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The pattern of local daily fluctuations of climate fields such as temperatures and geopotential heights is not
stable and hard to predict. Surprisingly, we find that the observed relations between such fluctuations in
different geographical regions yields a very robust network pattern that remains highly stable during time.
Using a new systematic methodology we track the origins of the network stability. It is found that about half
of this network stability is due to the spatial 2D embedding of the network, and half is due to physical
coupling between climate in different locations. We also find that around the equator, the contribution of
the physical coupling is significantly less pronounced compared to off–equatorial regimes. Finally, we show
that there is a gradual monotonic modification of the network pattern as a function of altitude difference.

S
ince the seminal paper ‘‘Deterministic nonperiodic flow’’ of Lorenz1, climate science had to incorporate a
less naive statistical view on the relations between models, predictions and reality. Climate systems are
never exactly isolated, nor exactly linear, and are always dissipative, and hence are in principle prone to the

possibility of chaos. Estimates of climate predictability are available based both on global climate models (e.g.2),
and on time series analysis (e.g.3). There are, however, a few indications for long term persistence4–10 related to
climate systems. Thus, the spatio-temporal relations between climate fields seem to hold both predictable and
unpredictable structures at the same time.

In the current work we uncover such a predictable behavior with the aid of the recently developed approach of
climate networks. These networks are composed of nodes, which represent geographical sites, and links which
represent information flow between these nodes11. The links are computed based on some similarity of their
behavior (e.g. correlation, synchronization)12–16. Several studies regarding the topology of this climate network
have been published, establishing a distinction between the equatorial and off-equatorial network topologies, and
the important role of ocean currents to the network topology11,17,18. The dynamics topology of the climate network
has been shown to be correlated to the El-Niño Southern Oscillation and the North Atlantic Oscillation phe-
nomena18–23.

These latest advances show us the extent to which the climate system share common features with network
models. Following these landmarks, a large body of theoretical works (see e.g.12,24–26) which emerged in the last 20
years can now be exploited in the field of climate. A similar scientific pathway was found useful in the research of
food webs27, protein molecules28,29, social systems30, human languages31, infrastructures32, finance33, and inter-
action between physiological systems in our body34, just to name a few. In all the mentioned examples, finding
interesting connectivity patterns is only a first step. One is then obliged to provide information about the
dynamical stability of these patterns, which is the subject of the current paper.

Our present study reveals that the climate network topology, represented by the weighted adjacency matrix
Wy

l,r (expressing the strength of interaction between nodes l and r at the year y, see Section ), is preserved during
many years y, in complete contrast to the pattern of local daily temperature and geopotential fluctuations. The
stability of both connections between places and the measured time delays between them is analyzed. We find that
strong links (high cross-correlations values) are characterized by small variation of their time delays, which is
typical of real links34. The relative contribution of spatial embedding and purely physical coupling is quantified.
The equatorial and off–equatorial regions are shown to have distinguishable behavior. Our findings of long term
influences between different locations might help to develop methods for improvement of long term weather and
climate forecasts.

Results
Stability of single links. First we focus on the behavior of single links. Analyzing the yearly variations of the link
strength Wy

l,r (defined in the Methods section) yields that a typical link maintains its strength Wl,r during the years
with small fluctuations of about 15%. This stability of the strength of the links is valid for links across long and
short distances (see Fig. 2). In Fig. 3 we show the distribution of the coefficient of variation (standard deviation
over average) of all links in two networks (a) the network located at Zone 1 (a off–equatorial region) and (b) the
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network located at Zone 9 (an equatorial region) (see Fig. 1). We
observe a significant difference in this distribution between networks
located in equatorial regions and networks located in non-equatorial
regions. While in networks located in equatorial regions (zones 7 –
9), the minimum variation is about 0.1 and the maximum is about
0.3, in networks located in off–equatorial regions (zones 1 – 6), the
minimum variation is about 0.05 and the maximum is about 0.25 (see
Fig. 3). Therefore the link strengths, Wl,r, in off–equatorial regions
tend to be more stable than the link strengths, Wl,r, in equatorial
regions.

It is known that a typical auto-correlation function for climato-
logical records of a specific node decays as a power law with time4–9.
Therefore, this stability of the links over many years is surprising and
suggest that one might be able to extract new information from the
links between the nodes.

Analyzing the influence of spatial distances D, between the nodes
on the strength WD of the link leads to the observation of a strong
dependence of WD on D (Fig. 4). Here WD:W

y
l,r is the average over

all link strengths W at distance D, and over all years, y. It is seen that
for D . 2000 Km, WD reaches a low and almost constant value. This
constant value can be regarded (as will be seen in Sec ) as the level of
noise. However, we observe a significant difference in this depend-
ence between networks located in equatorial regions and networks
located in non-equatorial regions (compare Fig. 2a and Fig. 2b). In
networks located in equatorial regions (zones 7-9), WD decreases
significantly slower with distance compared to other regions. This
difference mainly appears in networks based on the geopotential
height field.

Stability of the entire network. In Sec. we showed that single links
remain relatively stable. In this section we study the stability of the
entire hierarchy of links within the climate network. We find the
network pattern to be relatively stable over time in contrast to

the pattern of the daily data itself. This stability of the network
may be demonstrated by measuring the similarity between net-
work states in different years. We analyze the similarity by
calculating p(t) (the Pearson coefficient) between the adjacency
matrices (representing links) of two network states in different
years y1, y2 as a function of t, where t 5 y2 – y1. In this calculation
every link in the adjacency matrix representing the year y1 is matched
only with the same link in the adjacency matrix representing the year
y2. In Fig. 5 (the upper curve) we show the average similarity �p tð Þ
between network structures as a function of the time separation t. It is
seen in Fig. 5a that this similarity is indeed high and almost constant,
�p tð Þ<0:8. This behavior is consistent for all networks in the non-
equatorial regions. For networks in equatorial regions the correlation
between the network states in different years, �p tð Þ is lower than non-
equatorial regions, but still significantly high. In addition �p tð Þ of
equatorial regions is more fluctuative. (see Fig. 5b).

Fig. 4 shows the existence of a strong dependence between the link
strength, W and the link distance, D. Links with shorter distances D
are therefore more likely to have higher W values, at all times. It is
therefore plausible that the high stability of �p tð Þ<0:8 is partially due
to this strong dependence. The contribution of the effect of the W–D
dependence to this observed stability, on the one hand, and the
contribution of physical coupling processes, on the other hand,
should be estimated.

We achieve this goal of removing the contribution of the W–D
dependence by subtracting from each link strength, Wl,r the average
strength of the group of links with a similar distance, WD. A new,
transformed adjacency matrix, Wl,r{WD, is thus formed, which
does not depend on D. Repeating our analysis of calculating p tð Þ,
for the new adjacency matrix, we show in the lower curve of Fig. 5, the
stability of this network. Indeed, after removal of the distance effect,
the network exhibits lower p tð Þ values. However, the stability related
to physical coupling processes is still significant. Similar analysis with
shuffled data yields values which are smaller by typically a factor
of 10.

It is plausible that some of our network links emerge mainly due to
noise and not due to real physical coupling processes. In Sec. we show
that this group of false links is characterized by low Wl,r values at all
years, and that this characterization is sufficient for uniquely iden-
tifying this group. To identify this group of false links which are due
to noise, we define Wl,r as the average strength of a link Wy

l,r over all
years. Upon eliminating low weighted links that satisfy Wl,rvh
(where h is a threshold that will be determined later in Sec. ) from
our network, we observe in the middle curve of Fig. 5 an increase of
the network stability. Thus, while the hierarchy of false links rapidly
changes in each time step, the hierarchy of significant links (having
Wl,rwh) is, to a large extent, preserved.

Figure 2 | Two examples of typical dynamics of a link strength (W) during the years. In (a) the distance between the two sites is about 750 Km, the

average time delay T~0 daysð Þ (see Section for precise definition) and the variation in the link strength, STD Wl,rð Þ=Wl,r~0:1. In (b) the distance between

the two sites is about 1500 Km, the average time delay T~1 daysð Þ and the variation in the link strength, STD(Wl,r) 5 0.1.
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Figure 1 | The geographical locations of the 9 separate zones, on which we

base our network analysis.
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The new p tð Þ values, which are calculated after the removal of both
the distance effect and the effects of noise, for different regions and
fields are summarized in Table 1. In contrast to the common
p tð Þ~0:8 value that was observed for the original network (includ-
ing the distance and noise effects), after removal of the distance and
noise effects we observe lower p tð Þ values specific to each zone and
climate variable. Still, in general, non equatorial regions exhibit larger
stability values than equatorial regions.

It has been shown that during El-Niño times, link strengths, Wy
l,r ,

are significantly reduced mainly in equatorial regions19,22. Hence our
observation of lower stability in equatorial regions is consistent with
the known effect of El-Niño on the climate network.

From Table 1 we see that removing both the distance effect and the
effects of noise reveals that the networks in zone 3, at the southern
ocean, exhibit low stability, p tð Þ values similar to the equatorial
regions. This similarity of the behavior of the network in zone 3
and the behavior of the network in equatorial regions is consistent
with the known local oscillations in zone 3 that correlate with ENSO
(El-Niño Southern Oscillation - large fluctuation of heat exchange
between the ocean and the atmosphere in the Pacific Ocean), due to
both ocean mechanisms35 and atmospheric coupling mechanism36.

Based on the high stability values seen in Table 1, we conclude that
similarity between network states at all times stems from a hierarchy
of real physical correlations (links) between different locations,
which is preserved in time.

Similarity between the networks structure, in different altitudes
and different climate variables. A further indication that the
stability of the network structure reflects a stability of physical
coupling processes, is from the finding of similarity between the
networks structure in different altitudes, and different climate
variables. For example, synchronized heating of two sites at the
850 hPa isobar network is likely to also cause synchronized
heating of the corresponding sites in the adjacent isobar of
500 hPa network by direct heat transport. Indeed a recent study of
the interaction between climate networks that represent different
layers by Donges et.al.(37) suggests that the coupling might be due
to convective heat transfer between these layers. In the following we
show that such a correspondence between networks of different
altitudes and climate variables indeed exists.

In Fig. 6 we show the Pearson correlation py between the adjacency
matrices of the climate networks in the 850 hPa isobar and in the
500 hPa as a function of time. Similar to Sec. the upper curve repre-
sents the values of py for the original networks, the lower curve is after
the removal of the distance effect, and the middle curve is after the
removal of both distance and noise effects. As is clearly seen from
Fig. 6a this correlation is significant, with an average value of py<0:6
and small fluctuation during time. In all off–equatorial (for both
temperature and geopotential height) regions we observe similar
high py values. A further observation from Fig. 6a is the increase of
10–20% in py values after the removal of noise.

In contrast, in equatorial regions (see e.g. Fig. 6b) we generally
observe lower and more fluctuative py values. Another difference
between off–equatorial and equatorial regions is the smaller effect
of the removal of noise on the py.

Based on physical considerations it is reasonable that a pair of
networks with a larger altitude distance will have a smaller similarity.
Indeed such a monotonic decreasing relation is seen in Fig. 7. Each
point in the curves of Fig. 7 is an average over different regions,
different time snapshots, and different altitudes of the correspon-
dence py . The different curves indicate that this monotonic decrease
in the similarity behavior holds both in equatorial and off–equatorial
regions and both for temperature and geopotential height networks.

Criterion for significant links. Underlying our supporting argu-
ments for the stability of the climate network, there is an

Figure 4 | The dependence of Wl,r on Dl,r in two typical locations. (a) Zone 1 (off–equatorial region). (b) Zone 9 (equatorial region). The four curves

describe four networks which are based on geopotential height measurement at 850 and 500 hPa isobar and based on temperature measurement at 850

and 500 hPa isobar.

Figure 3 | Distribution of the links variation during time, STD Wð Þ=W in
two zones. Zone 1 and Zone 9, both for network based on temperature at

850 hPa isobar.
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assumption. We rely on the existence of a sharp boundary between
the properties of links that result due to noise, LN, and links that
result due to real physical dependence, LP. The set of all links is
L~LN|LP . In this section we will show that such a boundary
indeed exists, with respect to two link properties: (a) the average
over all years of the link strength, Wl,r and (b) the variability over
time of the time delays of links STD(Tl,r) (STD means standard
deviation). We will later show that using both quantities in order
to identify the set of physical links LP and the set of noise links LN

converge to almost the same sets of links.
Our anchor for comparison between the derived LP and LN is

the distributions of (a) Wl,r and (b) STD(Tl,r) for networks based
on shuffled data. The shuffling scheme is aimed at preserving all
the statistical quantities of the data, such as the distribution of
values, and their autocorrelation properties, but omitting the
physical dependence between different nodes (different geograph-
ical locations). The network properties in such a case are only due
to the statistical quantities and therefore are similar in their prop-
erties to false links. To achieve this shuffling goal, we choose for
each node a random sequence of y in Sy

d (the order of the days d in
each year y is preserved). Thereafter, the entire construction of the
network, based on correlations of the shuffled records, is per-
formed. The adjacency matrix of the network based on shuffled
data is denoted as wl,r. The time delay matrix of the network based
on shuffled data is denoted as tl,r.

(a) Average link strength. In Fig. 8 we compare the probability density
function (PDF) of Wl,r and wl,r . As clearly seen from these figures,
the range of possible wl,r is extended only over a limited range of
values, wl,r g [3, 4]. Higher values that exist in the PDF for Wl,r are
missing from the PDF of the shuffled data, and therefore are not
likely to occur by chance. The cumulative distribution function
(CDF) of wl,r (see insets of Fig. 8) can be regarded as an estimate
for the likelihood of a Wl,r value to arise by real physical dependence.
The 98% likelihood level is shaded in the inset of Fig. 8a, having
Wl,r§4 for off-equatorial regions, and in the inset of Fig. 8b,
Wl,r§3:6 for equatorial regions.

(b) Variation of the time delay. High variability during different
years of the time delays of links STD(Tl,r), is also a signature of
artificial (random) behavior34. Therefore it serves as another good
separator between LP and LN. In Fig. 9 we show the probability
density function (PDF) of STD(Tl,r) and STD(tl,r). As clearly seen
from these figures, the range of possible STD(tl,r) is extended over
a limited range of values, STD(tl,r) g [75, 150]. Lower values that
exist in the PDF of STD(Tl,r) are missing from the PDF of the
shuffled data, and therefore are not likely to arise by chance. The
cumulative distribution function (CDF) of STD(tl,r) (see inset of
Fig. 9) can be regarded as an estimate for the likelihood of a
STD(Tl,r) value to occur by real physical dependence. The 98%
likelihood level is shaded in the inset of Fig. 9, having STD(Tl,r) #

Figure 5 | The average correlation, �p tð Þ, between network adjacency matrices at different time snapshot, between t 5 1 and t 5 40 years apart, for
networks based on temperature at 850 hPa and located at (a) zone 1, and (b) zone 9. The upper curve in each figure, represents the correlation between

the original networks without removing the effects of distance and noise. The standard deviation is calculated from all pairs of years y, y 1 t. The lower

curve represents �p tð Þ for a network after removing of the distance effect. The mid curve represents �p tð Þ for a network after removing both, distance and

noise effects.

Table 1 | The average correlation values, �pðtÞ, between network adjacency matrices at different time snapshot for networks based on
various fields and located at different regions. The values shown are after removing the distance and noise effects

zone

climate
variable

Net.Temp Net.Temp Net.Height Net.Height

isobar:850 hPa isobar:500 hPa isobar:850 hPa isobar:500 hPa

zone 1 0.42 6 0.08 0.31 6 0.08 0.48 6 0.08 0.3 6 0.1
zone 2 0.4 6 0.08 0.33 6 0.08 0.32 6 0.11 0.3 6 0.11
zone 3 0.27 6 0.09 0.21 6 0.1 0.17 6 0.13 0.18 6 0.11
zone 4 0.32 6 0.08 0.24 6 0.09 0.45 6 0.11 0.36 6 0.1
zone 5 0.42 6 0.1 0.34 6 0.1 0.51 6 0.12 0.42 6 0.11
zone 6 0.43 6 0.08 0.41 6 0.09 0.45 6 0.08 0.37 6 0.08
zone 7 0.22 6 0.11 0.37 6 0.15 0.37 6 0.16 0.18 6 0.17
zone 8 0.33 6 0.13 0.19 6 0.14 0.24 6 0.15 0.14 6 0.21
zone 9 0.25 6 0.14 0.2 6 0.11 0.37 6 0.14 0.16 6 0.2
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75 for off-equatorial regions, and STD(Tl,r) # 80 for equatorial
regions.

Both Wl,r and STD(Tl,r) can be used for determining a boundary
between LP and LN. Convergence to similar LP and LN in both criteria
can be considered as a confirmation that either of these criteria
indeed efficiently distinct between links that emerge merely due to
noise and real links. In Fig. 10 we show a two dimensional PDF of
Wl,r and STD(Tl,r). A large fraction of the links evidently have both
low values of Wl,r and high values of STD(Tl,r), which is a typical
behavior of links that emerge from random behavior. This set of links
is realized as a sharp local maximum of the PDF in the region
Wl,r[ 3,4:5½ �, STD(Tl,r g [75, 150] (See Figs. 8 and 9). Within this
region, Wl,r and STD(Tl,r) are not correlated, since the fluctuations
are random in both axes. Outside this region the mutual local max-
imum of the PDF in both axis are correlated, i.e. larger values of Wl,r

are paired with lower values of STD(Tl,r). The crossover between the
two regimes occurs in Wl,r~4:5, STD(Tl,r) 5 75. This qualitative
behavior is consistent at all regions (1–9), but the crossover point is a

bit different for off–equatorial regions where Wl,r~4, STD(Tl,r)
5 75.

A further indication that the boundary between LP and LN is
within the region Wl,r [ 3:5,4:5½ � is the increased sensitivity of the
stability measure �p t; hð Þ to the removal of noise within this region.
Here we indicate explicitly the value of the threshold for noise
removal by the second argument h. In Fig. 11 we show the differential
of �p t; hð Þ, averaged over all values of t, dp:�p hzdhð Þ{�p hð Þ, where
dh 5 0.5. We find a sharp local maximum in dp, around
Wl,r [ 3:5,4:5½ �. This sharp maximum is consistent with h crossing
the boundary between LN and LP, where many of the links related to
noise drop off the network, and causes the average stability �p hð Þ to
abruptly rise. Such behavior of dp is consistent both in equatorial
regions (stars) and off–equatorial regions (circles). The response of
the sensitivity dp to further removal of links (which mainly belong to
LP) is thereafter reduced. In fact, removal of real physical links might
even result in a reduction of the stability (e.g. dp , 0), as is indeed
observed for large h in the equatorial curve in Fig. 11. In conclusion, a
sharp boundary between LN and LP is almost certainly identified
around Wl,r<4:0+0:5 in the networks calculated for all types of
data (temperature and geopotential height in various altitudes cover-
ing the troposphere), both in equatorial and off–equatorial regions.

Discussion
We have established the stability of the network of connections
between the dynamics of climate variables (e.g. temperatures and
geopotential heights) in different geographical regions. This stability
stands in fierce contrast to the observed instability of the original
climatological field pattern. Thus the coupling between different
regions is, to a large extent, constant and predictable. The links in
the climate network seem to encapsulate information that is missed
in analysis of the original field.

The strength of the physical connection, Wl,r, that each link in this
network represents, changes only between 5% to 30% over time. A
clear boundary between links that represent real physical depend-
ence and links that emerge due to noise is shown to exist. The dis-
tinction is based on both the high link average strength Wl,r and on
the low variability of time delays STD(Tl,r).

Recent studies indicate that the strength of the links in the climate
network changes during the ENSO19,21,22 and the NAO23 cycles. These
changes are within the standard deviation of the strength of the links
found here. Indeed in Fig. 3 it is clearly seen that the coefficient of
variation of links in the El-Niño basin (zone 9) is larger than other

Figure 6 | The correlation between two network adjacency matrices at different altitudes, 850 hPa isobar and 500 hPa isobar in equatorial and off–
equatorial regions. (a) Zone 1 (off–equatorial region), and (b) zone 9 (equatorial region). The upper curve in each figure, represents the correlation

between the original networks without removing effects of distance and noise. The lower curve represents py for the networks after removing the distance

effect. The mid curve represents py for the networks after removing both, distance and noise effects.

Figure 7 | Average correlations between pairs of networks with different
altitude distances. The four curves describe two networks which are

located in off–equatorial regions (zones 1–6) and based on geopotential

height or based on temperature and two networks which are located in

equatorial regions (zones 7–9) and based on geopotential height or based

on temperature measurements.
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regions such as zone 1. Note that even in the El-Niño basin the
coefficient of variation is relatively small (less than 30%).

Beside the stability of single links, also the hierarchy of the link
strengths in the climate network is preserved to a large extent. We
have shown that this hierarchy is partially due to the two dimensional
space in which the network is embedded, and partially due to pure
physical coupling processes. Moreover the contribution of each of
these effects, and the level of noise was explicitly estimated. The
spatial effect is typically around 50% of the observed stability, and
the noise reduces the stability value by typically 5%–10%.

The network structure was further shown to be consistent across
different altitudes, and a monotonic relation between the altitude
distance and the correspondence between the network structures is
shown to exist. This yields another indication that the observed
network structure represents effects of physical coupling.

The stability of the network and the contributions of different
effects were summarized in specific relation to different geographical
areas, and a clear distinction between equatorial and off–equatorial
areas was observed. Generally, the network structure of equatorial
regions is less stable and more fluctuative.

The stability and consistence of the network structure during
time and across different altitudes stands in contrast to the known
unstable variability of the daily anomalies of climate variables.
This contrast indicates an analogy between the behavior of nodes

in the climate network and the behavior of coupled chaotic oscil-
lators38. While the fluctuations of each coupled oscillators are
highly erratic and unpredictable, the interactions between the
oscillators is stable and can be predicted. The possible outreach
of such an analogy lies in the search for known behavior patterns
of coupled chaotic oscillators in the climate system. For example,
existence of phase slips in coupled chaotic oscillators is one of the
fingerprints for their cooperated behavior39, which is evident in
each of the individual oscillators. Some abrupt changes in climate
variables, for example, might be related to phase slips, and can be
understood better in this context.

On the basis of our measured coefficient of variation of single
links (around 15%), and the significant overall network stability
of 20–40%, one may speculatively assess the extent of climate
change. However, for this assessment our current available data
is too short and does not include enough time from periods
before the temperature trends. An assessment of the relation
between the network stability and climate change might be pos-
sible mainly through launching of global climate model ‘‘experi-
ments’’ realizing other climate conditions, which we indeed
intend to perform.

A further future outreach of our work can be a mapping between
network features (such as network motifs) and known physical pro-
cesses. Such a mapping was previously shown to exist22 between an

Figure 9 | The distribution of STD(Tl,r) and STD(tl,r) in equatorial and off–equatorial regions for networks base on temperature measurements at
850 hPa isobar. (a) Zone 1 (off–equatorial region), and (b) zone 9 (equatorial region).

Figure 8 | The distribution of W l,r and wl,r in equatorial and off–equatorial regions for networks based on temperature measurements at 850 hPa
isobar. (a) Zone 1 (off–equatorial region), and (b) zone 9 (equatorial region).
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autonomous cluster in the climate network and El-Niño. Further
structures without such a climate interpretation might point towards
physical coupling processes which were not observed earlier.

Methods
Data. We analyze data obtained from a reanalysis project40. The records consist of the

reanalysis air temperature field and the geopotential height field h (h~

ðps

p

RT
gp

dp,

where R is the Boltzmann gas constant for air, T is the temperature, g is the gravitation
acceleration, p is the pressure at the current isobar and ps is the refference pressure in
the surface level), for the 1000 hPa, 925 hPa, 850 hPa, 700 hPa, 500 hPa and 300 hPa
isobars. We use daily values between the years 1948-2006. The data is arranged on a
world-wide grid with a resolution of 5u 3 5u. We divide the globe into 9 zones (see
Fig. 1), in order to identify different network dynamics specific to different zones.

The network construction method. We analyze daily climatological records
(temperature/geopotential heights) taken from a grid in various geographical
zones (Fig. 1). To avoid the trivial effect of seasonal trends we subtract from the
records of each day the yearly average value of that day. Specifically, we take the
climatological signal (temperature/geopotential heights) of a given site in the
grid to be ~Sy dð Þ, where y is the year and d is the day (ranging from 1 to 365) of
that year. The new signal will be Sy dð Þ~~Sy dð Þ{ 1

N

P
y
~Sy dð Þ, where N is the number

of years available in the record. For each pair of sites l and r in a specific zone,
we compute the absolute value of the cross-covariance function,

Xy
l,r tð Þ~ Sy dð Þ{vSy dð Þwð Þ: Sy dztð Þ{vSy dztð Þwð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v Sy dð Þ{vSy dð Þwð Þ2w:
v Sy dztð Þ{vSy dztð Þwð Þ2w

q , of their

local climatological signals such as temperature/geopotential heights in the range of
time delays t g [2tmax, tmax] integrated over a specific year (y) (see Fig. 12). To
quantify the significance of the correlation between nodes l and r we normalize the
nominal value of the maximal observed correlation by its standard deviation. We

therefore define the strength of the link to be Wy
l,r~ MAX Xy

l,r

� �
{vXY

l,rw

� �.
STD Xy

l,r

� �
, where , … ., MAX and STD are the mean value, maximal value and the

standard deviation of Xy
l,r in the range of t, respectively. The matrix Wy

l,r represents
the weighted adjacency matrix of the network at year y. The time shift at which Xy

l,r is
maximal is defined as the link time delay, and denoted as Ty

l,r .
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