
clear whether single or iterative CR will lead to fractal to small-world
transition. Two analytical proofs with numerical simulations are
provided. A rigorous and reliable method is to observe the behavior
of average degree under renormalization flow (see Methods)40. In
regard to single level CR, the expected transition does not arise.
However, it’s safe to say that iterative CR can give rise to fractal to
small-world transition. Evidences for the transition displayed in Fig. 3
conform above conclusion. Nonetheless, the average diameter of CN,
namely, the signature of small-world is unclear.

We begin with analyzing the impact of single level CR, and then
generalize it to iterative case. Plugging Eq. (3) into Eq. (1), we imme-
diately obtain the diameter of CGN DB(,c) , D0/,c. In order to
compute DC(,c), the diameter of CN, we suggest a hierarchical rout-
ing method which exploits the hierarchical structure and convert it
into a routing problem. A path connecting two remote nodes is
divided into two parts: one part links one of the nodes and its cor-
responding hub within the box, and the other part, consisting of only
representative nodes, connects the two hubs. The total length of the
first part is approximately ,c 2 1, and that of the second is DB(,c). We
thus have

www.nature.com/scientificreports
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DC ‘cð Þ<
D0

‘c
z‘c{1, ð4Þ

see Fig. 2(c). Take note that there is an optimal transforming length-
scale, ‘o~

ffiffiffiffiffiffi
D0
p

, which yields minimal diameter Dmin Nð Þ~2
ffiffiffiffiffiffi
D0
p

{1. Meanwhile, numerical simulation gives the corresponding min-
imal average diameter �‘min Nð Þ~Dmin Nð Þ=2<

ffiffiffiffiffiffi
D0
p

(see Fig. 2(d)).
An analytical approximation shows that �‘min Nð Þ scales as a power
law too (see supplemental information). The behavior of �‘min sug-
gests that single level CR is unable to trigger the transition, which is
consistent with above conclusion.

Now let’s consider multi-level CR with fixed box size. In analogy
with above results, it’s easy to obtain the diameter of iterative CN
D(n, ,c) for small ,c, using Eq. (4) with recursive derivation, we find

D n, ‘cð Þ< D0

‘n
c

zn ‘c{1ð Þ, ð5Þ

where n is nesting level of CR. Taking into account finite size effect,
Eq. (5) holds on condition that ‘c=‘o.

Remarkably, the first term decays exponentially, whereas the sec-
ond increases linearly. Hence, D(n, ,c) is governed by the linear term
and grows slowly. We readily obtain the criterion for the transition:

‘nc
c *D0, ð6Þ

implying that D(nc, ,c) < nc(,c 2 1) for large N. It’s desirable that
both nc and D(nc, ,c) increases logarithmically with size of network,
since

D nc, ‘cð Þ< ‘c{1
dB ln ‘c

ln N, ð7Þ

and

nc*
ln N

dB ln ‘c
: ð8Þ

How to appreciate the implication of nc now is evident. We identify
nc as critical nesting level, at which small-world is achieved. Direct
evidence is shown by Eq. (7). What’s more, it’s exactly in agreement
with simulation result, see Fig. 3(a). Here nc is inversely proportional
to fractal dimension dB, indicating its topological interdependence.
When dB 5 1, Eq. (8) reproduces the result of 1D case. While dB R ‘,
nc R 0, means that the initial network is already small-world, per-
fectly consistent with conclusion that when dB R ‘, these networks
are small-world without fractality25,27.

Figure 2 | Statistical properties of CN. In this example, t 5 5, N 5 9375, ,c 5 3. (a) and (b) Distance distribution of CN with different nesting

levels. (a) is log-log plot of P(,) versus ,, the slope of the upper line is dB 2 1 < 0.46 (analytical estimate), and the lower line 0.24 (fitting). (c) Prediction of

diameter of single level CN as a function of ,c. (d) Log-log plot of the minimal and average diameter of different size of single level CN.

Figure 3 | Evidences for QRN with small-world property. (a) Log-log plot of Eq. (7) with parameters ,c 5 3, and dB < 1.46. The analytical prediction

(straight line) matches well with numerical simulation (square). (b) Log-log plot of fB – f0 versus jB.
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Discussion
The highlights of our scenario are as follows. Our scenario is a fairly
general framework. CR is compatible with various QRP based on the
aforementioned principle. In principle, CR is applicable to arbitrary
quantum networks with fractal structure, not restricted to the
example of scale-free networks. And the transition will arise as long
as Eq. (6) or Eq. (8) is satisfied. It’s not difficult to check that the
unique requirement of the whole derivations is the fractality of QRN.
Furthermore, the collective distribution of shortcuts across entire
network is mapped to renormalization transformation, where the
self-similar fashion of operations is preserved at network level, while
the scale-free fractal structure is kept at all length-scales. Each level
transformation enlarges underling network into larger-scale QRN.
The simultaneous logarithmical scaling of critical nesting level and
corresponding diameter suggests that to achieve small-world, CR is
operable even for QRN of large size. Moreover, thanks to the scale-
free nature, CN is particularly resilient to random failure of quantum
nodes.

To summarize, we have generalized one-dimensional quantum
repeaters to high fractal dimension by introducing an approach
called CR, which relates entanglement distribution over arbitrary
fractal QRN to recursive renormalization transformations. We
assume that QRN is fractal and scale-free, which is the case for a
large number of real-world networks. In spite of the large size of
QRN, there exists a relatively small critical nesting level for CR, at
which small-world is obtained. Small-world seems to be a necessary
element for a scalable quantum network. Our study suggests that
concepts and tools from statistical physics will play an important
role in the joint study. It has conceived another significant direction
which may open new avenue to address the outstanding issue of
complexity. That is, quantum simulation of dynamic process on
complex networks or design of quantum algorithms for sophisticated
questions in network science41–43. All of these attempts may dramat-
ically alter the landscape of both fields.

Methods
Minimal model for scale-free networks. The growth of the network is actually the
inverse procedure of renormalization25. we begin from a triangle at time step t 5 0.

(i) At time step t 1 1, m new nodes are connected to the endpoints of each link l
generated at time step t.

(ii) Then, with probability 1 2 e, we remove link l of time step t, and add one new
link connecting a new pair of nodes attached to the endpoints of link l.

(iii) Repeat (i) and (ii) recursively until the wanted time step.

This model produces a scale-free network with degree distribution exponent c 5 1
1 ln(2m 1 1)/ln(m 1 e). We are particularly interested in two distinct types of
networks with e 5 0 or e 5 1, where a pure fractal network with fractal dimension dB

5 ln(2m 1 1)/ln 3, and a nonfractal, small-world network (SW) are achieved
respectively. For simplicity and without loss of university, here let m 5 2, e 5 0, then
dB < 1.46.

Renormalization group method for proof of fractal to small-world transition.
Literature40 studied networks constructed by randomly adding links to a fractal
network with probability p(,) , ,2a. Let f0, f 9 and fB be the average degree of the
initial, the new and renormalized network respectively. Then

fB{f0~ f 0{f0ð Þjl
B, ð9Þ

where jB~‘dB
B . Let s 5 a/dB. If s . 1, l 5 2 2 s, otherwise l 5 1. Notice that when s 5

2, l 5 0, a stable phase corresponding to fractal network is separated from the
unstable phase moving toward complete graph, where small-world is achieved.

With purpose of finding the location of CN in the phase diagram, we have to
calculate the exponent l. In our model, on one hand,

p ‘ð Þ*‘{dB
�
‘dB{1~‘{ 2dB{1ð Þ, ð10Þ

so a < 2dB 2 1, and s 5 2 2 1/dB, l 5 2 2 s 5 1/dB < 0.68. On the other hand,
numerical simulation shows that l < 0.89 (see Fig. 3(b)). The apparent deviation is
mainly caused by the rough approximation that p(,) follows a power law (see
Fig. 2(a)). In spite of the deviation, it’s definite that l?0. Thus, CN belongs to the
unstable phase and multi-level CR can give rise to fractal to small-world transition.

For single level CR, we have

fB{f0~2‘{dB
c N=NB~2 ‘B=‘cð ÞdB : ð11Þ

When ,B . ,c, the links we added will not emerge in the renormalized network with
length-scale ,B

40. We only need to consider one case ,c 5 ,o, which diverges in the
large size limit. So fB – f0 R 0, and l=0. Thus, coinciding with prediction of equation
�‘min Nð Þ~

ffiffiffiffiffiffi
D0
p

~N1=dB , single level CN stays in the stable phase, the expected
transition does not occur.
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