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We describe theory and simulations of a spinning optical soliton whose propagation spontaneously excites
knotted and linked optical vortices. The nonlinear phase of the self-trapped light beam breaks the wave front
into a sequence of optical vortex loops around the soliton, which, through the soliton’s orbital angular
momentum and spatial twist, tangle on propagation to form links and knots. We anticipate similar
spontaneous knot topology to be a universal feature of waves whose phase front is twisted and nonlinearly
modulated, including superfluids and trapped matter waves.

he fundamental interplay between topology and dynamics is revealed when knots and links form sponta-

neously during evolution of a system. This phenomenon is often manifested in material filaments such as

agitated strings' and excited molecules®. Examples of topologically complex three-dimensional fields, from
across the sciences, also manifest knot dynamics. In contrast to material filaments, the whole of space of a knotted
field must be filled in a way consistent with any localized knot structure. The idea of Lord Kelvin to describe atoms
as vortex knots in ether’ has found its continuation in nonlinear field theories in the form of knotted, or, more
generally, topological solitons®. Knotted solitons™® were introduced as energy minimizers of a three-dimensional
nonlinear Lagrangian for a vector order parameter, the latter is similar to pseudo-spin in Bose-Einstein con-
densates (BECs)”* and multicomponent superconductors™', as well as the director field in liquid crystals'"'> and
electric and magnetic field lines in null-solutions to Maxwell equations'*'*. Other systems display persistent,
tangled defect line structures, such as scroll wave sources in chemical and biological reaction-diffusion systems'?,
localized excitations in bistable metamaterials', knotted disclination lines around colloids in nematic liquid
crystals'’, and quantized vortex filaments in turbulent superfluids'®" and trapped matter waves* .

The idea of knotted fields has gained renewed interest recently®***, as the role of topology comes to the forefront
in a range of physical systems, from knot invariants in statistical mechanics®, to topological insulators in
condensed matter®’, and quantum computing”. Crucially, experimental techniques are now at a stage where
knotted and linked topological defect filaments can be engineered in liquid crystals'"'” and laser light**~*'. In the
latter case, similar to a one-component BEC?, the field consists of a complex scalar amplitude, in which the
defects are quantized vortices’*® -- circulations of energy flow where the intensity is zero and the phase
undefined****. A variety of knotted and linked optical vortices can be synthesized with tailored superpositions
of free-space modes®**!, successfully implemented in experiments with Gaussian laser beams controlled by
holograms®*~*'. However, knot topology appears rare if these superpositions are not chosen carefully®>”’. A similar
approach to the construction of knotted optical fields***! was employed for vortex knots in BECs*. The striking
difference, however, is that vortex knots in BECs undergo essentially nonlinear temporal dynamics due to atom-
atom interactions, whereas optical vortex knots occur as a result of linear interference and are static in time*".
Knots in BECs with repulsive interatomic interaction disintegrate via series of vortex reconnections.

In the system that we describe, knotting of vortices occurs spontaneously as a rotating, anisotropic soliton
propagates in a nonlinear medium. We show that as a radially perturbed soliton propagates, vortex loops** occur
in the form of rings perpendicular to the propagation direction. This spontaneous vortex nucleation is a con-
sequence of the nonlinear phase accumulation between the soliton’s peak and its tail: phase singularities nucleate
if this phase difference reaches the value of © during evolution along the optical axis z, the analogue of time for a
two-dimensional pancake BEC®. If the soliton is elliptic and spinning, these loops are twisted in three-dimen-
sional space, and when the twisting parameter is large enough, the vortices reconnect*"** to form knots and links
at the edge of the self-trapped region of the light beam. Such spontaneous knotting is absent from linear light
beam propagation®*”’, and in our system, arises from the soliton’s angular momentum®* and nonlinearity*. We
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demonstrate below how vortex knots appear spontaneously in direct
numerical simulations and how they can be explicitly constructed
using internal vibrational soliton modes.

Results

Our starting point is the Nonlinear Schrodinger Equation (NLS)**
which describes the dynamics of a slowly varying field envelope
E(x,y,2) of a paraxial laser beams in a Kerr-type optical media; in
dimensionless form,

i0,E+ AE+n,(I)E=0, (1)

where the nonlinear part n,(I) of the refractive index n = ng + n,(I)
is a function of the normalised light intensity I = |E|?, the transverse
variables xand y in the Laplacian A = 02 + 6; are measured in units of
a characteristic transverse scale x,, the propagation variable z is
measured in units of zo=4mnnoxZ /4, . is the wavelength of light.
Here we consider saturable nonlinearity, #,(I) = I/(1 + I), describing
photorefractive crystals with ny = 2.35, as the simplest isotropic
model of collapse-free nonlinearity supporting stable solitons®.
For a typical transverse scale x, = 5 um and green light with A =
532 nm the propagation unit lenght z, = 1.4 mm. Equation (1) has
several integrals of motion, such as optical power, P= J|E|2dxdy,
and the orbital angular momentum, L=Im [ E*(xE, — yE)dxdy,
i.e, dP/dz = 0 and dL/dz = 0.

The nonlinear dynamics of laser beams can be understood better
when compared with well-known linear self-similar modal beams.
For small input power and intensity, <1, Eq. (1) approaches the
linear optical regime 7, = 0, with fundamental solution in the form of
a radially symmetric diffracting Gaussian beam, Ej;,..(r,2) = A
exp(ir*/0)/{, here ¥ = x* + %, and the complex parameter
{=4z—iw}/ logy/2. Gaussian beams are characterized by their waist
parameter w,, ie. the minimal transverse beam size attained in the
focal plane, which defines the half-width at half-maximum (HWHM)
of the beam intensity, w(z) =wo\/1+32%/z4%, za=/3w} [log4 is
the diffraction length. The real amplitude A defines optical power,
P=nA2log2 / 2w;. Figure 1(a) shows HWHM (black line) of such a
beam with z; = 21/3 and the waist parameter w, =2 log2, indicated
by a white double arrow. The color-coded representation of the
beam’s phase distribution Arg E in Fig. 1(a) shows that during pro-
pagation the beam acquires a Gouy phase which does not exceed the
value of 7*.

In nonlinear media whose refractive index increases with light
intensity, a Gaussian beam induces an effective lens which enhances
the focusing: the propagation distance to the focus and the focal spot
both decrease, see Fig. 1(b). This is the effect of self-focusing, studied
since the invention of lasers**. The key to the spontaneous knotting of
optical vortices follows from the new observation that quantized
phase singularities®* occur transverse to the propagation dir-
ection, as is evident from the phase structure in Fig. 1(b). This is
an optical vortex with a circulation of energy in the longitudinal
plane, in contrast to Laguerre-Gaussian and similar laser modes**
and vortex solitons*” whose Poynting vector circulates in the trans-
verse plane. The vortex core of the latter follows the longitudinal
optical axis; in our case in Fig. 1(b) it is a vortex ring which encircles
the beam as a “belt” around its waist.

The spontaneous appearance of a vortex ring during self-focusing
can be explained by the nonlinear accumulation of phase by the on-
axis high-intensity region of the beam, in comparison with the linear
phase accumulation in its low-intensity tails. As soon as the phase
difference reaches the value of =, there appears a point of total
destructive interference with zero amplitude and phase defect. The
cylindrical symmetry of the beam implies then the spontaneous gen-
eration of an unknotted vortex loop in Fig. 1(b).

However, stationary laser beams in self-focusing media, known as
bright spatial solitons****, possess flat phase fronts free of defects,

despite having a spatially modulated intensity similar to a Gaussian.
When the input power exceeds a threshold value, P > 11.7 for sat-
urable nonlinearity here, a spatial soliton can be formed; the exact
stationary solution to Eq. (1) is given by E(x,y,z) = R(r) exp(ikz),
where R(r) is the real soliton envelope determined numerically and k
is the soliton propagation constant parameterising soliton family,
P(k). It is the unique spatial profile of the soliton-induced waveguide
which guarantees the exact compensation of a natural diffraction
(diverging wavefronts) by self-focusing (converging wavefronts)
and which leaves the wavefront flat.

A perturbed stable soliton exhibits long-lived oscillations of its
intensity profile, studied in the past and often referred to as “soliton
breathing”**, which break the uniformity of phase fronts. Small per-
turbations of stable solitons lead to their oscillations during propaga-
tion; here we consider a particular type of perturbation preserving
soliton power, P=2n [ R*rdr,

E(x,y2=0)=R(V/x/a’+ 20 ) exp(iOxy) [ Vab,  (2)

with real widths a, b and the phase-twist parameter ®****, The
exact soliton envelope is recovered fora = b = 1 and ® = 0. The
initial “stretching” with a = b % 1 and ® = 0 leads to radial oscilla-
tions; Fig. 1(c) demonstrates this process together with the previously
unknown features of the field’s topological structure, namely the
appearance of a regular set of vortex rings.

For an elliptic deformation with a # b in Eq. (2), a specific value of
©(a, b) can be derived using variational analysis, which corresponds
to the so-called spiraling elliptic soliton®. Analogous diffracting
beams in linear media are described by an exact vortex-free
Gaussian solution in the transversely rotating frame*. In contrast,
as our simulations demonstrate in Fig. 1(d), the spiraling soliton is
accompanied by a pair of vortices forming a DNA-like double-helix
structure, despite the fact that the field at the entrance to nonlinear
medium is free of phase singularities.

The vortex unknots and spirals in Figs. 1(c, d) are the necessary
elements for more complex topological structures such as links and
knots*'. Evidently, the simultaneous radial stretching of the soliton,
as in Fig. 1(c), and its twist, as in Fig. 1(d), reconnect the vortex loops
into knots and links. In this general case with a # b we treat nonzero
O as an independent input parameter, this setup can be realised in
experiment with a relatively simple arrangement of cylindrical
lenses*’. Thus we assume independent shaping of the elliptic beam
profile and imprinting the twisted wavefront and orbital angular
momentum; this approach is also instrumental in suppression of
collapse instability for optical®® and matter® waves with attractive
interatomic interaction.

Exploring this idea we performed large scale computer simulation
of the nonlinear dynamics of initially elliptically deformed spatial
solitons with twisted phase front and observed spontaneous vortex
knotting; the results are illustrated with a particular example in Fig. 2.
The parameter domain of Eq. (2) that we studied is 4-dimensional; it
includes the fundamental (bell-shaped, radially symmetric R(r)) soli-
ton family parameterized by optical power P, two width parameters
for the elliptic transverse stretching of the soliton profile a and b, and
a parameter ® for initial phase twist. Figure 2 shows a sequence of
vortex topological structures obtained by varying ® while keeping a
specific triplet of P, a, b unchanged. We can therefore describe these
results in terms of varying the beam twist and its orbital angular
momentum.

For small spatial twist we observe elliptically deformed vortex
rings, similar to Fig. 1(a). For larger twist the deformation of the
vortex rings is stronger, and, as the twist increases, they can recon-
nect with the formation of Hopf links as in Fig. 2(a), while further
increase of ® leads to the formation of trefoil vortex knots in
Figs. 2(b-d). There are several important features present in all our
numerical results. First is the persistent character of vortex knotting:
while we could not predict the positions of reconnections giving
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Figure 1| Spontaneous vortex rings and spirals. (a) A Gaussian beam focused in linear media acquires a Gouy phase shift which does not exceed 7.
(b) The same input beam with optical power P = 40 in a self-focusing saturable medium acquires an additional nonlinear phase difference between the
beam’s peak on-axis intensity and its tails. When this phase difference reaches a value of 7, a phase singularity appears in the longitudinal plane (r,z); it is
seen in (b) asa bright spot at z= 0 where all colors meet. The corresponding vortex line is a ring (unknot) in the transverse plane (x,y). The black solid lines
in (a, b) show the HWHM of intensity w(z) and the white arrows show the positions and the radii of the focal spots (waist parameter). (c) Radial
oscillations of a soliton with k = 0.5 and P = 107, initially “stretched” with a = b= 1.1 and ® = 0, see Eq. (2). (d) The elliptic rotating soliton with P =
107, a = 1.42, b = 0.87,and ® = 0.05*. The green lines in (¢, d) show the position of vortices, the black streamlines with arrows show the Poynting vector
in the longitudinal plane x = 0, and the isosurfaces of intensities are color-coded from small cut-off value (blue) to maximum (red).
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Figure 2 | Spontaneous vortex links and knots. Initially deformed vortex-free soliton (intensity not shown; k = 0.82, a = 1.1, b = 1.21) develops vortex
lines during propagation in a self-focusing saturable medium (yellow arrow is the optical z-axis, 50 =< z =< 150). Here and below in Fig. 3 we distinguish
isolated vortex rings (unknots) in pink, linked vortex rings (Hopflinks) in green and orange, and vortex (trefoil) knots in blue. For a small initial twist ®
there are seven isolated vortex rings similar to Fig. 1(c) (not shown), and the increase to ® = 0.005 leads to the appearance of a vortex link in (a) formed by
two left rings. Stronger initial twist of ® = 0.01 transforms this link and the third ring into a knot in (b). While this knot is only slightly deformed in (c)
with ® = 0.013, the three neighbouring rings reconnect into a link. This link and the remaining right ring in (c) form a knot in (d) with ® = 0.015. At the
same time, the left knot in (b, ¢) disintegrates into three loops in (d).
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Figure 3 | Vortex knots from vibrational modes of a soliton. Vortex lines are shown for different superpositions of the soliton with k = 0.8 with its
monopole and quadrupole modes, see Eqs. (3) and (4). In all graphs, the propagation interval (yellow arrow) 9 < z < 107 corresponds to one
period 27/(wo — w,) = 97.7, and the amplitude of the monopole mode with s = 0 and wy = 0.383 equals €y =0.1. The two amplitudes of the quadrupole
mode with @, = 0.318 are given by €, , =&, exp(in/4) with: (a) &, = 0.1, & = 0; (b) & = 0.15, &, = 0; (c) & = 0.15, &, = 0.015; and (d) & = 0.15,

&, = 0.045.

specific links or knots, they appear in a significant parameter domain
where the orbital angular momentum and spatial twist are suffi-
ciently large. Secondly, the links and knots look irregular, which
might be a consequence of a symmetry-breaking instability seeded
in our simulations by numerical noise. This feature is apparent in
Fig. 2(c) and Supplementary Video with a clearly asymmetric Hopf
link. Finally, the vortex knots appear to be robust with respect to
small change of parameters, e.g. note the smoothly deformed knot in
Figs. 2(b, ¢) which, nevertheless, disintegrates into a triplet of vortex
rings with further increase of twist in Fig. 2(d).

Discussion

The results of numerical simulations in Fig. 2 do not directly provide
insight into any possible physical mechanism of vortex knotting
because of the spontaneous and irregular character of this process.
The basic cause of vortex generation, however, must be the destruct-
ive interference between the soliton and the dispersive linear waves
radiated during oscillations. The later can be analysed in terms of the
dynamics of small perturbations of solitons, e.g. introduced by defor-
mations described by Eq. (2), using Lyapunov stability analysis*.
Namely, we consider a perturbed soliton in the form
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E(x,y.z) =€

. o ) . (3
{R(r)+u5(r)(ele‘”’+€2e7’5“)e’”sz+w5(r)(6187’5“+eze’”’)eﬂ“*z}

with azimuthal angle ¢ = tan™"y/x and perturbation mode envelopes
|us| <R and |w|<R, which allow to linearize Eq. (1) and solve it
numerically as an eigenvalue problem, recovering the real eigenvec-
tor {u, wy} and eigenfrequency w; for each (integer) azimuthal mode
index s. Choosing as normalization for the linear modes max(|u,
|wg]) = max(R) the moduli &; , = €; »| of the two arbitrary complex
perturbation amplitudes €, can be used as parameters indicating
relative strength of the perturbation, &, ,<1.

Optical vortices are lines in space {r+, ¢+, z+} on which the field in
Eq. (3) vanishes, E(r, @+, z«) = 0. For example, the excitation with
radial mode s = 0 (and a single amplitude ¢y =€, +¢;) requires solv-
ing

Ci(re,z.) = R(r) +eoug (1) e +eomwo (1. )e ™= =0,

so that each solution {r«, z«} is a vortex unknot, as in Figs. 1(b,c).
More insight can be gained by noticing that for vanishing amplitude
& = |€o]| =0 the solution is diverging, r« — o, i.e. we recover unper-
turbed vortex-free soliton. For large r — o the asymptotes of the
modes are {uy,wo } ~exp(—rw )/rw4 , here @, =k+ w, with the
plus sign for 1, and minus sign for w. It follows that we can neglect
ug<<w and obtain the positions of vortex unknots at z« = (6 + 27n)/
o and their radius r«, R(r+) + gwy(r.) = 0, here 6 =Arge, and
integer n = 0, =1, .... Such analysis gives excellent agreement with
the numerical results in Fig. 1(c), although there is no clear mapping
between the amplitude &y, which determines the unknot radii 7+, and
the perturbation strength in Eq. (2).

A similar analysis for s = 2 in Eq. (3) allows the recovery, fore; =0,
of the vortex spirals as in Fig. 1(d), while for €, =0 we obtain vortex
spirals of the opposite handedness. We conclude that the radial
oscillations in Fig. 1(c) can be excited by a monopole mode with s
= 0 while the spiraling elliptic soliton in Fig. 1(d) bifurcates from a
quadrupole mode with s = 2. The simultaneous action of these two
modes, demonstrated in Fig. 3, explains vortex knotting.

To describe the simultaneous elliptic stretching and phase twist
employed in the direct numerical simulations in Eq. (3) and Fig. 2, we
take the superposition of a soliton and two modes with indices s = 0,2
in Eq. (3) and derive the quadratic equation E(rx, px, z+) = 0 for t =
eiZw’

Cy(re,2:)t? 4+ C (1,2 )t 4+ Co (r,2) =0, (4)

where Cy(7:,2:) =€12us (7.) > + €3 1w (1. )e ™ 2>, Among the
continuous set of roots of (4) in the plane {r«, z+} we choose only
the roots with || = 1; it follows from the definitions of Cy; »(r+, z+)
that only a single such root can be found at a particular location {rx,
z+}. This root defines a closed or open contour in the plane {r«, z+}
which generates a torus by rotation around z« axis - this is the torus
on which all vortex lines lie. The root gives two vortices on a torus,

1
=5 Argtand ¢, = 7 + ¢,. Therefore, in each transverse plane z =

z+« we can obtain either no vortices (no roots with |¢| = 1 in Eq. (4)), or
a pair of vortices (open contour in {rx, z+}), or a quadruplet of vortices
(closed contour in {rx, z«}). The symmetry of the vortex pairs ¢« <> 7
+ @« is a natural consequence of the elliptic perturbation.

For a soliton with given power P, with the modal eigenfrequencies
o> and eigenvectors {ug (), wo,(r)} determined numerically, the
key parameters which define the field’s topological structure are the
relative complex amplitudes ¢, of the internal modes with azi-
muthal indices s = 0 and 2. Varying ¢ ; , we were able to reconstruct
all the types of vortex structures observed in direct numerical simu-
lations in Figs. 1 and 2, including vortex rings, spirals, links, and
knots. Since the symmetry-breaking instability and the additio-
nal noise are absent here, the obtained structures preserve the ellip-
tic symmetry of rotation by m around optical axis. Similar to the

conclusions drawn from Figs. 1 and 2 we notice here that the dom-
ination of the radial mode, |¢|>>|€; |, leads to the vortex unknots in
Fig. 3(a), while in the opposite case the vortex spirals appear in
Fig. 3(b). The result of combined action of both modes, with the
interplay between radial stretching || and elliptic twist |¢; 5| pertur-
bations, is the vortex links and knots in Figs. 3(c,d).

For a given example with k = 0.8 in Fig. 3 we constructed the
lowest order nontrivial vortex topologies: Hopf links and trefoil
knots. Additional analysis shows that the order of torus knots that
can be constructed is limited by the interplay of two eigenfrequencies
in the system: the pulsation rate w, and the rotation rate w,, both of
which are determined by the soliton power P(k). We found that the
beating of modes with these two frequencies determines the vortex
reconnection events and thus the maximal length of the tori in z-
direction. Taking k = 0.6 and P = 198 with the beating period 27/(w,
— w,) = 209.4 as an alternative example and varying perturbation
amplitudes ) ; , we were able to construct the cinquefoil knots (5,2
torus knots) and double links (4,2 torus links), in addition to their
lower order counterparts in Figs. 3(c,d), i.e. trefoil knots and Hopf
links. The full analysis of the parameter domain of Eq. (4) where the
knotting occurs is not a straightforward task; we plan to address this
open question in future work.

In the general case of an arbitrarily perturbed soliton, complex and
quite irregular bundles of vortices appear on soliton tails, not unlike
the random vortex tangles in superfluids'®'" and speckle fields*>*’. In
other words, many higher-order internal modes are excited simulta-
neously and their interference complicates the picture. In contrast to
the linear waves, however, here the reconnection of vortices and the
spontaneous formation of vortex links and knots are governed by the
nonlinear dynamics of the self-trapped elliptic beam, i.e. the linear
perturbation modes and their frequencies in such superpositions can
be controlled in experiment by changing optical power P. Therefore,
the spontaneous knotting described here does not lead to isolated
and ordered knots, as in Refs.””*!. Nevertheless, two key experi-
mental parameters can be well controlled: the nonlinearity, by chan-
ging the power P, and the spiraling rate and orbital angular
momentum, by changing the initial phase twist ®***. This approach
can be also extended to nonlinear dynamics of random waves, such as
speckle fields in optics, as well as development of topological struc-
tures in modulationally unstable waves.

The principal role of the spatial twist and orbital angular
momentum for spontaneous knotting of nonlinear waves, demon-
strated here, may be also important in quantum turbulence in super-
fluids'®, consisting of a very complex, apparently disordered,
dynamic tangle of moving and reconnecting quantized vortex fila-
ments. The vortex tangle is usually characterized in terms of its
density (length of vortex line per unit volume), related to energy.
This measure does not take into account, however, the intrinsic
disorder, coiling and linking, which occurs within the turbulent vor-
tex tangle. It became clear'® that new measures to describe the geo-
metrical and topological complexity of superfluid turbulence are
necessary, in particular those available from modern geometry and
knot theory, including the existence of quantized vortex knot solu-
tions* and their nonlinear dynamics®*°. Another interesting ana-
logy can be drawn with hadronic superfluids in dense nuclear matter
where knots may form in neutron superfluid due to the Andreev-
Bashkin effect®*2,
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