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Pathological studies on Parkinson’s disease (PD) patients suggest that PD pathology progresses from the
enteric nervous system (ENS) and the olfactory bulb into the central nervous system. We have previously
shown that environmental toxins acting locally on the ENS mimic this PD-like pathology progression
pattern in mice. Here, we show for the first time that the resection of the autonomic nerves stops this
progression. Moreover, our results show that an environmental toxin (i.e. rotenone) promotes the release of
alpha-synuclein by enteric neurons and that released enteric alpha-synuclein is up-taken by presynaptic
sympathetic neurites and retrogradely transported to the soma, where it accumulates. These results strongly
suggest that pesticides can initiate the progression of PD pathology and that this progression is based on the
transneuronal and retrograde axonal transport of alpha-synuclein. If confirmed in patients, this study would
have crucial implications in the strategies used to prevent and treat PD.

he significance of peripheral nervous system (PNS) pathology in PD has been a source of controversy over

the last number of years. Different studies suggest that, in idiopathic PD (iPD) patients, PD-related patho-

logy (Lewy Bodies and Lewy Neurites) is present in the enteric nervous system and the olfactory bulb before
progressing into the central nervous system (CNS)' . Lewy bodies (LB) and neurites (LN) are intracytoplasmatic
inclusions mainly consisting of alpha-synuclein®. Based on these observations, Braak and colleagues developed a
pathological staging of the disease that correlates well with the clinical progression of the disease®”. One hypo-
thesis to explain Braak’s staging is the ENS spreading hypothesis. It suggests that environmental insults (toxins or
pathogens) acting on the PNS could trigger the appearance and progression of PD into and through the CNS.

Previously, we showed that the local effect of an environmental toxin (i.e. rotenone) on the ENS was sufficient
to reproduce Braak’s staging in mice®. Interestingly, all neuronal structures affected were primarily or secondarily
connected to the ENS. Based on these results, we hypothesized that the local action of environmental toxins on the
ENS leads to the appearance of PD pathology in the ENS and triggers its progression into the CNS through
synaptically connected structures via the sympathetic and parasympathetic nerves.

There are different studies supporting the presence of transneuronal transport of alpha-synuclein in PD.
Accumulation of alpha-synuclein was detected within grafted neurons in cerebral tissue obtained from PD
patients who had received mesencephalic embryonic transplants®''. On the other hand, ex vivo and in vivo
studies have shown that the alpha-synuclein observed in grafted cells came from neighboring neurons'.
Experiments using tumor-derived cell lines (e.g. neuroblastoma cells) overexpressing alpha-synuclein have
shown that it can be exocytosed'®. Altogether, these studies suggest that PD pathology progresses within the
nervous system, and that, in the cases of alpha-synuclein over-expression, this progression could be based on the
transneuronal transport of alpha-synuclein between different neuronal populations.
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Due to the limitations of appropriate artificial promoters, current
genetic models of PD using alpha-synuclein over-expression may not
be able to explain the appearance and progression of the disease in
most PD patients (i.e. iPD patients). Genetic forms of PD linked to
alpha-synuclein account for less than 1 to 3% of typical late-onset PD
and perhaps 20% of young-onset PD'* and do not show the same
clinical and pathological progression pattern. Therefore, they cannot
explain the appearance and progression of the disease in most PD
patients. Moreover, embryonic or tumor derived cells, used as alpha-
synuclein donors and acceptors, could show alterations in membrane
trafficking with enhanced or reduced autophagy as observed in other
cell types''. This could have consequences in their response to
external cues and internal alpha-synuclein over-expression when
compared to normal neurons. All of this may lead to results that
poorly reflect the true pathological conditions. Further, these results
do not take into account different studies linking PD to the exposure
to environmental toxins'”'®, especially pesticides that impair mito-
chondrial function, which results in increased oxidative stress'.

If our hypothesis is correct, the resection of some of the connecting
nerves between the CNS and the gut (i.e. the sympathetic and para-
sympathetic nerves) in our mouse model should delay or block the
pathological progression into the CNS and delay the appearance of
motor related symptoms. On the other hand, in order to trigger the
progression of PD-like pathology, pesticides must induce the abnor-
mal secretion of a cellular component or components responsible for
this progression. In this study, we tested these hypotheses using an in
vivo PD model and in vitro primary cell cultures.

Indeed, our results show that the resection of sympathetic and
parasympathetic nerves delays the appearance of motor symptoms
and stops the progression of PD-like pathology to the previously
connected neurons within the intermediolateral column of the spinal
cord (IML), the vagal dorsal motor nuclei (DMV) and the substantia
nigra (SN). Using enteric and sympathetic neuronal cultures, we
show that rotenone induces the abnormal release of alpha-synuclein
into the medium and that this alpha-synuclein can be up-taken,
retrogradely transported (in neurons) and accumulated inside other
cells (neuronal and non-neuronal).

Results

In order to confirm that the progression of the pathology occurred
through the sympathetic and parasympathetic nerves, we performed
either a hemivagotomy (i.e. the resection of the truncus vagalis
anterior) or a partial sympathectomy (i.e. the removal of the nervus
mesentericus inferior along the arteria mesenterica inferior) on mice
prior to oral rotenone treatment. The operations had a 5% intra-
operative death rate during partial sympathectomy. This was mainly
caused by the accidental tearing of the arteria mesenterica inferior.
The overall death rate on operated mice was of 10% in partial sym-
pathectomized and 5% in hemivagotomized mice. We did not
observe any complications or alterations in the behavior or daily life
of operated mice.

Hemivagotomy and partial sympathectomy delay the appearance
of motor but not gastrointestinal symptoms in oral rotenone
treated mice. Throughout the treatment, we analyzed the motor
and gastrointestinal functions of the mice using an accelerating
protocol of the rotarod* and the 1-hour stool collection® tests. In
agreement with our previous study, there was a significant alteration
in motor function in Non-Operated Rotenone Treated (NORT) mice
when compared to CONTrols (CONT) in the third (CONT.3M: 35
+ 2.145 sec; NORT.3M: 23.711 = 1.113 sec; p<0.001) and fourth
(CONT.4M: 34.211 = 1.707 sec; NORT.4M: 21.384 *+ 0.926 sec;
p<0.001) month of treatment as shown in Figure 1A. Remarkably,
Hemivagotomized Rotenone-Treated (HRT) and Sympathecto-
mized Rotenone-Treated (SRT) mice only showed motor altera-
tions in the fourth (HRT.4M: 27.038 * 1.133, p<<0.01; SRT.4M:

26.038 * 1.280; p<<0.01) but not the third month (HRT.3M: 31.75
%+ 1.691; p>0.05; SRT.3M: 32.403 *+ 1.511; p>0.05) of treatment as
can be observed in Figure 1A. These results show that the appearance
of motor alterations in HRT and SRT mice was delayed when
compared to NORT mice.

In order to rule out the possibility of any observed difference being
the effect of gastrointestinal alterations, we also analyzed whether
either the hemivagotomy or the partial sympathectomy had any
impact on gut motility using the 1 hour stool collection test as per-
formed by others*'. Animals that had survived the operation showed
a decrease in gut motility in the 1-hour stool collection test one week
after the operation, shown in Figure 1B. They recovered from this
decrease within 3 weeks had similar gut motility values to non-oper-
ated mice by the start of treatment. This suggests that this transitory
effect was due to the operation itself and not to the removal of the
nerves. As shown in Figure 1C, the analysis of the intestinal function
also showed that rotenone treatment decreased gut motility. NORT
(NORT.1IM: 0.282 = 0.018; NORT.2M: 0.272 = 0.009; NORT.3M:
0.245 = 0.015; NORT.4M: 0.230 = 0.009) and HRT (HRT.IM:
0.293 = 0.013; HRT.2M: 0.255 = 0.012; HRT.3M: 0.259 * 0.011;
HRT.4M: 0.228 * 0.010) mice had a similar significant decrease in
gut motility when compared to CONT (CONT.1M: 0.307 = 0.019;
CONT.2M: 0.340 = 0.022; CONT.3M: 0.327 = 0.018; CONT.4M:
0.292 * 0.019) mice from the second month of treatment on. This
suggests that the impairment in gut motility was due to the local
effect of this pesticide on the ENS in both mice groups and correlates
well with intestinal non-motor alterations observed in PD patients*.
Interestingly, the appearance of gut motility problems was delayed in
SRT mice (SRT.1M: 0.310 * 0.027; SRT.2M: 0.292 * 0.016; SRT.3M:
0.315 * 0.026; SRT.4M: 0.225 = 0.010), where a significant decrease
in gut motility was observed only after 4 months of treatment
(Figure 1C). This suggests that in these mice, despite not affecting
gut motility, partial sympathectomy may have altered intestinal rote-
none absorption.

Hemivagotomy and partial sympathectomy stop PD-like patho-
logy progression into previously connected structures. We then
investigated the effect of these operations in the progression of
PD-related pathology (i.e. alpha-synuclein accumulation). Alpha-
synuclein accumulation in the IML and the DMV nuclei was
quantified on images captured from tissue sections immunostained
with antibodies against of Choline Acetyltransferase (ChAT) and
alpha-synuclein by using the FIJI software.

We first analyzed alpha-synuclein accumulation in the IML of
CONT, NORT and SRT mice (Figure 2A-D) using a previously
described image analysis method®. We observed a general increase
of alpha-synuclein in NORT and in the upper thoracic regions of
SRT mice when compared to CONT mice (Figure 2E). A detailed
analysis of the different spinal cord regions showed that the amount
of alpha-synuclein inside ChAT* neurons of the IML was signifi-
cantly increased in the thorax medium (CONT.2M: 1.221 =* 0.080;
CONT.4M: 1.212 = 0.032; NORT.2M: 1.459 = 0.05107; NORT.4M:
1.460 = 0.035), thorax inferior (CONT.2M: 1.1733 * 0.052;
CONT.4M: 1.209 % 0.075; NORT.2M: 1.436 = 0.072; NORT.4M:
1.399 * 0.041) and thoracolumbal IML (CONT.2M: 1.114 = 0.050;
CONT.4M: 1.188 * 0.049; NORT.2M: 1.343 = 0.023; NORT.4M:
1.33 = 0.033) of NORT mice when compared to CONT.4M mice
(p<<0.01) after 2 and 4 months of treatment. The IML of both the
thorax medium (SRT.2M: 1.195 * 0.022; SRT.4M: 1.362 * 0.022)
and thorax inferior (SRT.2M: 1.223 = 0.024; SRT.4M: 1.342 + 0.024)
regions (still connected to the gut of SRT mice) showed a significant
increase (p<<0.05) in alpha-synuclein when compared to CONT.4M
mice after 4 but not 2 months of treatment. This increase was com-
parable to 4 months treated NORT mice (p>0.05). Remarkably, in
SRT mice, the IML of the thoracolumbal region (corresponding
to the sympathectomized ganglia) did not show an increase in
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Figure 1 | Hemivagotomy and partial sympathectomy delay the appearance of motor deficits but do not induce gastrointestinal functional alterations.
(A) Performance in the rotarod test using an acceleration protocol (0.3 rpm/sec) shows a delay in the appearance of symptoms in hemivagotomized or
partially sympathectomized mice when compared to rotenone treated non-operated mice. (B) Bar graph showing the results of the 1-hour stool collection
test one week after the operation. Hemi-vagotomized and partially sympathectomized mice show an acute transient decrease in gut motility just after the
operation. (C) Bar graph showing the results of 1-hour stool test during rotenone treatment. Gut motility recovered and was equal to control until the first
month of treatment. Rotenone treatment induces a progressive decrease in gut motility. CONT: control, NORT: non-operated rotenone treated, SRT:
sympathectomized rotenone treated and HRT: hemivagotomized rotenone treated mice. Error bars in all graphs represent s.e.m. * is P<<0.05.

alpha-synuclein after 2 (SRT.2M: 1.206 * 0.049) or 4 months
(SRT.4M: 1.084 = 0.034) when compared to CONT.4M mice
(p>0.05) (Figure 2E).

We then analyzed the effect of rotenone treatment on the DMV. In
order to confirm that the hemivagotomy had been successful and to
analyze its effect on ChAT™ neurons after 2 and 4 months, we esti-
mated the number ChAT™ neurons in the DMV by stereological
analysis using the Stereolnvestigator software. It has been shown that
hemi-vagotomy induces neuronal death in the DMV ipsilateral to the
sectioned nerve®. Indeed, we observed a significant reduction in the
number of ChAT* neurons in the DMV ipsilateral to the sectioned
nerve of HRT mice when compared to the non-vagotomized DMV
(p<<0.01). As shown in Figure 3E, this could be observed in mice
examined after 2 (HRT.2M: 39.75% = 6.9) and 4 (HRT.4M: 48.86%
¥+ 4.1) months of treatment (3 and 5 months after the hemivagot-
omy) when compared to 4 months CONT mice (CONT.4M: 6.86%

*+ 4) (p<<0.01) . Interestingly, the differences in neuronal population
between 2 and 4 months HRT mice was not significant (p>0.05),
suggesting that the degeneration process mainly occurred during the
first 3 months after the surgery.

In the brainstem, the great length of the DMV and the heterogen-
eity of the surrounding structures did not allow a quantitative com-
parison between groups as performed in the IML. Therefore, we
compared the intensity of alpha-synuclein between the right and left
DMYV. We observed a significant increase in the amount of alpha-
synuclein inside ChAT™ neurons of the DMV nucleus contralateral
to the hemivagotomy when compared to the ChAT™ neurons in the
ipsilateral nucleus (Figure 3C and D). This was obtained by mea-
suring the ratio of the median fluorescence intensity (MFI) of alpha-
synuclein inside ChAT" neurons from the non-vagotomized side
(right side, non-vagect. in Figure 3C) to the MFI of alpha-synuclein
in the hemivagotomized side (left side, vagect. in Figure 3C). In all
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Figure 2 | Sympathectomy of the nervus mesentericus inferior inhibits alpha-synuclein accumulation in the lumbal IML nuclei. (A-D) Confocal
images of thorax superior (A), thorax medium (B), thorax inferior (C) and lumbal (D) fluorescence intensity color-coded images of spinal cord sections
stained with rabbit anti-alpha-synuclein or goat anti-ChAT antibodies from SRT mice 4 months after treatment. Scale bar: 20 pm. (E) Quantification of
alpha-synuclein MFI rate between ChAT" and ChAT ™ areas in different regions of the spinal cord after 2 (n=8) and 4 months (n=8) of rotenone
treatment. CONT: control, NORT: non-operated rotenone treated and SRT: sympathectomized rotenone treated mice. Values for CONT. 4 months
(CONT.4M), NORT 4 months (NORT.4M) and SRT 2 (SRT.2M) and 4 (SRT.4M) months mice are grouped within the thoracic medium (Thorax Med.),
thoracic inferior (Thorax Inf.) and the thoracolumbal (Lumbal) regions of the spinal cord. All groups for each region are compared with the CONT.4M
group. Error bars represent (s.e.m.) values, n.s. is non-significant, * P<0.05, ** P<0.005, *** P<0.001.

slides, the MFI of alpha-synuclein from both sides was normalized to
the alpha-synuclein intensity in the same adjacent neutral region.
This ratio was significantly increased (p<<0.05) in HRT mice after 4
(HRT.4M: 1.24 = 0.048) but not 2 (HRT.2M: 1.03 * 0.046) (p>0.05)
months of rotenone treatment, when compared to 2 months and 4
months NORT (NORT.2M: 0.96 =+ 0.055; NORT.4M: 0.987 % 0.044)
and CONT (CONT.2M: 1.027 * 0.038; CONT.4M: 0.971 * 0.091)
mice (Fig. 3D). Importantly, these changes occurred without further
alterations in the population number of ChAT™ neurons inside the
DMV (Figure 3E), suggesting that this increase was due to the accu-
mulation of alpha-synuclein inside the ChAT™" neurons of the DMV
still connected to the gut.

Hemivagotomy prevents dopaminergic cell death in the ipsilateral
SN. The DMV is thought to be indirectly connected to the ipsilateral

dopaminergic neurons in the SN through multiple synapsis*.
Therefore, we analyzed whether the hemivagotomy would have an
effect on dopaminergic cell loss in the SN. For this, we compared the
number of TH* neurons in the SN pars compacta (SNpc) between
CONT, HRT and NORT mice after 4 months of treatment
(Figure 4A-C). Stereological analysis shows a significant decrease
in the number of neurons in NORT mice (total TH* neurons:
4,859.613 = 481.767) when compared to HRT (9,496.226 =+
844,757) (p<<0.05) or CONT (13,032.75 = 188.491) (p<<0.01) mice
after 4 months of treatment (Figure 4D).

Finally, we also compared the amount of dopaminergic neurons in
the left and right SNpc. As previously described*®, CONT mice had
similar amount of TH™ neurons on both sides of the SNpc, with a left
to right ratio (LRR) close to 1 (0.921 = 0.028) (Figure 4E).
Interestingly, in rotenone treated mice we observed differences in
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Figure 3 | Hemivagotomy prevents alpha-synuclein accumulation in the ipsilateral DMV. (A-C) Confocal images (single plane) of DMV sections
stained with rabbit anti-alpha-synuclein (green) and goat anti-ChAT antibodies (red) and with DAPI (blue) obtained from (A) control (CONT) (n=10),
(B) non-operated rotenone-treated (NORT) (n=9) and (C) hemivagotomized rotenone-treated (HRT) (n=9) mice 4 months after treatment. L, R, A
and P are left, right, anterior and posterior. Scale bar: 20 um. (D) Bar graph showing ratio between right and left alpha-synuclein MFI in the DMV of
CONT, NORT, and HRT 2 (2M) and 4 (4M) months after treatment. MFI intensity values were normalized to alpha-synuclein MFI of a neutral region.
(E) Bar graph showing the quantification of left to right difference in the number of ChAT* neurons inside the DMV in HRT mice after 2 and 4 months
compared to CONT mice after 4 months. Whiskers represent max.-min. values, n.s. is non-significant, * P<0.05 and ** P<0.01.

the lesion pattern between HRT and NORT mice. Whereas our
results show a non-significant increase of the LRR in the number
of TH* neurons in NORT mice (1.274 = 0.400, p=0.22), we did
observe a significant increase of the LRR in the number of TH*
neurons in HRT mice (1.982 * 0.240) (p<<0.05) when compared
to controls (Figure 4E). This was due to a different pattern in the
loss of TH* neurons. In HRT mice, cell loss occurred predominantly
in the right SNpc (with all left to right rate values above 1), in NORT
mice the laterality of the lesion changed from animal to animal with
rate values both above and under 1. Moreover, the number of TH*
neurons in the SNpc ipsilateral to the hemivagotomy (i.e. the left
side) in HRT mice (6,217.483 * 254.993) did not differ (p>>0.05)
from the number of dopaminergic cells in the left side of the SNpc in
CONT mice (6,244.027 *+ 102.864) (Figure 4F). Thus, suggesting
that the hemivagotomy prevented cell death in the ipsilateral SNc.

Taken together, these results show that the resection of some of the
nerves connecting the CNS to the ENS is sufficient to prevent the
progression of the pathology to the previously connected structures,
delay the appearance of motor symptoms and prevent cell death in
the ipsilateral SN. Intriguingly, the amount of alpha-synuclein inside
the IML of both thorax medium and inferior regions in SRT.2M mice
was comparable to that of CONT.4M mice and significantly lower
than that of NORT.2M littermates, suggesting an effect on rotenone
absorption after this operation (see Discussion).

Rotenone induces alpha-synuclein release in enteric and sym-
pathetic neurons. In order to further investigate the underlying
molecular mechanism of PD pathology progression, we used
primary neuronal cell cultures. Results from recent studies done ex

vivo”, in animal models'> and in autopsy material from PD
patients'!, suggest that the transneuronal transport of alpha-
synuclein could play a role in PD progression. Therefore, we
analyzed the effect of rotenone on alpha-synuclein secretion using
sympathetic and enteric primary neuronal cultures. In enteric
neuronal cell cultures, the number alpha-synuclein inclusions
inside non-neuronal cells was increased (Control: 0.215 * 0.051;
10 nM: 0417 *+ 0.115 (n.s.); 50 nM: 0.683 = 0.251 (p<<0.05);
100 nM: 1.039 = 0.3358 (p<<0.01)) upon rotenone treatment
(Figure 5A-E). We then treated non-neuronal intestinal cells with
rotenone in the absence of neurons to exclude the possibility of
endogenous alpha-synuclein expression being affected by rotenone
treatment. We did not observe any alpha-synuclein inside these cells
under these conditions (data not shown). This agrees with previous
studies showing that levels of alpha-synuclein in non-neuronal cells
are minor compared to that found in neurons* and suggests that
environmental toxins like pesticides can trigger the transfer of alpha-
synuclein from enteric neurons to neighboring non-neuronal cells.
If alpha-synuclein is released from enteric neurons into the med-
ium, then extracellular alpha-synuclein should be detectable. Indeed,
free-floating mCherry-alpha-synuclein could be detected by live cell
imaging of enteric neurons expressing mCherry-alpha-synuclein
(Movie 1). To confirm that alpha-synuclein in culture was increased
by the presence of rotenone in neurons without the artificial over-
expression of alpha-synuclein, we sought to determine the extracel-
lular presence of alpha-synuclein. Our mixed enteric neuron cultures
were deemed unsuitable, since the majority of the released alpha-
synuclein was assumed to be taken up by the neighboring non-neur-
onal cells, as shown by our immunofluorescent data (Figure 5A-E).
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Figure 4 | Hemivagotomy prevents dopaminergic cell death in the ipsilateral SNc. (A-C) Stitched fluorescence microscope images of 40 pm brain
mesencephalic sections from 4 months CONT. 4M: control (A), NORT. 4M: non-operated rotenone treated (B) and HRT. 4M: hemivagotomized
rotenone treated (C) mice. Brain sections were stained with sheep anti-tyrosine hydroxylase (TH) antibody (red). L, R, Cr and Cd are left, right, cranial
and caudal. Scale bar represents 200 um. TH™ neurons density in the SNc is diminished in NORT mice (B) when compared to CONT (A) and HRT (C)
mice. In NORT mice, a clear reduction can be observed in the lateral (arrowheads in B) and medial (arrows in B) SNc when compared to CONT mice
(arrows in A). A reduction in the density of TH" neurons can be observed in the lateral part of the right SNc (arrows in (C)) when compared to the
contralateral SNc¢ (arrowheads in (C)). (D-F) Bar graphs showing the quantification of the total number of TH* neurons in the SNc (D), the left to right
ratio in the number of TH ™" neurons within the SNc (E) and the amount of neurons in the left or right SN¢ (F) in CONT, NORT and HRT mice. Error bars

represent (s.e.m.), n.s. (non-significant), *P<<0.05, **P<0.01.

Interestingly, the amount of alpha-synuclein inside non-neuronal
cells was directly proportional to the concentration of rotenone.
As expected, we were unable to detect any alpha-synuclein in the
10.000 X g or 100,000 X g fraction (exosomal fraction) of the
medium collected from control or rotenone treated neurons (data
not shown). Therefore, we performed the same experiment on
untreated, control (vehicle treated), 0.1 uM, 1 uM and 5 puM rote-
none treated sympathetic neurons. These neurons can be isolated
and cultured with a higher degree of purity and the growth of
contaminating non-neuronal cells is inhibited by the presence of 1
UM cytosine arabinoside. Indeed, alpha-synuclein was detected in
the exosomal fraction of the medium obtained from the sympathetic
neuronal cultures treated with rotenone but not from the untreated
or control cultures (Exo. in Figure 6A). Intriguingly, we also
observed even higher amounts of alpha-synuclein in the pellet from
the 10.000 X g centrifugation in these same treatment groups (Non-
exo. in Figure 6A). This pellet was expected to contain little or no
exosomes. In order to determine whether the alpha-synuclein
observed in this fraction was due to the presence of exosomes, we
analyzed both fractions from two different conditions (vehicle and

0.1 pM rotenone) using a negative staining in electron microscopy.
As expected, we could observe that the majority of the structures in
the exosomal fraction resembled exosomes (Figure 6B-C) and only a
few exosomal-like structures were observed in the 10.000 X g frac-
tion (Figure 6B-C). In both cases, these membrane structures had
the characteristic size distribution of exosomes with the majority of
particles having a diameter between 80 and 100 nM (Figure 6B).
Finally, we analyzed the number of exosomes per condition in the
10.000 and 100.000 X g fractions. The number of exosomes was
significantly increased after rotenone treatment in both fractions
(Figure 6D). These results suggest that rotenone treatment increases
exocytosis and alpha-synuclein release. It also supports data from
two previous opposite but complementary studies'**’, one suggest-
ing that the release of alpha-synuclein into the extracellular medium
occurs through exocytosis inside exosomes and the other claiming
that it occurs outside them. In order to test both hypotheses, we
performed an immunogold staining against alpha-synuclein. We
observed gold particles outside and inside exosomal structures,
attached to lipid membranes or on fibrillar extracellular structures
in both conditions (Figure 6E-G). Thus, confirming the presence of
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Figure 5 | Rotenone induces alpha-synuclein release in sympathetic and enteric primary neuronal cultures. (A-C) Confocal images (maximum
projection) of enteric cell culture expressing endogenous alpha-synuclein after control (A) or rotenone ((B) and (C)) treatment and subsequently stained
with rabbit anti-protein related peptide 9.5 (PGP 9.5) (green) and mouse anti-alpha-synuclein (red) antibodies and DAPI (blue). All scale bars in this
figure represent 20 pm. Alpha-synuclein inclusions in non-neuronal cells can be observed only after rotenone treatment (arrows in (B) and (C)). They are
usually localized around the nucleus inside non-neuronal cells surrounding enteric somas (B) and neurites (C). Rotenone treatment also increases enteric
intraneuronal alpha-synuclein (arrowheads in (B)). (D) Bar graph showing quantification of alpha-synuclein inclusions per non-neuronal cells after
Ethanol (Vehicle), 10, 50 and 100 nM rotenone treatment. Error bars represent (s.e.m.), n.s. (non-significant), * P<0.05, **P<<0.01. (E) Confocal images
(maximum projection) of enteric cells stained with rabbit anti-Smooth Muscle Actin (SMA, green) and mouse anti-alpha-synuclein (red). Alpha-

synuclein can be observed inside SMA™ cells (arrows in (E)).

alpha-synuclein and suggesting that it is released outside and inside
these structures.

Secreted alpha-synuclein is actively up-taken by axon terminals
and retrogradely transported to the soma of sympathetic presy-
naptic neurons, where it accumulates. Finally, we wanted to
investigate whether released alpha-synuclein could also be taken
up via synaptically connected structures like the sympathetic
ganglionic neurons. First, we co-cultured sympathetic neurons on
top of enteric neurons expressing mCherry-alpha-synuclein. Within
days, mCherry-alpha-synuclein could be observed accumulating

inside tyrosin hydroxylase (TH)* sympathetic neurons (Figure 7A).
However, this system does not completely mimic the sympathetic
innervation of the ENS in vivo and does not differentiate between
somal and axonal up-take of alpha-synuclein. In vivo, sympathetic
neuronal somas are located within the sympathetic ganglia whereas
the synaptic connection with the enteric neurons occurs much
further at the gastrointestinal wall. Therefore, sympathetic somas
and neurites are located in two different unrelated extracellular
environments.

In order to better mimic the physiological sympathetic innerva-
tion of the gut, we combined for the first time two different methods:
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Figure 6 | Alpha-synuclein is secreted inside and outside exosomes upon rotenone treatment. (A) Western-blot of 10,000 X g (non-exosomal) and

100,000 X g (exosomal) fraction isolated from the medium collected from control (MA), vehicle (Veh), 0.1 uM, 1 uM and 5 uM rotenone treated primary
sympathetic neuronal cultures. Blots were probed with a rabbit anti-alpha-synuclein antibody. (B) Size distribution of exosomal structures in exosomal
(Pellet 4) and non-exosomal (Pellet 3) centrifugation fractions treated with rotenone (Rotenone 0.1 pM) and vehicle (Vehicle). (C) Electron microscopy
images of the exosomal fraction. Scale bar: 100 nm. Arrows in (C) show exosome-like structures. (D) Graph showing the number of exosomes per field in
control (vehicle) and treated (Rotenone 0.1 pM) samples corresponding to the exosomal and non-exosomal fractions. Error bars represent (s.e.m.), n.s.
(non-significant), ** P<0.01. (E-G) Electron microscopy images of the exosomal (E-F) and non-exosomal (G) fractions labeled with gold against alpha-
synuclein. Immunogold labeling can be observed on exosomal structures (arrow in (E)) and on lipid membranes (arrowheads in (E)). Alpha-synuclein
seems to be enhanced on lipid membranes (black circles in (F)) and gold particles can also be observed on extracellular fibrillar structures in the non-

exosomal fraction (arrows in (G)).

Campenot chambers and glass beads coated with PLL. Campenot  signals on neurite growth®*?. In this system, sympathetic somas
chambers allow the compartmented culture of sympathetic neurons are plated in one compartment of the chamber and their neurites
and have been previously used to analyze the effect of molecular grow underneath a divider to the next compartment (Figure 7B).
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Adjacent compartments are leak-proof, so that culture mediums do
not mix.

We then introduced a new component to this system: enteric
neurons cultured on top of PLL-coated glass beads. Enteric neurons
can be easily cultured on top of PLL-coated glass beads, where they
quickly spread their neurites over several beads (Figure S1A and B in
Supplementary Data). One of the main advantages of culturing neu-
rons attached to glass beads is that mature neurons can be easily
manipulated and transferred between wells by simply moving the
beads®. Remarkably, we could observe synaptic-like connections

u"

§

Sympathetic
neurons

C

between sympathetic and enteric neurons when these were placed
on top of sympathetic neurons (Figure S1D in Supplemen-
tary Data). For our experiments, we infected enteric neurons with
a lentivirus carrying mCherry-alpha-synuclein (see Figure S1C
Supplementary Data) and removed all lentiviruses from the medium
through several medium changes before transferring them to the
Campenot chamber. After sympathetic neurites had grown into
the next compartment, we added cherry-alpha-synuclein expressing
enteric neurons to this compartment and cultured them together for
one week (see Figure 7B). Because enteric neurites are not strong

— Merge

Figure 7 | Released enteric alpha-synuclein can be up-taken and retrogradely transported by sympathetic neurons. Scale bars are 20 um in all images.
(A) Fluorescence microscope images of co-cultured ENS cells expressing mCherry-alpha-synuclein (red) and sympathetic neurons stained with a rabbit
anti-TH antibody (green) (n=3). Sympathetic neurons (arrows in the upper left image in A are in contact with mCherry-alpha-synuclein enteric neurons
(*). Upper right image in panel A shows another image of the sympathetic neuron marked with an arrow in the upper left image highlighting the somal
accumulation of mCherry-alpha-synuclein (arrow). Lower left image in panel A shows a zoomed in region of TH+ neurites in contact with mCherry-
alpha-synuclein expressing enteric neurons framed in the upper left image . mCherry-alpha-synuclein can be observed inside sympathetic neurites
(arrowheads). (B) Schematics of the Campenot chamber with sympathetic neurons in green and enteric neurons in red. (C) Montages of microscopy low
magnification images from Campenot chambers corresponding to the region underneath the divider and the proximal neurite compartment.
Sympathetic neurons were stained with rabbit anti-TH antibody (green) and enteric neurons express cherry-alpha-synuclein (red). Each row of images
represents different channels (from top to bottom: cherry-alpha-synuclein, TH, bright-field (BF)) and a merge. Sympathetic TH* neurons can be
observed under the divider and forming a dense network around cherry-alpha-synuclein expressing enteric neurons. (D) Zoomed in region of the
sympathetic neurites framed in (C). Cherry-alpha-synuclein can be observed along sympathetic neurites under the divider. (E) Confocal images showing
cherry-alpha-synuclein (red) accumulating inside sympathetic TH* neurons in grey (BF) and green in F.
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enough to cross the divider, this system can also mimic the unidir-
ectionality of the sympathetic innervation on the gut.

Using bright-field microscopy we could observe a profuse sym-
pathetic neurite network covering the glass beads already after a few
days. This observation was confirmed by immunostaining against
TH (Figure 7C). Interestingly, we also observed cherry-alpha-synu-
clein inclusions inside sympathetic neurites and soma underneath
the divider (Figures 7C and D) and in the sympathetic compartment
of the chamber (Figures 7E and F). This suggests that alpha-synu-
clein had been up-taken by sympathetic neurites and retrogadely
transported into the soma. We confirmed this by using live-cell
imaging, where cherry-alpha-synuclein particles could be observed
moving along sympathetic neurites (Video 2 in Supplementary
Data).

Discussion

The significance of PNS pathology in PD pathophysiology and clin-
ical non-motor symptoms has been a source of controversy over the
last number of years. Many authors believe that the localization of
these lesions could be explained by neuronal type specific sensitivity
against a global insult to the nervous system® . However, more
recent studies suggest that there is a progression of the disease across
the nervous system and that environmental factors are strongly
associated with the appearance of PD>'".

The results of our study support the latter hypothesis by showing
that: i) PD-like pathology progression in vivo depends on cell-to-cell
transmission between neurons of the peripheral and central nervous
system, ii) dopaminergic cell death in the SNc relies on an intact
multi-synaptic path, iii) the application of an environmental toxin
(rotenone) on enteric neurons is sufficient to induce PD-like patho-
logy and to trigger the release of alpha-synuclein from the enteric
neurons into the extracellular matrix, iv) alpha-synuclein released by
enteric neurons exposed to rotenone can be taken up either by
non-neuronal cells or presynaptic neurons and v) released enteric
alpha-synuclein can be up-taken at the presynaptic neurites and
retrogradely transported to the soma, where it accumulates.

Intriguingly, in both groups that underwent an operation (i.e.
HRT and SRT) differences in the amount of alpha-synuclein within
ChAT™ neurons inside IML and DMV regions still connected to the
gut could only be observed after 4 months of treatment. NORT mice,
on the other hand, had increased alpha-synuclein levels in these same
regions already after 2 months. This correlates well with the data
from our previous study® and suggests a delay in the increase of
alpha-synuclein in SRT mice.

In HRT mice, this apparent delay could be explained by a transient
increase in intracellular alpha-synuclein inclusions. This has been
previously observed in neurons undergoing retrograde axonal degra-
dation after an axonotomy™. As we measured alpha-synuclein accu-
mulation specifically inside ChAT™ neurons and there was no cell
death between the 2 and 4 month of treatment, it can be assumed that
right to left differences in alpha—synuclein after 4 months are due to
changes in alpha-synuclein content in the right DMV rather than cell
death or variations in extracellular alpha-synuclein. It also suggests
that this effect was due to the interruption of the gut-DMV axis and
not to any substance present systemically (i.e. rotenone or its deri-
vates). A systemic effect would affect ChAT™ cells in both sides. In
this case, we would not have observed any right to left differences in
alpha-synuclein content inside ChAT® neurons. A priori, this
explanation could only be applicable to HRT mice. In SRT mice,
only ganglionic sympathetic neurites were sectioned during the sur-
gery. Therefore, IML neurons did not suffer a direct axonotomy in
SRT mice. However, it cannot be excluded that the degradation of
ganglionic sympathetic neurons had an effect on ChAT™ neurons of
the IML.

Another possible explanation for the delay observed in SRT mice is
that, while not affecting gut motility, partial sympathectomy leads to

a decreased intestinal absorption of rotenone. Different studies have
shown that chemical sympathectomy leads to hyperproliferation of
the intestinal mucose increasing the thickness of the wall*>**. On the
other hand, increased adrenergic activity enhances the permeability
of the intestinal wall>”*, so it can be assumed that the lack of sym-
pathetic innervations decreases it. Both situations would explain an
impaired rotenone absorption in SRT mice resulting in decreased
rotenone concentrations acting on the ENS. This could delay the
appearance and progression of the pathology to still connected struc-
tures. Nevertheless, the low levels of alpha-synuclein in the lumbal
IML of SRT mice compared to those of NORT mice even after 4
month of treatment are comparable to the ones observed in CONT
mice. This can only be due to the effect of the sympathectomy itself,
confirming our hypothesis.

Remarkably, hemivagotomy seems to protect against dopaminer-
gic cell death in the SNc ipsilateral to the hemivagotomy. As pre-
viously described”, the number of dopaminergic neurons between
the right and left SN did not significantly differ in CONT mice, with a
left to right ratio around 1. In this study, we observed dopaminergic
cell death and laterality of the neuronal lesion in both NORT and
HRT mice after oral rotenone treatment. However, cell death in HRT
mice is significantly decreased when compared to NORT mice. This
nicely correlates with the results observed in the rotarod test.
Interestingly, whereas in NORT mice neuronal death can be
increased in the left or right SN depending on the animal, hemiva-
gotomized mice show a higher consistency in the laterality of the
lesion with around 50% less dopaminergic neurons in the SNc
contralateral to the hemivagotomy and a normal amount of dopa-
minergic neurons in the SNc ipsilateral to the hemivagotomy. The
amount of TH™ neurons in the SNc that we observe in CONT and in
the ipsilateral SNc in HRT mice coincide with that observed by others
using the same stereological method®. Such strong differences
between left and right SN, as the ones observed in HRT mice, have
only been described using unilateral striatal injections of 6-OHDA™,
where there is up to a 90% reduction in the number of dopaminergic
neurons inside the SN of the injured side. To our knowledge, no other
animal model of PD, even those using systemic administration of
toxins, show such laterality in the damage of the SN. Finally, we also
observed a bigger loss of dopaminergic neurons when compared to
our previous results in 3 months rotenone-treated mice. These
results strongly support our hypothesis showing that, indeed, PD-
like pathology progression can reach the SN through vagus nerve up-
stream connected structures.

Altogether, these results strongly suggest that PD-like pathology
progression occurs through sympathetic and parasympathetic
nerves and that the scission of these nerves is sufficient to stop the
progression of the pathology into the CNS.

Further studies on the pathophysiological relevance and the pre-
cise molecular mechanisms underlying the neuron-to-neuron trans-
mission of alpha-synuclein are still needed. It is not clear whether
alpha-synuclein is released inside or outside exosomes. The relative
low amounts of exosomes in comparison to the amounts of alpha-
synuclein in the 10.000 X g fraction, suggests that the majority of
alpha-synuclein was not on or in exosomes in our samples.
Regretfully, the data from the EM-immunogold staining does not
help to clarify this. EM-Immunogold shows alpha-synuclein inside
and outside exosomes. Interestingly, big amounts of alpha-synuclein
also appear bound to lipidic membranes. The reason for this last
observation remains unclear. Finally, it cannot be excluded that the
alpha-synuclein released from the neurons inside exosomes is freed
as a result of sample handling (i.e. freezing), allowing the release of
alpha-synuclein into the medium. Other questions that remain
unanswered are related to the molecular mechanisms and players
implicated in the endocytosis/retrograde axonal transport of alpha-
synunclein and the effect of endocytosed alpha-synuclein on the
presynaptic neuron.
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Our in vitro results and that from others™'>'>* suggest that trans-

neuronal transport of alpha-synuclein could be the underlying
mechanism responsible for the pathology progression in iPD
patients. In support of this hypothesis, it has been shown that
alpha-synuclein is sufficient for the induction of pore formation,
mitochondrial dysfunction and oxidative stress through the altera-
tion of microtubule dynamics*'~**. Other study showed that endocy-
tosed alpha-synuclein is present inside Lewy body-like inclusions in
acceptor cells'®. Finally, a recent study has shown that alpha-synu-
clein is transported between cells in its aggregated form®.
Interestingly, they also have shown that alpha-synuclein is present
outside and inside exosomes. Combined, these results indicate that
endocytosed-aggregated alpha-synuclein could perpetuate and
maintain the pathology on the presynaptic neuron through at least
two non-exclusive mechanisms: i) alpha-synuclein can act either as a
nucleation factor allowing its own recruitment to form alpha-synu-
clein aggregates and/or ii) it can extend the effect of rotenone
through the inhibition of the mitochondrial complex I on the pre-
synaptic neuron. This latter hypothesis seems more plausible, as it
would also explain other pathological alterations observed in PD
patients like the presence of radical oxygen species or the inhibition
of mitochondrial Complex I inside affected neurons. Finally, it has
been shown that different neuronal types have different sensitivities
to Complex I inhibition-mediated toxicity, suggesting the presence of
dopamine-containing vesicles as responsible for enhanced toxicity in
dopaminergic neurons*.

All these different aspects of the same process involving alpha-
synuclein transport could explain both the pathological and clinical
staging of PD. Differences in the severity between motor and non-
motor clinical symptoms of PD can be due to the neuronal-type
specific sensitivity to alpha-synuclein-induced oxidative stress.

We believe that the newly developed in vitro model mimicking the
sympathetic innervation of the ENS will be a very valuable tool to
answer these questions and perform drug screenings. It can be easily
manipulated and has got clear read out parameters (e.g. the dynamics
of cherry-alpha-synuclein transport inside sympathetic neurites or
the presence or absence of alpha-synuclein inside sympathetic
soma). Overall, our results potentially have important implications
in the diagnosis and treatment of PD, as they support the ENS-
spreading hypothesis and suggest new early diagnosis screening
and pharmacological targets to tackle this disease.

Methods

All animal experiments were carried out in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals, that had been approved by
the Saxonian Committee for Animal Research, Dresden, Germany, EU. Materials and
methods are described in the supplementary data. Briefly, for the in vivo experiments,
mice were divided in 8 groups (n=10) with 4 different treatments (control, rotenone
treated, rotenone treated after hemivagotomy and rotenone treated after partial

sympathectomy) and two treatment times (2 and 4 months). Motor and gastro-

intestinal functions were analyzed once a month with the help of the rotarod and 1-
hour stool collection tests during treatment. After treatment, animals were sacrificed
and perfused with 4% PFA for immunohistological staining and image analysis.

In vitro experiments were performed on primary neuronal cell cultures using
enteric or sympathetic neurons isolated from postnatal mice (P1-P5). Exosome
isolation was performed on equal amounts of media from the same treatment day that
were collected and pooled together as previously described*. For some experiments,
enteric neurons were transfected with a lentivirus carrying mCherry-alpha-synuclein.

Statistical analysis. Data comparisons were made with anova and non-paired or
paired t-tests as appropriate using GraphPad Prism® (GraphPad Software, Inc., La
Jolla, CA, USA), significance being p=0.05, whiskers representing max.-min. and
bars representing the standard error of the mean (s.e.m.). For every group statistics
are represented as follows: Group name: mean * s.e.m.
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