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The S100a8 and S100a9 genes encode a pro-inflammatory protein (calgranulin) that has been implicated in
multiple diseases. However, involvement of S100a8/a9 in the basic mechanisms of intrinsic aging has not
been established. In this study, we show that shifts in the abundance of S100a8 and S100a9 mRNA are a
robust feature of aging in mammalian tissues, involving a range of cell types including the central nervous
system. To identify transcription factors that control S100a9 expression, we performed a large-scale
transcriptome analysis of 62 mouse and human cell types. We identified cell type-specific trends, as well as
robust associations linking S100a9 coexpression to elevated frequency of ETS family motifs, and in
particular, to motifs recognized by the transcription factor SPI/PU.1. Sparse occurrence of SATB1 motifs
was also a strong predictor of S100a9 coexpression. These findings offer support for a novel mechanism by
which a SPI1/PU.1-S100a9 axis sustains chronic inflammation during aging.

A
ging is commonly associated with a state of chronic inflammation that contributes to DNA damage,
atherosclerosis, stem cell senescence and cognitive decline1–3. Although inflammation does not occur
uniformly or within all mammalian tissues due to increased age4, in some tissues aging leads to activation

of immune-response pathways and the formation of lymphoid aggregates, particularly within perivascular
regions5–10. Mechanisms that underpin these processes are not well understood, however, and further work is
needed to identify ‘‘hubs’’ within inflammatory and cytokine networks that drive these events. In recent years, two
low molecular weight proteins, S100a8 (calgranulin A) and S100a9 (calgranulin B), have emerged as central
inflammatory regulators capable of driving and responding to inflammation signals11–13. On the one hand,
S100a8/a9 mRNA and protein levels are markedly increased in response to cytokine stimuli14,15. At the same
time, S100a8/a9 reinforce inflammatory cascades by serving as leukocyte chemoattractants16, inducing the
expression of pro-inflammatory cytokines17, triggering activation of NF-kB17,18, and by serving as ligands that
interact with and stimulate receptor for advanced glycation end products (RAGE)19. S100a8/a9 therefore play a
unique part within inflammatory networks -- acting as inflammation-responsive proteins but yet amplifying
inflammatory signals -- ultimately contributing to a positive feedback cycle conducive to unchecked inflam-
mation responses. Such activity may contribute to the development of age-related disease. Recent studies, for
instance, support a role for S100a8/a9 in Alzheimer’s disease20–23, and knockdown of S100a9 expression was
shown to reduce amyloid plaque abundance and improve water maze performance in an Alzheimer’s mouse
model21.

Inflammatory processes depend, in part, upon activity within transcriptional regulatory networks, in which key
transcription factors (TFs) drive the expression of pro-inflammatory target genes. Such mechanisms reinforce the
feed-forward inflammatory circuits that sustain chronic inflammation, potentially in a cell-type-specific fashion.
S100a8 and S100a9 are, for instance, co-expressed in some cell types and may thus share transcriptional reg-
ulatory mechanisms, consistent with instability of S100a8 or S100a9 monomers in vivo and formation of the
noncovalent S100a8-S100a9 heterocomplex (i.e., calprotectin)24,25. However, S100a8 and S100a9 are not always
co-expressed26,27, suggesting a co-expression network that varies by cell type or according to environmental
signals. Multiple DNA-binding factors have been identified as regulators of S100a9 expression, although collec-
tively, experimental studies have focused upon a heterogeneous set of tissues and transformed cell lines. The
transcription factors STAT3 and NF-kB were independently identified as activators of S100a9 expression in both
human and mouse cell types28–30. Other TFs have also been identified as S100a9 regulators, although it remains
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unclear whether their regulatory role is limited to humans alone,
mice alone, or to a single cell type. Such factors include putative
S100a9 activators C/EBPa and C/EBPb31,32, HIF-1a33, GLI134 and
SPI1/PU.135, in addition to putative S100a9 repressors BRCA136,
AP-137, SATB138 and Arnt/HIF-1b39. In the context of aging or dis-
ease, such DNA-binding factors may drive or suppress S100a9
expression, thereby modulating the intensity of age-dependent
inflammation. This is one avenue towards development of thera-
peutic approaches, and indeed, pharmacological inhibition of
S100a9 activators (e.g., NF-kB) has been linked to slowed tumor
growth and delayed accumulation of senescent cells with aging40,41.

We here show that aging leads to shifts in the abundance of
S100a8/a9 in humans and mice, which involve multiple tissues and
robust trends across mouse genotypes. These findings demonstrate
that shifts in S100a8/a9 abundance are a feature of normal aging,
suggesting a role for S100a8/a9 in age-associated inflammation that
extends beyond their involvement in specific diseases (e.g.,
Alzheimer’s disease). We have further investigated mechanisms of
S100a9 transcription using a large-scale integrative transcriptomics
strategy, which has allowed us to systematically screen DNA-binding
factors for association with S100a9 expression across many cell types
and transformed cell lines (30 mouse cell types and 32 human cell
types). Our approach provides objective statistical assessment of
evidence for those TFs with known DNA binding affinities, and
offers a means to distinguish cell type-specific patterns from more
robust trends supported in multiple cell types. We thus illustrate a
strategy that is generally useful for in silico study of mammalian gene
regulation, and in the current application, our results provide sys-
tems-level insight into TFs and pathways that govern S100a9 tran-
scription. Our findings, moreover, point towards a new mechanism
for age-related chronic inflammation, in which over-production of
S100a9, enforced by key transcription factors, triggers a feed-forward
cycle that sustains a pro-inflammatory microenvironment with
increasing age.

Results
Shifts in S100a8/a9 abundance are a robust feature of normal
aging in mouse and human tissues. We used Affymetrix DNA

oligonucleotide microarrays to evaluate gene expression in tail skin
from young (5 months) and old (30 months) CB6F1 mice (n 5 5 per
age group and sex). Two of the top ten age-increased genes encoded
S100 proteins, including S100a8 an S100a9 (data not shown). We
confirmed this pattern using RT-PCR and showed that S100a8/a9
expression increased late in the lifespan between 17 and 30 months
of age, with no significant change between 5 and 17 months of age
(Figures S1A and S1D). Consistent with this, immunostaining did
not detect S100a9 in young mice, but did detect S100a9 widely
distributed in the epidermis, dermis and subcutaneous layers in
old mouse skin (Figure S2). We expected to observe a similar
pattern in human skin. However, analysis of a large microarray
dataset indicated that S100A8/A9 expression decreased with age by
1–2% per year (Figures S1B and S1C). We thus used RT-PCR to
analyze an independent set of skin biopsies obtained from young
(20–40 years old; n 5 11 males and n 5 6 females) and elderly
human subjects (. 80 years old; n 5 5 males and n 5

10 females). This confirmed that S100A8/A9 expression decreased
with age in human sun-protected skin (Figure S1E), in contrast to the
trend observed in tail skin from CB6F1 mice (Figures S1A and S1D).

We further investigated the effects of aging on S100 expression in
other mouse and human tissues. The AGEMAP study was a large-
scale effort designed to identify age-associated gene expression pat-
terns across 16 tissues from C57BL/6 mice (1, 6, 16 and 24 months of
age)42. However, inspection of the AGEMAP S100a9 expression pat-
tern revealed no trend towards elevated expression across 16 tissues
(Figure S3). Since AGEMAP was limited to a single inbred genotype
(C57BL/6) and used cDNA arrays that lacked probes to detect several
S100 genes (e.g., S100a8), we assembled datasets that used whole-
genome Affymetrix arrays to evaluate gene expression in young and
old tissues (Figure 1). These data revealed that, in both mice and
humans, all S100 gene family members were significantly altered by
aging in at least one tissue (P , 0.05), with the strongest and most
consistent effects observed for S100a8 and S100a9 (Figure 1). These
results were further supported by our studies of multiple organs from
CB6F1 mice, which showed an increase in S100a9 expression with
age (heart, liver, lung and kidney) (Figure S4). Additionally, staining
of tissues using an anti-S100a9 antibody revealed a trend towards

Figure 1 | Shifts in the expression of S100a8 and S100a9 are a robust feature of aging in human and mouse tissues (meta-analysis of microarray
data). The effects of aging on the expression of S100-encoding mRNAs were evaluated in human (left) and mouse (right) tissues. All human data was

generated using the Affymetrix Human Genome U133 Plus 2.0 array platform (29 experiments), and all mouse data was generated using the Affymetrix

Mouse Genome 430 2.0 array platform (34 experiments). Data were obtained from the Gene Expression Omnibus or ArrayExpress databases.

Colors denote the estimated fold-change over 40 years in humans (left; old/young) or over 2 years in mice (right; old/young). Triangles denote significant

effects of aging on the expression of the listed gene (row) with respect to the indicated tissue (column) (P , 0.05 or FDR , 0.05).
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increased S100a9 protein in liver (males and females, Figures S5 and
S6), kidney (males only; Figure S7) and lung (males and females,
Figure S8).

An in silico procedure for identifying transcription factors and
motifs that regulate S100a9 expression in 30 mouse and 32 human
cell types. Our data identified shifts in the abundance of S100a9
mRNA and protein as a robust feature of intrinsic mammalian
aging. Given that expression of S100a9 was often elevated with age
(Figure 1), we hypothesized that such an increase could facilitate age-
associated inflammation and the formation of lymphocyte aggre-
gates in older tissues, as has been described in prior work5–9. To
identify mechanisms that may mediate increased S100a9 expres-
sion with aging, therefore, we developed an in silico procedure to
identify transcription factor binding sites that predict S100a9
coexpression in mouse and human cell types (Figure 2). For this
purpose, we assembled manually curated datasets for each of 30
mouse cell types and 32 human cell types. Our strategy was to
identify S100a9 coexpressed genes for each mouse and human cell
type (Figures 2A and 2B), yielding the cell type-specific sub-network
surrounding S100a9 within the genome-wide coexpression network
(Figure 2C). We then used generalized additive logistic models
(GAM) to identify motifs for which motif frequency in the 2 KB
upstream region predicted S100a9 coexpression within each cell
type (Figure 2D). For these analyses, we screened a dictionary
consisting of 1209 motifs, where each motif corresponded to a
mouse or human DNA-binding protein (see Methods). In addition
to cell type-specific analyses, we analyzed a ‘‘composite’’ S100a9
coexpression network, which was generated by integrating trends
across all cell types in mouse or human, respectively (see Methods).

Genes coexpressed with S100a9 in mouse cells are located in
regions enriched with binding sites for ETS transcription factors
(e.g., SPI1/PU.1) but with sparse occurrence of SATB1 sites
(AATTTT). Genes coexpressed with S100a9 in the composite
network were enriched with DNA motifs bound by members of
the ETS transcription factor family (Figures 3 and S9). Of the ten
most significant motifs in the composite network, nine were
recognized by ETS family members (e.g., SPI1, ETS1, ETS2), and
four of these were associated with the ETS member SPI1/PU.1
(Figure 3). The top-ranked motif in the composite network,
SPI1jAGGAAGTjMA0080, was significantly enriched among
S100a9 coexpressed genes in 14 of 30 cell types (P , 0.05),
although we identified another SPI1/PU.1 motif that was signi-
ficantly enriched among S100a9 coexpressed genes in 25 of 30 cell
types (SPI1jGGAAGjMA0080; Figure 3). Additionally, we identified
five cell types for which the most significantly enriched motif was
associated with SPI1/PU.1 (hematopoietic stem cells, B-cells,
thymocytes, CD81 T-cells and CD41 T-cells; Figure 3). These
analyses were based upon 2KB upstream regions, but further
analyses of other regions also supported an association between
ETS family motifs and S100a9 coexpression (e.g., conserved regions
2 KB upstream, intronic regions and all non-coding intergenic
regions; Figures S9A – S9C). Additionally, we performed an
alternative analysis to determine which k-mers (of length 2, 3, 4 or
5) best distinguished enriched (P , 0.05 with Z . 0) from non-
enriched (P . 0.05) motifs (2 KB upstream region). In the
composite network, enriched motifs differed from non-enriched
motifs in that they matched the 5-mer AGGAAjTTCCT (Figure
S9D). This 5-mer matches the GGA(A/T) core motif recognized by
ETS family members43 and resembles the consensus sequence for
several SPI1/PU.1 binding sites (Figures 3 and S9).

Cross-validation was used to determine how well single-motif
regression models could predict S100a9 coexpression. This showed
that the ‘‘best model’’ (Akaike information criterion, AIC) was able to
predict S100a9 coexpression for the composite network and 20 of 30
mouse cell types (i.e., observed and null AUC distributions at least 1

SD apart) (data not shown). Performance improved, however, when
we analyzed two-motif models (Figure 4). For bivariate motif mod-
els, there was strong separation between observed and null AUC
distributions for 26 of 30 cell types (Figure 4). The best-performing
bivariate models for each cell type often related increased abundance
of ETS-associated motifs to increased probability of S100a9 coex-
pression (Figure 4). Surprisingly, however, for 6 of 30 cell types,
decreased occurrence of SATB1binding sites was predictive of
S100a9 coexpression (V$SATB1_Q5jAATTTT; splenocytes, kerati-
nocytes, lymphatic endothelial cells, pancreatic islets, 3T3-L1 cells
and RAW264 cells) (Figure 4). This association was robustly
observed across 29 of 30 cell types (upstream 2 KB region; P ,

0.05 with Z , 0), indicating that genes coexpressed with S100a9 in
mouse cells are associated with genomic regions that are deficient
with respect to SATB1 binding sites.

The region 150–250 BP upstream of the mouse S100a9 gene
contains the highest concentration of transcription factor
binding sites that predict S100a9 coexpression. The complete
statistical profile of all transcription factor binding sites we
evaluated provides a tool for detecting loci with cell type-specific
regulatory potential. We thus scanned the 2 KB region upstream
of the mouse S100a9 gene to determine which region contained
the greatest concentration of motifs enriched among S100a9
coexpressed genes (Figure 5). For the composite network, and all
30 cell types, sliding window analyses identified a high-scoring
locus 150–250 BP upstream (mm9, chr3, 90499762–90499862)
(Figure 5). We identified 19 motifs within this region for which
increased occurrence was associated with S100a9 coexpression in
the composite network (Figure S10; P , 0.047 with Z . 0). Fur-
ther inspection uncovered a 13 base element (5-ACTTCCC-
TTCCAT-3; mm9, chr3, 90499826–90499838) with binding sites
for several significant motifs, including multiple matches to mo-
tifs recognized by SPI1/PU.1 and STAT transcription factors
(Figure S10).

GC-rich motifs and bindings sites for ETS transcription factors
(e.g., SPI1/PU.1) predict S100A9 coexpression in diverse human
cell types. We repeated our screen of 1209 transcription factor
binding sites (Figure 2), except we attempted to identify motifs
predictive of S100A9 coexpression in 32 human cell types (2 KB
upstream regions). A motif-by-motif comparison of Z statistics
from 13 corresponding cell types in mouse and human revealed
good correspondence in 12 cases (0.21 # rs # 0.64; P , 0.001),
and overall, correspondence between results from mouse and
human composite networks was convincing (rs 5 0.43; P 5 10249)
(Figure S11). In line with this, several motifs supported in our
analysis of mouse cells were bolstered by trends detected in human
cells (Figures 6 and S12). For instance, two motifs associated with
ETS transcription factors were consistently enriched among S100A9
coexpressed genes (V$ETS2_Q6jCTTCCTG and SPI1jGGAAGj
MA0080), with significant trends detected for 28 of 32 human cell
types including the human composite network (2 KB upstream
regions; P , 0.05 and Z . 0) (Figure 6). This pattern was also
supported by evaluation of conserved 2 KB upstream sequences,
intronic sequences, and complete non-coding intergenic sequences
(Figures S12A–S12C). Interestingly, a strong trend in human cells
was enrichment of GC-rich motifs in genomic regions associated
with S100a9 coexpressed genes (e.g., V$MOVOB_01jGGGGG and
V$SP1_Q2_01jCCCCGCCCC) (Figure 6). Consistent with this, we
searched for features that distinguished significantly enriched motifs
(P , 0.05 with Z . 0) from all other motifs, and found that enriched
motifs more closely matched the 4-mer CCCCjGGGG (Figure
S12D). This trend was further supported by cross-validation ana-
lyses in which we identified bivariate models that best predicted
S100A9 coexpression (AIC criterion; see Figure 7). For 7 of 32 cell
types, increased abundance of an ETS transcription factor motif was
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Figure 2 | In silico strategy for identifying cis-regulatory mechanisms controlling S100a9 expression. The figure illustrates a general procedure for

identifying a cluster of S100a9-coexpressed genes (parts A – C), which can then be evaluated to identify TF binding sites that occur at disproportionately

high frequency within associated genomic sequences (part D). The procedure is here illustrated for a single cell type (mouse chondrocytes), but we have

applied the methodology across a broader panel of 30 mouse and 32 human cell types. In the first step (A), a foreground set of S100a9-coexpressed

transcripts is identified. This is done by calculating the Spearman rank correlation (rs) between each transcript and S100a9, and then ranking all

transcripts by the magnitude of r7
s . The dashed red line shown in (A) represents the segment with minimal distance between the origin (lower left corner)

and the curve shown in the figure. This red line serves to define the foreground set of S100a9-coexpressed genes (dark grey region). In part (B), this

S100a9-coexpression cluster is illustrated with respect to the 53 microarray samples used to calculate Spearman rank correlations shown in (A), where

each microarray sample was generated by hybridization with cDNA derived from mouse chondrocytes. The foreground set of S100a9-coexpressed genes

can thus be viewed as the local sub-network that surrounds S100a9, as illustrated in (C). In the final step (D), a generalized additive logistic model (GAM)

is used identify significant associations between S100a9 coexpression and the number of TF binding sites present within the 2 KB region upstream of the

transcription start site (or other genomic regions). In GAM models, the probability of S100a9 coexpression is modeled (vertical axis) as a function of two

variables x1 and x2, where x1 is the length of unmasked sequence scanned for a given gene and x2 is the number of TF binding sites identified in the

upstream region. GAM models were fit for each of 1209 TF binding sites, and a significant association between S100a9 coexpression and binding site

occurrence was evaluated based upon significance of the coefficient b2.
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predictive of S100A9 coexpression in the best-performing bivariate
model (e.g., SPI1/PU.1, ETS1, ETS2 and ELK1). However, for
approximately half of the 32 cell types, bivariate models related
increased frequency of a GC-rich motif to increased probability of
S100A9 coexpression (Figure 7).

A region 930 - 1030 BP upstream of the human S100A9 gene con-
tains the highest concentration of TF binding sites that predict
S100A9 coexpression. Using results from our in silico screen of
transcription factor binding sites in 32 human cell types, we scan-
ned the 2KB region upstream of S100A9 to identify loci containing a
high density of motifs enriched among S100A9 coexpressed genes.
For most cell types, the first 500 BP upstream contained abundant
matches to significantly enriched motifs (Figure S13). Surprisingly,
however, the region 930–1030 BP upstream of S100A9 contained the
greatest concentration of binding sites for high-scoring motifs (hg19,
chr1, 153329299 – 153329399; Figure S13), with matches to 43 motifs

significantly associated with S100A9 coexpression in the composite
network (P , 0.05 with Z . 0; Figure S14). More than half of these
motifs (24 of 43) matched a 19 base pair GC-rich sequence within
this region (5-GCCGTGGGGGCGGGCAGGA-3; hg19, chr1,
153329306–153329324).

Amplification of a SPI/PU.1-S100a9/A9 inflammatory axis in aged
tissues and a model for S100a9/A9-mediated chronic inflammation
with aging. Our findings, based upon an integration of transcriptome
data from a diversity of mammalian cell types, implicate the ETS
transcription factor SPI1/PU.1 as a driver of S100a9/A9 expression.
We investigated whether accumulation of S100a9 with aging in
CB6F1 mice was associated with elevation of SPI1/PU.1 (Figure 8).
In skin, there was no significant elevation of SPI1/PU.1 mRNA with
aging (Figure 8A), although histochemical analysis of old skin
identified cells staining positive for both SPI1/PU.1 and S100a9
(Figure S15). For other tissues (liver, kidney and lung), RT-PCR

Figure 3 | Top-ranked transcription factor motifs that predict S100a9 coexpression (30 mouse cell types). Top-ranked motifs are listed in the left

margin and were selected based upon three criteria. First, we identified those motifs for which an increased number of occurrences significantly increased

the probability of S100a9 coexpression in the composite network (i.e., lowest p-values in composite with Z . 0; left margin labels with black font). Second,

we identified those motifs for which an increased number of occurrences significantly increased the probability of S100a9 coexpression across the largest

total number of cell types (i.e., largest number of up-triangles per row; left margin labels with red font). Third, for the 10 cell types that most consistently

expressed S100a9 above background in microarray samples (i.e., neutrophils, …, monocytes), we identified the single motif most significantly associated

with S100a9 coexpression (i.e., lowest p-value for each cell type with Z . 0; left margin labels with blue font). Positive Z statistics (red heatmap colors)

indicate that increased motif occurrence within 2 KB upstream regions was associated with increased probability of S100a9 coexpression. Negative Z

statistics (green heatmap colors) indicate that decreased motif occurrence 2 KB upstream was associated with increased probability of S100a9

coexpression. For each cell type (columns), the percentage shown in parentheses is the fraction of microarray samples for which S100a9 was expressed

above background.
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analyses revealed significant elevation of SPI1/PU.1 mRNA with
aging in males (Figures 8B–8D), in correspondence with tissue-
specific trends observed for S100a9 mRNA (Figure S4).

Further histochemical analysis of lung tissue demonstrated
increased SPI1/PU.1 protein in older mice and concordance between
SPI1/PU.1 and S100a9 staining patterns, with increased SPI1/PU.1 in
nuclei and increased S100a9 in cytoplasmic regions (Figure 8E). We
hypothesized that the SPI1/PU.11S100a91 cells were predomi-
nantly leukocyte foci; however, although we could detect macro-
phages (F4/80), neutrophils and T-cells (CD3) in old lung, stains
for these cell types showed only minimal overlap with the S100a9
distribution (Figures S16, S17 and S18). This suggested additional
sources for S100a9 in old lung, potentially including senescent epi-
thelial cells or other inflammatory cell types (e.g., B-cells or NK-
cells). Our findings, taken together, lend support to a model for the
development of chronic inflammation and leukocyte cluster
formation during aging5–10, in which inflammatory reactions are

sustained by continued over-production of S100a9, which is driven
by the action of SPI1/PU.1 and other TFs in resident and/or infilt-
rating cell types (Figure 8F).

Discussion
The S100A8-S100A9 heterocomplex (calgranulin) was recently iden-
tified as a factor contributing to amyloid plaque accumulation and
poor cognitive performance in an Alzheimer’s mouse model21. This
finding has called attention to the significance of S100A8-S100A9 in
cognitive aging, but a broader role for S100A8-S100A9 in intrinsic
aging has not been established. In this study, we have shown that
shifts in the abundance of S100A8 and S100A9 are a normal feature of
intrinsic aging in mammalian tissues. In mice, increased expression
of S100a8/S100a9 mRNA with aging occurs in multiple tissues (e.g.,
skin, lung, liver), while in humans, there is prominent elevation of
S100A8/S100A9 expression in the central nervous system (Figure 1).
These trends are likely to have consequences for development of

Figure 4 | Bivariate motif combinations that best predict S100a9 coexpression in 30 mouse cell types. For each cell type, we identified a set of TF motifs

for which the number of binding sites in the region 2 KB upstream of transcription start sites was a significant predictor of S100a9 coexpression

(P , 0.05). Among these motifs, all possible pairwise combinations were evaluated as predictors of S100a9 coexpression within logistic regression models.

The right margin lists the best bivariate model identified for each cell type (Akaike information criterion). For motifs shown in red font, increased motif

occurrence was associated with increased probability of S100a9 coexpression (Z . 0), while conversely, for motifs shown in green font, decreased motif

occurrence in was associated with increased probability of S100a9 coexpression (Z , 0). 10000 cross-validation simulations were performed to assess the

ability of each model to predict S100a9 coexpression. The average AUC among all simulations is plotted in the figure (filled circles), with error bars

spanning 6 one standard deviation. Yellow boxes for each cell type outline the range of AUC statistics obtained for a univariate null model in which

unmasked sequence length was the only predictor variable (mean AUC 6 1 standard deviation). Blue symbols represent cases for which AUC statistic

distributions for the null and full models do not overlap, indicating that the combined frequencies of the two motifs yielded a sensitive and specific model

for prediction of S100a9 coexpression.
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chronic inflammation and formation of lymphocyte foci during
aging13. It was therefore of interest to identify transcription factors
that may control S100a9 expression, since targeting such factors
could provide a basis for effective therapies to treat persistent inflam-
mation, providing a long-term strategy to encourage healthy aging1–3.
Laboratory investigations of S100a9 transcriptional regulatory
mechanisms, however, have been limited to only a few cell types,
and large-scale experimental study of such mechanisms across many
cell types is not yet feasible. We therefore developed an integrative
transcriptomics strategy to systematically identify candidate cis-reg-
ulatory mechanisms driving S100a9 expression in 62 mouse and
human cell types (Figure 2). Our approach provides an unsupervised
and scalable strategy for identifying transcription factors associated
with S100a9, and more broadly, with the cell type-specific coexpres-
sion networks in which S100a9 is embedded (Figure 2C).

In previous work, STAT328,29, NF-kB30, C/EBPa and C/EBPb31,32,
HIF-1a33, GLI134 and SPI1/PU.135 have been identified as activators
of S100a9 expression, while BRCA136, AP-137, SATB138 and Arnt/
HIF-1b39 have been identified as S100a9 repressors. In addition,
multiple lines of evidence support the chromatin-associated enzyme

PARP-1 as an activator of S100a9 transcription41,44. For each of these
transcription factors and DNA-associated proteins, it was possible to
identify at least one cell type in which an associated motif was sig-
nificantly enriched among S100a9 coexpressed genes, and at least
one cell type in which an associated motif was significantly under-
represented among S100a9 coexpressed genes (see Figure S19 sum-
mary). We thus observed opposite though nonetheless significant
associations between motif abundance and S100a9 coexpression,
depending upon the cell type evaluated. Computational identifica-
tion of transcriptional regulatory mechanisms is challenging, and for
any one cell type, in silico methods are not expected to yield a 100%
true positive rate and a 0% false positive rate. Nevertheless, detection
of consistent trends across cell types, based upon distinct sets of data
analyzed independently, serves to highlight robust associations and
bolsters confidence in their biological significance. Along these lines,
we found that motifs associated with SPI1/PU.1 and SATB1 were
repeatedly associated with S100a9 coexpression in mouse and
human cell types (Figures 3, 4, 6, 7, S9 and S12). Our findings,
therefore, lend the greatest support to SPI1/PU.1 and SATB1 as
potential regulators of S100a9 expression, since these factors received

Figure 5 | The region 150–250 BP upstream of the mouse S100a9 gene (mm9, chr3, 90499762–90499862) contains the highest concentration of TF
binding sites that predict S100a9 coexpression. For each cell type, the 2 KB region upstream of the S100a9 transcription start site was scanned for

matches to the TF binding sites within our dictionary of 1209 motifs. If a match was identified, the matching region was assigned a cell-type-specific score

(proportional to the Z statistic calculated for that motif and cell type), which quantified the degree to which increased motif occurrence increased the

probability of S100a9 coexpression. If more than one motif matched at a given position, the highest score was assigned. A sliding window analysis was then

used to identify regions with greatest concentration of high-scoring base pairs (dark grey 5 best 400 BP window; yellow 5 best 200 BP window; orange 5

best 100 BP window; red 5 best 50 BP window). The right margin (blue symbols) lists the individual motif, with at least one match 2 KB upstream, for

which increased motif occurrence was most significantly associated with S100a9 coexpression (i.e., lowest p-value with Z . 0).
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ample support in our analyses, while both factors have been impli-
cated in S100a9 regulation by prior experimental work as well35,38.

SPI1/PU.1 is an ETS family transcription factor that, like other
ETS factors, exhibits affinity for sequences featuring a GGA(A/T)
core motif43. In our study, motifs containing this element were fre-
quently overrepresented among S100a9 coexpressed genes, indi-
cative of an association between ETS family transcription factors
and S100a9 coexpression, and overall, the strongest trends were
associated with motifs recognized by SPI1/PU.1 (see Figure S20 sum-
mary). The region upstream of the mouse and human S100a9 gene
contains multiple SPI1/PU.1 motifs, although it is unknown whether
SPI1/PU.1 directly interacts with these sites; however, one study
reported 10-fold increased expression of S100a9 following retroviral
replacement of SPI1/PU.1 in mouse myeloid cells35. Basal expression
of SPI1/PU.1 is highest in lymphoid cells, but its expression can also
be induced by cytokines such as IFNc45. Within aging tissues, the role
of SPI1/PU.1in driving increased S100a9 expression would most
likely occur in the context of local inflammatory reactions, such as
those involving microglia in the central nervous system10, or perivas-
cular formation of leukocyte clusters consisting of infiltrating mono-
cytes, B-cells, T-cells, dendritic cells and macrophages4,5. Formation
of such lymphoid structures in vascular tissues provides a platform
for subsequent expansion of inflammatory cell populations, which is

likely to at least partly account for elevation of S100a8 and S100a9
with aging (Figures 1 and S4). Within these contexts, production of
S100a9 by resident and/or infiltrating myeloid cells, enforced by
SPI1/PU.1, may serve as a feed-forward process that both activates
and is responsive to inflammatory signals, ultimately providing a
mechanism by which inflammatory reactions become self-sustaining
and chronic (Figure 8F). Nevertheless, we expect that the contri-
bution of this mechanism to inflammatory processes will vary among
tissues, or potentially, may differ between the sexes4. For instance, in
kidney and lung, our data show that expression of the gene encoding
SPI1/PU.1 is more strongly increased in males as compared to
females (Figures 8C and 8D).

SATB1 (special AT-rich sequence binding protein 1) is a chro-
matin organizing factor that controls gene expression by packaging
chromatin into dense loops and by facilitating the aggregation of
chromatin remodeling enzymes in specific domains46. Absence of
SATB1 binding sites (AATTTT) was a strong predictor of S100a9
coexpression for nearly every cell type we considered (see Figure S21
summary). This was surprising, since initially, we expected that
S100a9 coexpression would be closely associated with increased
abundance of certain motifs, rather than their absence. However,
absence of SATB1 binding sites in regions surrounding S100a9 coex-
pressed genes may allow for an expanded chromatin structure that

Figure 6 | Top-ranked transcription factor motifs that predict S100A9 coexpression (32 human cell types). Motifs listed in the left margin were selected

based upon the three criteria described in the Figure 3 legend. Positive Z statistics (red heatmap colors) indicate that increased motif occurrence within

2 KB upstream regions was associated with increased probability of S100a9 coexpression. Negative Z statistics (green heatmap colors) indicate that

decreased motif occurrence 2 KB upstream was associated with increased probability of S100a9 coexpression. For each cell type (columns), the percentage

shown in parentheses is the fraction of microarray samples for which S100a9 was expressed above background.
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increases accessibility of proximal cis regulatory elements38. In mouse
keratinocytes, SATB1 binding occurs near the epidermal differenti-
ation complex containing the S100a9 gene, leading to a compressed
chromatin conformation38. This action is proposed to repress gene
expression, since SATB1-null mice exhibit greater than 5-fold eleva-
tion of S100a8 and S100a938. In our study, SATB1 motifs were under-
represented in regions proximal to S100a9 coexpressed genes. One
possible explanation for this result is that an expanded chromatin
structure, facilitated by a deficiency of SATB1 binding sites, is instru-
mental for cis regulation of S100a9 and other co-regulated genes.
Such indirect regulation of S100a9 would represent an elegant
instance in which a pro-inflammatory transcript is controlled by
the balance of two sequence-mediated processes – the higher order
control of chromatin packaging by SATB1 – and secondly, by loca-
lized interactions between cis regulatory elements and their activ-
ating transcription factors (e.g., SPI1/PU.1).

Transcriptional regulation can depend upon the cooperative inter-
actions among DNA-binding proteins recruited to a given locus47,
and such interactions are especially common among the ETS family
transcription factors48. Since an abundance of motifs was signifi-
cantly associated with S100a9 coexpression in most cell types, we
considered whether such motifs were co-localized in compact se-
quence regions upstream of the mouse or human S100a9 gene. In
mouse, the region 150–250 BP upstream of S100a9 contained a high

density of motifs significantly enriched among S100a9 coexpressed
genes (Figure 5). Within this region, we have highlighted a 13 BP
element with overlapping binding sites for SPI1/PU.1 and STAT3
(Figure S10). The forward strand (5-ATGGAAGGGAAGT-3) fea-
tures multiple binding sites for SPI1/PU.1 (i.e., AGGAAGT and
GGAAG), while the reverse strand (5-ACTTCCCTTCCAT-3) fea-
tures multiple STAT3 binding sites (i.e., TTCC) (Figure S10). It is
interesting to speculate that cooperative interactions between STAT3
and SPI1/PU.1 may occur at this locus, particularly since these fac-
tors belong to the same transcriptional regulatory network, in which
transcription of the gene encoding SPI1/PU.1 is induced by STAT349,50.
With regard to the human S100A9 gene, regulatory elements have
previously been identified less than 600 BP upstream from the tran-
scription start site30,32,51. Surprisingly, however, we identified a region
930–1030 BP upstream as most strongly enriched with matches to
those motifs overrepresented among S100A9 coexpressed genes
(Figure S13). A key feature of this region was a 19 BP GC-rich
element including motifs recognized by OVOL2/MOVOB, WT1
and SP1 (Figure S14). This element was also located 12 BP from a
SPI1/PU.1 binding site, raising the possibility of interactions between
SPI1/PU.1 and a partner factor with affinity for GC-rich motifs52.

The importance of the S100a8-S100a9 heterocomplex as a medi-
ator of acute inflammatory reactions is well established11–13, but the
role of S100a8–S100a9 in low grade chronic inflammation during

Figure 7 | Bivariate motif combinations that best predict S100A9 coexpression in 32 human cell types. For each cell type, the right margin lists the

bivariate motif model that best predicted S100A9 coexpression for each cell type (AIC criterion). Bivariate models were chosen and evaluated as described

in the Figure 4 legend.
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aging has not been investigated. Many genes have been reported to
increase or decrease expression with aging. However, when data are
compared among multiple laboratories, few genes exhibit robust
trends similar to those we have described for S100a8 and S100a94,53,54.
This paper, therefore, supports a role for S100a8–S100a9 in the
process of mammalian aging, and emphasizes the need for further
studies of S100a8–S100a9 as a mediator of age-associated inflam-
mation. Within this context, we have developed a strategy for the
large scale and cell type-specific identification of cis regulatory
mechanisms. At present, many transcription factor target gene anno-
tations are generic, with a certain factor X recognized as regulating a
target gene Y, but without any reference to the cell type in which this
interaction takes place. Such TF-target relationships, however, may
differ among the heterogeneous collections of cell types that interact
in most mammalian disease processes55. The approach developed
here illustrates one strategy for generating cell type-specific hypo-
theses of mammalian gene regulation. We anticipate that this strat-
egy will become more powerful in future work, as we build a more
comprehensive knowledge of binding affinities for mammalian tran-
scription factors, leading to increasingly refined motif dictionaries
that can be used to interrogate coexpression networks56–58. This can

facilitate the construction of multicellular gene regulatory networks
that, by linking inter-cellular interactions with the intracellular
mechanisms governing transcription, may better capture the
dynamic processes that drive aging and disease in mammals.

Methods
Ethics statement. This study was conducted in compliance with good clinical practice
and according to the Declaration of Helsinki principles. Informed written consent
was obtained from all human subjects, under protocols approved by the University of
Michigan institutional review board (HUM00037994). All animal protocols were
approved by the University of Michigan committee on the use and care of animals
(018 ARF 5614).

Meta-analysis of age-associated gene expression patterns. The effects of aging on
gene expression in mice were evaluated using the Affymetrix Mouse Genome 430 2.0
array, while the effects of aging in humans were evaluated using the Affymetrix
Human Genome U133 Plus 2.0 array. Expression analyses of CB6F1 mouse tail skin
and human sun-protected skin biopsies (Figure S1) were carried out by our laboratory
as described in an earlier publication4, and raw data are available from Gene
Expression Omnibus (GSE35322 and GSE13355). To evaluate aging effects in other
tissues (Figure 1), we utilized Affymetrix datasets aggregated and described in an
earlier publication4, although we have updated this collection to include recently
released datasets, which here allowed us to also evaluate the effects of aging on gene
expression in CB6F1 liver (GSE20426), C57BL/6 aorta (GSE32937), C57BL/6 HSCs

Figure 8 | Aging increases mRNA and protein levels of SPI1/PU.1 with an overlapping distribution of SPI1/PU.1 and S100a9 in older tissues
(CB6F1 mice). RT-PCR was used to evaluate the expression of SPI1/PU.1 mRNA in (A) tail skin, (B) liver (C) kidney and (D) lung of CB6F1 mice

scarified at 5 or 30 months of age. Expression was normalized to 18S ribosomal RNA (Rn18s). An asterisk symbol denotes a significant difference between

young and old mice of the same sex (P , 0.05; two-tailed t-test). In part (E), immunostaining for SPI1/PU.1 showed increased abundance of SPI1/PU.1 in

older tissues (top panels), with increased nuclear SPI1/PU.1 and elevation of S100a9 in cytoplasmic regions (bottom panels; red 5 SPI1/PU.1; green 5

S100a9; blue 5 DAPI). (F) Proposed model by which over-production of S100a9 engenders a pro-inflammatory microenvironment, with sustained

activation of the RAGE and NF-kB, leading to recruitment and migration of leukocytes into local tissues. This in turn leads to further infiltration by

inflammatory cell types that actively transcribe S100a9, driving a self-reinforcing cycle that sustains inflammation and lymphoid aggregation with aging.
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(GSE27686), C57BL/6 B1 cells (GSE28887) and human HSCs (GSE32719 and
GSE32725). Effects of aging on gene expression were evaluated using two-sample
comparisons (old vs. young) with empirical Bayes methods59, or if samples were
available across a spectrum of individuals varying continuously in age, effects of aging
were evaluated using robust regression4. All calculations were performed using log2-
scaled expression scores generated by Robust Multichip Average (RMA)
normalization60.

Motif dictionary. We have described an in silico procedure for screening sets of
S100a9 coexpressed genes in order to identify motifs over- or under-represented
among genomic sequences associated with such genes (e.g., 2 KB upstream regions;
see Figure 2). An important first step for implementing this procedure was to generate
a high-quality dictionary of motifs for mouse and human TFs and other DNA-
binding proteins or complexes. For this purpose, an initial set of 2105 probability
matrices representing binding preferences of known DNA-binding proteins or
complexes was obtained from the Jaspar56, UniPROBE57 and TRANSFAC58

databases, including 145 matrices from the Jaspar CORE vertebrate collection, 295
matrices from UniPROBE, and 1665 matrices from TRANSFAC. Of the 1665
TRANSFAC matrices, we excluded 846 that were not associated with vertebrate
species or were already included among those obtained from UniPROBE. This
yielded a total of 1259 matrices from all three databases. Each matrix was trimmed to
remove columns with low information content at the flanks. Starting at each flank,
columns were removed until two consecutive columns with information content
greater than 0.25 was encountered. For 9 matrices, this trimming procedure
engendered a low information content matrix with fewer than five columns, and such
matrices were excluded from further analysis. For the remaining 1250 matrices, a
redundancy search was performed to identify very similar matrix models. We
identified 41 redundant matrices that shared the same consensus sequence with
another matrix, where the difference in base-specific probability estimates differed by
less than 0.20 on average. These 41 matrices were removed from consideration,
leaving a final set of 1209 matrix models with limited redundancy. These 1209 matrix
models were included in our screening procedures. Motif labels shown in our results
(e.g., Figures 3 and 6) include the gene symbol for the associated TF or DNA-binding
protein, an identifier corresponding to the matrix ID used in the source database
(JASPAR, UniPROBE or TRANSFAC), and the representative consensus sequence.
JASPAR IDs start with ‘‘MA’’, TRANSFAC IDs start with ‘‘V$’’, and UniPROBE IDs
start with ‘‘UP’’.

Genome scans to identify motif matches. Genomic sequences associated with
mouse and human genes were scanned for matches to the 1209 matrix models
included within our motif dictionary. Sequences were obtained from Bioconductor
packages (BSgenome.Mmusculus.UCSC.mm9 and BSgenome.Hsapiens.UCSC.hg19),
and coordinates for each gene were defined based upon refGene files from UCSC
(mm9 and hg19). Repetitive DNA, assembly gaps and coding regions were masked
for all genome scans. In some cases, we also masked less conserved portions of
genomic sequences (i.e., Figures S9A and S12A). In such cases, sequences were
masked using base-specific PhastCons scores, which range from 0 to 1 for each base,
and can be interpreted as the probability that a given base is within a conserved
element61. For mice, PhastCons scores were derived from the alignment of 29
vertebrate genomes with the mouse genome, while for humans, scores were generated
from the alignment of 45 vertebrate genomes with the human genome. For a given
sequence, the median PhastCons score across all bases was calculated, and if this
median was less than 0.70, we masked out sequences with a PhastCons score less than
the median. If the median was greater than 0.70, we masked any sequence with a
PhastCons score less than 0.70. For all genome scans, motif matches were identified
based upon position weight matrices (PWM), with a match identified only for those
loci in which the PWM matching score was greater than 80% of the maximum
matching score for that PWM matrix4,62. Background frequencies used to construct
position weight matrices varied slightly (0.20–0.30), depending upon the genome
region scanned, and were calculated by pooling of frequencies across all 2 KB
upstream regions, all intronic regions, or all intergenic regions in the mouse or
human genomes, respectively4.

Identification of S100a9/A9 coexpressed genes in 30 mouse and 32 human cell
types. We generated cell type-specific sets of S100a9/A9 coexpressed genes
(Figures 2A and 2B), corresponding to local coexpression networks immediately
surrounding S100a9/A9 for each of 30 mouse and 32 human cell types (Figure 2C).
We first assembled 43 datasets, where each dataset contained microarray samples
corresponding to a specific cell type (Affymetrix Mouse Genome 430 2.0 platform).
Likewise, to identify genes coexpressed with S100A9 in humans, we assembled 44
datasets, where each dataset contained microarray samples generated from a specific
cell type (Affymetrix Human Genome U133 Plus 2.0 platform). The mouse datasets
included a combined total of 3555 microarray samples, with a median of 41 samples
per cell type (minimum 5 9, skin fibroblasts; maximum 5 393, macrophages).
Human datasets included a combined total of 8572 microarray samples, with a
median of 111 samples per cell type (minimum 5 10, Raji cells; maximum 5 799,
CD1381 cells). For each dataset, we calculated the percentage of probe sets for which
S100a9/A9 was expressed significantly above background (mouse probe set id:
1448756_at; human probe set id: 203535_at), based upon presence/absence calls
generated by the MAS 5.0 algorithm (Wilcoxon signed rank test)63. We identified 13
mouse datasets for which S100a9 (1448756_at) was not expressed significantly above
background on any microarray, as well as 9 human datasets for which S100A9

(203535_at) was not expressed significantly above background on any microarray.
These datasets were removed and thus we base our analysis on datasets corresponding
to 30 mouse cell types and 32 human cell types, where S100a9/S100A9 was expressed
significantly above background for at least one of the microarray samples within each
dataset.

Mouse and human datasets for each cell type were normalized using RMA60. For
each probe set, we subtracted the mean expression across all samples to yield scores
reflecting deviation from average expression among all samples. These scores were
then scaled to have the same standard deviation across samples within each dataset.
We next calculated the Spearman correlation coefficient between scores for all probe
sets and scores for the probe set associated with S100a9 in mouse (1448756_at) or
S100A9 in humans (203535_at). Probe sets were ranked according to this correlation,
and we selected a set of S100a9/A9 coexpressed probe sets based upon the approach
illustrated in Figure 2A. The foreground set of S100a9/A9 coexpressed genes was
defined as the non-redundant set of genes associated with those probe sets coex-
pressed with S100a9/A9 for a given cell type. Since our ranking procedure included
only positive correlation estimates, foreground gene sets are defined based upon the
level of positive correlation with the S100a9/A9 expression pattern (rs . 0), excluding
genes with a negative or inverse correlation with the S100a9/A9 expression pattern (rs

, 0).
Statistical analyses required that we define a background gene set for each cell type,

where this set contained genes for which there was little evidence of either a positive or
negative correlation with the S100a9/A9 expression pattern. To identify this back-
ground set of genes, we defined two gene sets (A and B), where A contained genes
positively correlated with the S100a9/A9 expression pattern and B contained genes
negatively correlated with the S100a9/A9 expression pattern. The background gene
set was then defined as all genes in the genome excluding any gene within sets A and B.
Set A was defined by applying the ranking procedure shown in Figure 2A to all probe
sets with a positive correlation estimate (with probe sets ranked according to r2

s rather
than r7

s ). Similarly, set B was defined by applying the ranking procedure shown in
Figure 2A to all probe sets with a negative correlation estimate (with probe sets ranked
according to r2

s rather than r7
s ). Ranking transcripts according to r2

s rather than r7
s had

the effect of creating a less steep curve (Figure 2A) and thus expanding the set of genes
included within sets A and B. This ensured that set A was larger than the foreground
gene set and ensured that the background gene set did not include genes with even a
modest level of association with the S100a9/A9 expression pattern. This procedure
also ensured that foreground and background gene sets would be distinct for each cell
type.

Composite sets of S100a9/A9 coexpressed genes were identified following the same
ranking procedure shown in Figure 2A. However, probe sets were ranked according
to their (weighted) average correlation with S100a9/A9 across all 30 mouse cell types
or all 32 human cell types. For any one probe set x, the Spearman correlation between
x and S100a9/A9 (1448756_at/203535_at) was independently calculated for all cell
types. A weighted average of correlation estimates was then calculated, with greater
weight assigned to correlations estimated from cell types for which more data was
available (e.g., macrophages, n 5 393 samples for mice), with less weight assigned to
correlations estimated based upon cell types for which less data was available (e.g.,
skin fibroblasts, n 5 9 samples for mice). The procedure was repeated for all probe
sets, which were then ranked according to the weighted average correlation (similar to
Figure 2A). Because average correlation estimates calculated from many cell types
tended to generate a steep curve (Figure 2A), one further modification was that probe
sets were ranked according to r3

s rather than r7
s . This increased the size of the fore-

ground gene set such that similar sizes were obtained for both composite and cell
type-specific foreground gene sets.

Semiparametric generalized additive logistic models. Semiparametric generalized
additive logistic models (GAM) were used to test for a significant association between
S100a9/A9 coexpression and counts reflecting the number of motifs associated with
genes in foreground and background gene sets64. For each cell type and motif, a 0–1
response variable was generated to denote whether a gene belonged to the foreground
gene set (coded 1) or background gene set (coded 0). Two predictor variables were
included within each model, including log-transformed length of sequence scanned
for a given gene (x1) and the number of motif sites detected within the sequence (x2)
(Figure 2D). Length of sequence scanned varied among genes due to masking or
inherent differences in the amount of intronic sequence or adjacent intergenic
sequence. Including x1 within models was thus necessary to estimate the effect of
motif frequency on coexpression probability while controlling for variation in the
length of sequence scanned for each gene65. For each GAM model, x1 was included as
a non-parametric term with cubic spline smoothing, while x2 was included as a
parametric term. Model fitting was performed using the backfitting procedure with
the binomial family error distribution and logit link function64. Given these
procedures, we assume that the logit of the probability of coexpression is linearly
associated with x2; however, we make no such assumptions involving x1 but instead
estimate this relationship non-parametrically using spline smoothing64. In
preliminary work, we noted that the largest residuals for fitted models usually
occurred for genes with extremely short or long sequences. To improve overall fit,
therefore, models were fit after excluding sequences of extreme length (1–5%
excluded depending upon the genome region scanned). The association between
motif frequency and S100a9/A9 coexpression probability was evaluated based upon
the coefficient estimate associated with x2. For each coefficient, a Z statistic was
generated, with Z . 0 indicating that increased motif frequency was associated with
increased probability of S100a9/A9 coexpression, and Z , 0 indicating that decreased
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motif frequency was associated with decreased S100a9/A9 coexpression. Given the
large number of genes included within the procedure, Z statistics were assumed to
follow a normal distribution under the null hypothesis of no association between
motif frequency and S100a9/A9 coexpression66. P-values were thus calculated for
each motif using Z statistics and the standard normal distribution. For each cell type,
separate models were fit for all 1209 motifs included within our dictionary, leading us
to expect that ,60 significant motifs would be identified by chance for a given cell
type (a 5 0.05). In our results, therefore, we have also reported significance calls based
upon a more stringent FDR threshold, which was calculated directly from raw p-
values by applying the Benjamini-Hochberg correction67.

We have highlighted motifs most significantly enriched among S100a9 coex-
pressed genes in the composite network, motifs most frequently enriched among
S100a9 coexpressed genes across all mouse or all human cell types, or those motifs
most significantly enriched among S100a9 coexpressed genes in the ten cell types with
highest S100a9 expression (Figures 3, 6, S9 and S12). In some cases, top-ranked motifs
shared similar features; for instance, in Figure 6, several motifs have high GC content.
We therefore performed secondary analyses to determine which motif features best
distinguish enriched motifs (P , 0.05 with Z . 0) from all other non-significant
motifs (Figures S9D and S12D). For these analyses, we assigned a score to each motif
that was proportional to how well it matched k-mers of length 2, 3, 4 or 5. This was
done for each motif and each of the 690 possible non-redendant k-mers of length 2, 3,
4 or 5. Given column position j in a position probability matrix (PPM) (j[1:::n),
matrix values from rows corresponding to a given k-mer were selected, and the
minimum of these values was determined. This minimum value was calculated for
each of the PPM columns (j 5 1, …, n) and the maximum of these minimum values
was calculated (m1). The procedure was repeated for the reverse complement of the k-
mer (yielding m2). The k-mer score with respect to the PPM was then assigned as the
larger of these two maximum values (i.e., max(m1, m2)). For each cell type, we
evaluated all 690 k-mers to identify those with scores significantly greater among
motifs enriched among S100a9 coexpressed genes (P , 0.05 with Z . 0) relative to all
other motifs included in our screen (two-sided T-test; see Figures S9D and S12D).

RT-PCR and immunohistochemistry. Tissue samples were obtained from young,
middle-aged and old CB6F1 mice that had been fasted 6 – 8 hours prior to sacrifice4.
Tissue used for subsequent RNA extraction was stored in RNAlater solution (Qiagen
cat. no. 76106) and initially placed at 4uC for 24 hours and then transitioned to 220uC
for long-term storage. Separate samples used for histochemisty were formalin-fixed
and paraffin-embedded. For RNA work, samples were disrupted using a rotor-stator
homogenizer and RNA extractions were performed using the Qiagen RNeasy Fibrous
Tissue kit (Qiagen cat. no. 74704), with on-column DNAase digestion (Qiagen cat.
no. 79254). Quantification of RNA was carried out using the NanoDrop
spectrophotometer and quality of RNA was evaluated using the Agilent Bioanalyzer.
RT-PCR was performed using commercially available pre-designed primer assays
(Applied Biosystems; catalog numbers #Mm00488142_m1 (mouse SPI1/PU.1),
#Mm00656925_m1 (mouse S100a9), and #Hs00610058_m1 (human S100A9)). For
diaminobenzidine and double fluorescence staining of formalin-fixed paraffin-
embedded tissue, we used goat anti-mouse S100A9 polyclonal antibody (0.5 mg/mL;
R&D Systems, cat. no. AF2065), SPI1/PU.1 polyclonal antibody (1–2 mg/mL; Cell
Signaling Technology, cat. no. 2266S), rat anti-mouse F4/80 (5 ug/ml; eBioscience,
cat. no. 14–4801), rat anti-mouse GR1 (2 ug/ml; abcam, cat. no. ab2557), and rabbit
anti-mouse/human CD3 (15100 dilution; genetex, cat. no GTX16669).

Image quantification. Diaminobenzidine and fluorescent staining intensities were
quantified to facilitate interpretation and objective comparison among
immunohistochemical images (Figures 8E, S2, S5, S6, S7, S8, S15, S16, S17 and S18).
As an initial step, all pixels from an image were categorized as background or non-
background. For each pixel, we calculated the value X 5 min(R, G, B), where R is the
red channel intensity on the RGB scale (0–255), G is the green channel color intensity
on the RGB scale, and B is the blue intensity on the RGB scale. The distribution of X
across pixels was generally bimodal, with background pixels belonging to either the
lower (black) or upper (white) regions of the distribution. The expectation
maximization (EM) algorithm was therefore used to estimate the threshold value of X
distinguishing the background and non-background distributions. We utilized a
standard implementation of the EM algorithm for mixture of univariate normal
distributions (i.e., function ‘‘normalmixEM’’ from R package ‘‘mixtools’’). After an
appropriate threshold was determined for an image, the average red or green intensity
of non-background pixels was calculated. The red intensity value for the ith non-
background pixel was calculated as REDi 5 Ri – max(Bi, Gi), while the green intensity
value for the ith non-background pixel was calculated as GREENi 5 Gi – max(Ri, Bi).
The average red intensity for an image was calculated as the average value of RED
among all non-background pixels, while the average green intensity for an image was
equal to the average value of GREEN among all non-background pixels.
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