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We investigate the nature of correlations in Gaussian light sources used for ghost imaging. We adopt
methods from quantum information theory to distinguish genuinely quantum from classical correlations.
Combining a microscopic analysis of speckle-speckle correlations with an effective coarse-grained
description of the beams, we show that quantum correlations exist even in ‘classical’-like thermal light
sources, and appear relevant for the implementation of ghost imaging in the regime of low illumination. We
further demonstrate that the total correlations in the thermal source beams effectively determine the quality
of the imaging, as quantified by the signal-to-noise ratio.

host imaging'? is an imaging modality configured as in figure 1. Behind the object to be imaged, a bucket

detector is placed. This detector yields no spatial information about the object but merely informs of the

net photon count or intensity of the light impinging upon it. On its own it cannot provide an image of the
object. In the second branch of the scheme, however, there is a spatially resolving detector (e.g. a CCD array); in
this case, the light impinging upon this detector never passes through the object so it also cannot, on its own, yield
an image of the object. In order to obtain an image, it is necessary to correlate the outputs of these detectors.
Additionally, we need a source of correlated light to begin with, to provide the illumination; it is the exact nature of
this source which has been the cause of controversy.

The first demonstration of ghost imaging was carried out by Pittman et al. in 1995°. In their paper, they used
entangled beams produced by spontaneous parametric down conversion (SPDC) to perform the imaging. Even
then, they noted briefly at the end of their paper that it may be possible to adapt their technique to ‘classical’
light—a proposition which sparked debate*. When this was experimentally achieved by Bennink et al. in 2002°,
part of the debate was resolved. Over the following years, even more theoretical and experimental papers ironed
out the differences between ghost imaging with ‘quantum’ and ‘classical’ light®®. Notably for our purposes, Gatti
et al.’ proposed thermal-light ghost imaging which was experimentally achieved shortly afterwards'®''. This
prompted a debate on the big question whether the physical origin of thermal-light ghost imaging can be
explained entirely using classical intensity correlations and to this day disagreement still persists'>"*.

Despite the large number of studies addressing practical questions such as signal-to-noise ratio (SNR), image
contrast and acquisition time”'*"'%, to our knowledge, there has been a lack of study on the specific decomposition
of classical and quantum correlations (in their broadest sense) in the light source used for ghost imaging. We
believe that a study from such an angle will elucidate how quantumness versus classicality manifest in the scheme.

One qualifier of ‘classicality’ for ghost imaging has been that it can be accounted for by a semiclassical optics
description—where light is treated classically, but the quantum nature of the detector is accounted for by
consideration of the shot-noise'*"”. Thermal-light ghost imaging can indeed afford such a description.
However, an immediate issue arises: for two modes of Gaussian light between which any correlation exists at
all, a nonvanishing part of the total correlations has necessarily a genuinely quantum nature'®', as captured for
instance by the quantum discord®**'. Since the correlated thermal light used for such experiments is indeed
Gaussian, it warrants a study of the extent to which these quantum correlations feature in so-called ‘classical’
ghost imaging.

To put this on a more rigorous footing, in quantum optics, ‘classical’ light is taken to be light with a proper
(non-negative and non-singular) Glauber P-representation, meaning it can accurately be represented by classical
optical theory”. For two-mode Gaussian states in standard form®, classicality as qualified by the P-representation
criterion coincides with separability, that is, absence of entanglement*. However, this classification does not
correspond to the most general informational definition for the classicality of correlations in bipartite states.
According to a recently established paradigm, rooted in quantum foundations and information theory, a state is
classically correlated when it has vanishing quantum discord**?, i.e., when a projective measurement exists that
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Figure 1 | Diagrammatic representation of a ghost imaging scheme.

once performed on a subsystem leaves the composite state undis-
turbed. In this respect, almost all unentangled states possess general
quantum correlations as well*>. Quantum correlations without and
beyond entanglement are capturing the attention of a vast commun-
ity of researchers, as those correlations have been linked to practical
advantages in a number of noisy quantum communication and com-
putation frameworks where entanglement is too fragile to be main-
tained®*”. In fact, on general grounds, a recent work has indicated
that the sets of states corresponding to each definition of classicality
(the optics one in terms of P-representation, and the informational
one in terms of discord) are almost completely disjoint®®. Since the
ghost imaging scheme is entirely dependent on the correlations
between each beam, one needs to apply special care when tagging
any instance of that protocol as ‘classical’ based on one perspective
only. Considering that ghost imaging is a scheme which entirely
depends upon the correlations between each arm, it seems likely that
an analysis from the informational perspective of correlations may
shed some light on the problem.

To better understand the debate, it is useful to divide thermal-light
ghost imaging into two categories: lensed and lensless. At present,
advocates for the quantum description of thermal-light ghost
imaging propose that the ghost image formation in the lensless case
cannot be explained semiclassically but can only be accounted for by
non-local two-photon interference, a distinctly quantum phenom-
enon. It is the indistinguishability of different ways of triggering a
joint detection which is crucial for this characterisation'>*. More so,
there have been claims that the non-local interference picture of
ghost imaging is necessary to explain the results of some recent
experiments. These include ghost imaging with speckle-free light*
(although this idea of speckle-free light has met some resistance'?)
and also an experiment on turbulence-immune ghost imaging®, but
due to the general contentiousness of ghost imaging this too has
come under scrutiny'**,

On the other hand, the lensed picture is much less controversial.
Even in terms of the two-photon interference picture, it is considered
as a “man-made” local correlation; the propagation characteristics
induced by the lens (i.e. a Fourier transform), mean that each mode
in the source plane is mapped to a unique position in the detection
planes and a local, semiclassical picture can be used. A detailed
description of this can be found in*’. Nevertheless, this type of ghost
imaging still warrants an examination from our perspective due to
the aforementioned presence of quantum correlations in all corre-
lated Gaussian states.

In this paper, we quantitatively compare the correlations in the
source Gaussian light for lensed ghost imaging to a specific figure of
merit, the SNR. In the case of thermal-light ghost imaging, we find
that there is a universal quasi-linear relation between the total
correlations (the sum of quantum and classical) and the SNR.

Furthermore, our analysis reveals two regimes: one—for low illu-
mination—in which quantum effects dominate (in the sense that
quantum discord takes up most of the total correlations), and
another—for high illumination—in which it is the classical side of
correlations which is much stronger. Increasing the illumination
intensity we thus witness a quantum-to-classical transition in the
description of ghost imaging, all the time using unentangled thermal
light, which is classified as entirely ‘classical’ by optics standards. In
the limit of very high illumination, thermal light and entangled
sources yield the same performance for ghost imaging, and we find
that they are characterised by the same, mostly classical correlations
(although we re-emphasise that the quantum component of correla-
tions is only exactly zero for completely uncorrelated light). We also
examine the behaviour of correlations in near-field, lensless ghost
imaging, removing any dependence on speckles from our calcula-
tions. We find that both lensed and lensless ghost imaging behave in
a similar manner.

Results

Overview. Before delving into our results, it is necessary to clarify
which variables influence the light correlations and the SNR simul-
taneously for our lensed picture. To begin we have the speckle-count
per pixel, M of the spatially resolving detector. When we refer to
‘speckle’, we mean the spatial intensity fluctuations projected upon
the detectors by a spatially incoherent beam™. The second parameter
of interest is the illumination I = My, where u denotes the average
photon count per mode—which for our lensed formulation corre-
sponds to the photon count per speckle. The final parameter of
interest is the pixel count of the image, R, which informs us over
how many modes the bucket detector integrates. More details on this
formulation of ghost imaging can be found in*, from which we have
taken the SNR expression. Out of several possible choices'>**, we
choose to adopt the SNR corresponding to an imaging function
which utilises the covariance of the intensities in each beam. The
explicit expressions of the SNR for thermal-light and SPDC-
entangled light sources are provided in the Methods section.

In the lensed ghost imaging, we have pairwise correlated speckles.
Each pair of correlated modes in the source-plane is mapped onto a
unique position in each of the CCD and bucket planes. As such, any
speckle is correlated to one—and only one—speckle on the opposite
plane. This is a very typical setup for the observation of so-called
‘classical’ ghost imaging'®'"*.

We shall look at the character of two different types of correlations:
the individual (microscopic) speckle-speckle correlations for each
pair of correlated speckles, and a ‘coarse-grained’ view which
averages over the entire bucket detector for each pixel of the spatially
resolving one. This latter view, which allows us to adopt an effective
two-mode description of the problem, gives an impression of the
correlations involved in shaping each pixel of the ghost image with
a close regard to how the ghost imaging scheme is actually con-
structed. There are several note-worthy aspects of the coarse-grained
formalism which we shall elucidate diagrammatically; a full descrip-
tion of the derivation can be found in the Methods section.

We specialise here our qualitative picture to thermal-light lensed
imaging. We define effective operators for an area on each plane, dy,
and ag,. It turns out that for any given area, A, on either plane, the
autocorrelations <&Z&A> are equal to those for any individual
speckle within the area. If we look at any two matched areas on the
CCD and bucket planes (figure 2(a)), then the cross-correlations,
<211131A2>, are again exactly equal to the cross-correlations of the
individual paired speckles (all speckles are assumed to have identical
statistics). Similarly if we look at any two unpaired areas, in figure
2(b) then we get no correlations at all, which is exactly as we would
expect. In this sense the coarse-graining proves to be a sensible
method of averaging. Better yet, if we look at partially overlapping

| 2:651 | DOI: 10.1038/5srep00651

2



Cccb Bucket Cccb Bucket
[ ] [ ] [ ] [ ]
\ / 7\
N VAN
\ \ \\\\ \ ///
\ \ / / \ \ /
Superposed Superposed
(a) (b)
Cccb Bucket Cccb Bucket
m ] |I .
\\\ \ // / \ \\ // /
\ : \
\ N/ N/
Superposed Superposed

(c) (d)

Figure 2 | Conceptual diagrams indicating the areas we are considering
on the CCD and bucket planes and a superposition of both. For part (a)
we are considering exactly matched areas on either plane, for part (b) we
are considering entirely disjoint areas. Part (c) has two areas of equal

magnitude, half overlapping. The correlations between these are — those for
an individual speckle within the overlapping area. Part (d) considers one
area — the size of the other, completely enclosed by it on the superposed
picture. This case notably, is most like the comparison of pixel and bucket
detector. The effective modes also have — the cross-correlations between

them as for any individual speckles within the overlap area.
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In the following, quantum correlations Q will be quantified by the
Gaussian quantum discord'®**’, classical correlations C by the com-
plementary one-way correlation measure introduced in*, and total
correlations 7 by the conventional quantum mutual information,
which coincides with the sum of the two.

Speckle-speckle correlations. Looking at the speckle-speckle
correlations, we get our first hints that even with non-entangled
thermal light, the role of quantum correlations cannot be ignored. In
figure 3, we clearly see that for low illumination I—or alternatively,
high speckle-count per pixel M—quantum correlations can actually
exceed classical ones. This stems from the fact that for individual pail}s,

the correlations only depend on the expected photon count u= ”w

When p < 1 the speckle-speckle quantum correlations dominate over
the classical ones, Q>C. Entanglement is never present in the
considered light source, yet our study reveals a definite non-classical
nature of such light, manifested in the correlations between individual
pairs of speckle modes in the low illumination regime.

Coarse-grained correlations. The results we find for the coarse-
grained correlations are even more striking. In the effective two-
mode description, we find it convenient, for the sake of the
discussion below, to normalise the correlations multiplying them

R
by a factor 5 (see Methods for a justification). In the following,

we refer to the normalised total, quantum, and classical coarse-

grained correlations by 7, Q, and C, respectively. Our aim is to
compare their behaviour with the SNR, which quantifies the
quality of the imaging. In this way we can attempt to identify
which aspects of the correlations in the source beams can be
regarded as key resources for the protocol.

To begin, we first plot the fotal normalised coarse-grained correla-
tions 7 and the SNR on separate graphs in figure 4. Despite the very
different (physical and mathematical) nature of the two quantities
under scrutiny, it is immediately noticeable that they have a very
similar form, a fact which is even more evident when we observe a
parametric plot of the SNR versus 7 in figure 4(c). By varying I, M,
and R in their region of interest (in particular keeping R > 1, which

correlations

2.0r  total
classical -----
quantum ------

Figure 3 | Speckle-speckle correlations in thermal-light lensed ghost imaging, plotted as a function of the illumination I and the speckle-count M. In
(b) a detail at M=1 is shown. Notice the intersection between classical and quantum correlations at M = I Classical ones dominate for I > M, while

quantum ones are relevant for I < M.
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Figure 4 | Coarse-grained analysis for thermal-light ghost imaging (with pixel count R = 100). Panels [(a)—(b)]: Log-linear plots of (a) Signal-to-noise
ratio (SNR) and (b) total correlations ]~ for increasing illumination I In panel (c) we display the tiny region filled by SNR versus ]~ with varying M €
[1, 1000] and I € [0, 1000]; the quasi-linear region is essentially invariant upon variations of R as well. Panels [(d)-(e)] display the decomposition of
coarse-grained correlations, for M = 1. Looking at (d) we can see that the total correlations are bounded, and at high illuminations they are mostly

classical. Zooming in the low-illumination regime near the origin, though, we see in (e) that there is an interval where quantum correlations still exceed

classical ones. All the correlations are normalised by \/R/2.

means nontrivial imaging), we find that the SNR always exhibits a
quasi-linear dependence on the total correlations with slope = 1. The
relation is not exactly linear, yet the discrepancy between SNR and
normalised total correlations stays smaller than one percent in the
relevant parameter regime. This indicates that for any of the para-
meters that affect the light correlations, the SNR is affected in exactly
the same way. The small difference may reflect the fact that there are
properties of the detector and object which affect the SNR, but do not
influence the correlations at the source. Rigorously, recalling 1 = I/
M, and using the formulas provided in the Methods, we have

SNR 1/(2R+1)

T R R "

Our analysis thus reveals that the joint contribution of
quantum and classical correlations can actually be used as a pre-
dictor for the performance, as measured by the SNR, of ghost
imaging with ‘classical’, thermal-light sources. It is now of interest
to look at how the total correlations decompose specifically for
our coarse-grained description. In figure 4(d), we see that for high
values of illumination, the quantum correlations O tend to 0. As
such, total correlations are almost all classical (and, like the SNR,
they are bounded from above). We do, however, still see a region
near the origin [figure 4(e)] where the coarse-grained quantum

correlations exceed the classical ones, in agreement with the
speckle-speckle analysis of figure 3.

Extending the picture. We have comprehensively unveiled the
presence and role of genuinely quantum correlations in thermal-
light, ‘classical’-like ghost imaging. We can also extend our study
to the case of ghost imaging with entangled light sources produced
by SPDC. In this case, it has already been pointed out in'® that the
entanglement between the individual modes acts as an extra resource
and can lead to an increase in the SNR compared to the thermal-light
case. In our formalism, we find that for entangled light the SNR (see
Methods) grows much faster than linearly as a function of the coarse-
grained total correlations 7', as shown in figure 5(a). However, in the
limit of very high illumination, the coarse-grained total correlations
for both thermal-light and entangled cases converge to the same asy-
mptotic maximum value, which is an intuitively expected result'.
Similarly, the SNR for both cases converges to the same upper limit
in the regime of high illumination, given by SNR,_ .=
VM/[6+M(2R+1)]*. Specifically, we find that Eq. (1) holds
exactly for entangled as well as thermal light. When we plot the
(normalised, coarse-grained) total correlations for thermal-light
versus SPDC-entangled sources on the same graph, as in figure
5(b), it is evident though that in the case of entangled light the
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Figure 5| (a) Coarse-grained analysis for ghost imaging using entangled light produced by SPDC (with pixel count R = 100): Plot of SNR versus total
correlations for M = 1 and I € [0, 1000]; compare with the corresponding thermallight case, figure 4(c). Panel (b) depicts a comparison between total
coarse-grained correlations T for the cases of thermal and entangled light sources (with R = 100) as a function of the illumination J; it is shown that they
share a common limit in the regime of high illumination [see Eq. (1)], although in this setup SPDC-entangled light is always more correlated than

thermal-light. All the correlations are normalised by \/R/2.

correlations are always higher for given finite values of the
parameters I, M and R.

So far we have made quantitative comparisons for lensed ghost
imaging only, however it turns out that the correlations for near-
field, lensless ghost imaging also scale in precisely the same way.
Instead of considering speckle-count per pixel and pixel-count over
the image, we simply calculate the correlations between pixel area
and bucket detector area. The qualitative results of our previous
description then still hold, and we have included detailed calculations
in the Methods section.

Discussion
We have analysed the nature of correlations in Gaussian light sources
used for ghost imaging from a quantum informational perspective,
combining a microscopic with an effective coarse-grained descrip-
tion. We have found that even so-called ‘classical’ thermal light con-
tains nonzero genuinely quantum correlations—as measured by the
quantum discord'***—whose contribution to the performance of
ghost imaging schemes has been assessed. Since the entire scheme
is dependent upon the correlations between the arms, the quasi-lin-
earity between the total correlations and SNR strongly suggests that
the total correlations may be acting as the essential operative resource.
The dominant strength of quantum correlations in low-illumina-
tion regimes has an immediate physical explanation. In the limit of
low illumination, there are few photons per mode and this is a regime
where the quantum behaviour of light becomes very apparent. In fact,
in a recent review, the non-local description for Gaussian thermal
light is formulated with the explicit assumption of low photon-flux'’
and in the original paper expounding the non-local picture, the
adopted model of thermal light implicitly assumes a photoncounting
regime, which is an equivalent criterion to low photon-flux. As elu-
cidated by the results of this paper, it is likely no mere coincidence
that such an assumption need be made, but rather a consequence of
the fact that the quantum component of correlations available for
detection by our scheme vanishes in the limit of high illumination.
This reveals an interesting feature associated to the coarse-grained
formalism put forward here. It actually indicates how the quantum
nature of the light source becomes quenched as we diverge from the
photon-counting regime and enter the classical limit of intensity

correlations. For these high illuminations, the quantum correlations
available for detection by our scheme tend to zero, and the physical
model of the scheme does not require a quantum description of the
light to be accurate. The small-scale features of the speckle-speckle
correlations cannot be detected by the way the light is averaged over
the bucket detector. This is an unusually clear look into how a system
can transition from a quantum regime into a classical one.

We have briefly extended our analysis to the less controversial case
of SPDC-entangled light sources. It has been observed in previous
work' that for high brightness the results of the ghost image formed
with ‘classical’-like thermal light are “excellent approximations for
the quantum [entangled] case” and we find indeed that in this limit,
the (coarse-grained) total correlations in the sources too approx-
imate each other closely.

Our calculations, as explicated in the Methods section, reveal fur-
thermore that lensed and lensless ghost imaging behave in a similar
manner to each other. In the recent debate, which is well charac-
terised by a comment from Shih'*> with a rebuttal from Shapiro
et al.”’, we find our results support the latter’s arguments that
near-field lensless imaging can afford a classical interpretation. In
high illuminations the quantum correlations are suppressed.
Ultimately, this shows that the geometry of the system has a limited
role in determining its classicality or quantumness, whereas the illu-
mination conditions are a clearly more significant factor.

We finally mention that quantum discord has been very recently
measured experimentally in Gaussian states of light****. We believe
our predictions on the role of quantum versus classical—and total—
correlations in ghost imaging with thermal Gaussian light could be
tested with current optical technology.

Methods

Correlations in Gaussian states. A Gaussian state is any state which can be
represented by a Gaussian Wigner distribution in phase space. Ranging from thermal
to squeezed states, they are convenient not only for their experimental ubiquity and
robustness, but also for their ease of use for calculations.

Gaussian states are entirely characterised by their first and second statistical
moments. For this paper, we deal with zero-mean states; as such, the relevant object
for our computations is the two-mode covariance matrix given by

o= Tr [P ({Q,RA] + lejﬁ,-)] . Here R;; are the elements of our quadrature vector given by

R=(gy:py58p5P2) >
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From this, we can fully determine the information required for computing the
correlations between two modes. The measure of quantum correlations which we
choose is the quantum discord**?', which is defined for bipartite states as the dif-
ference between two classically identical definitions of mutual information. When the
difference is non-zero, we then necessarily have quantum correlations in the state.

Any two-mode covariance matrix can be written in the form

a 0 ¢ 0
0 a 0 d
712 = 0 b 0
0 d o b

Subsequently, we can write the quantum discord, the classical correlations and the
mutual information, respectively, as

Q(o1)) =f(b)—f(v4 ) —f(v_) +inf f(\/_det e),
Clon)=f( )—mff(\/_)
T(o12)=f(a)+f(b)—f(v+)—f(v-),

where f(x) = JC+11 <x21> 4+

of the covariance matrix* and € is the conditional covariance matrix of subsystem 1
after an optimal Gaussian measurement has been performed on subsystem 2. The full
details on the interpretation of these quantities and on of how to perform these
calculations can be found in'®.

-1
In (T)’ v are the symplectic eigenvalues

Lensed Ghost imaging and SNR. For this section we have utilised the model of Brida
et al.”” and a detailed analysis can be found in their paper. In the lensed setup, modes
with particular values of transverse vector k are projected onto unique transverse
coordinates p in the imaging plane. We assume that the modes corresponding to each
value of k have identical statistics. Then, for the thermal-light case we can model the
speckled beam as a set of independent modes a;. Performlng the beam splitter
transformation then leads to new operators bl i =(ai + ayaci / \/E and
bz i =i+ Ayaci / \/_ The statistics for each of these beams individually are identical.

The SPDC-entangled case requires a very similar calculation. The dlfference is that
our modes are generated by the well-known equatlons byi=Udy(q:)+ Va (—qi)
and b, ;= Ua,(q;)+ Va| (—q;), where U2 - V2 =

It is now useful to consider the signal-to-noise ratio of ghost imaging. The SNR is
defined as

|<Sin - Sout>‘
var(Siy — Sout)

SNR=

where our object is a binary amplitude mask; that is, we either have full transmission
or full occlusion of the incoming light. S;, corresponds to being in the object profile
(full transmission), and S, the opposite. Here S is whichever imaging function we
choose.

As mentioned in the main text, for our analysis we are interested in three para-
meters. The first is the number of speckles, M, per pixel of the spatially resolving
detector. The second, is the illumination, I = My, where yu is our mean photon
number per spatiotemporal mode, and the last is the number of pixels in our ghost
image R.

Choosing to take our imaging function S to be the correlation function of intensity
fluctuations (the covariance) we have S(p) = (N; — (N}))(N2(p) — (N2(p))). The
spatial dependence of N, refers to the position in the spatially-resolving arm.
Furthermore, N1 denotes the net photon count on the bucket detector. To clarify, we
have N; = ZJ 1 N1j, where Ny, refers to our photon count on the j* spatial reso-
lution cell. In turn we can decompose each of our Nj, N, into the sum of individual
modes (speckles) such that N; = ZJM:1 n;; where i = 1, 2. This quantity tells us the
number of speckles per pixel.

We then have®

wM
V1I2@MR+M+6)+4u(MR+1)+2MR+1’

SNRhermal =

@

SNReeneg L 3)
" VIE2MR+M+6)+p(2MR+M+6)+1

for thermal-light and SPDC-entangled light sources, respectively.

Coarse-grained description for lensed imaging. As outlined earlier, the SNR
depends on an imaging function of the form S(x) = (N; — (N)) (N2 (x) — (N2 (x))),
which takes into account multiple modes. Whilst it is easy to generate multimode
covariance matrices, the problem of calculating the discord from these matrices is
quite intractable. As such, we proceed to define an effective two-mode matrix. The key
to this is to produce averaged operators which, under the expectation value, behave
like usual single-mode operators.

To wit, starting with a pixel which collects M modes and noting that N; =

M

nij= E-,
that <c c,> <Z]M 1 b, ]b > In order to do this, we need to explicitly consider the

spatial dependence of the modes at the detection planes. Doing so, we can say

M
Zj:l

l;+ -Ei j (for i = 1,2), we wish to find mode operators ¢; for each pixel, such

Ci= Z]Ni L l;,-vj(S (p - pj> where p; corresponds to the position of the j* mode on the
orthogonal plane. Note that we do not consider the effects of the transmission mask
on light propagation in this particular calculation.
These operators then behave as we desire, but for one very crucial part: the com-
mutation relations. This is easily remedied though. If we define our effective operators
1 PN
\/_1\—/[ ¢;, then we find < [d,df] > = 1. Performing similar
steps for pixels collecting R modes, and then transforming our covariance matrices

from the mode operator to the quadrature basis, enables us to obtain the effective
‘coarse-grained’ covariance matrices given by

2p
VR

0 142z 0

in the following manner: di=

1+2u 0

il 0 142
VR 8
4)
utp (
142 0 NVEE
: VR
2y u+ 2
0 1+2u 0 —_
VR
and s
Bt
NVEE 0 1+2 0
VR K
2 2
0 VR 0 1424

VR

for thermal-light and SPDC-entangled light cases, respectively.

Notice that the off-diagonal blocks of the covariance matrices, which encode the
intermodal correlations, appear scaled by a factor oc1/ V/R as a consequence of the
averaging applied to preserve the commutation relations. This makes e.g. the cov-
ariance <&j\‘ a4, ) sensitive to changes in one of the areas, which should not be, as an
increase in, say, A, for a fixed A; = A, implies no loss of any physical correlation.
Therefore, to make sure we measure genuine phase-insensitive correlations between
the beams in the effective two-mode description, we can a posteriori renormalise
classical, quantum, and total correlations, evaluated on the matrices of Eq. (4),
multiplying them by a factor proportional to v/R. The specific choice 1/R/2 is
dictated by mere convenience, as it makes the slope in the SNR versus total correla-
tions relation converge exactly to 1 [see Fig. 4(c) and Eq. (1)]. Needless to say, the
quasi-linear interdependence existing between the two quantities for thermal light, as
well as all the results derived in the main text and illustrated in figures 4 and 5, are
obviously not qualitatively affected (albeit for quantitative rescaling) by any specific
normalisation procedure implemented on the correlations.

Coarse-grained description for lensless ghost imaging. The above formalism for
lensed ghost imaging considers a simple one-to-one mapping from the operators in
the momentum-basis at the source plane, to the position dependent ones at the
detection planes. However, we can generalise our calculations to other sorts of
propagation. For the purposes of lensless ghost imaging, it is conventional to consider
free-space propagation in the paraxial approximation. In this case, it is possible to

characterise the field at transverse point p; in plane z; by E (pj,zj; K) €y ,8

(p]- 23 K) a(x) forj = 1,2, where a(i) are our source-plane operators and g(pj, z; k) is
the Green’s function describing the propagation of the field to the point with
transverse coordinates pjon the detection plane®**. The form of g(pj, z; K) in the
quasimonochromatic case is*:

g(ﬂj,zj; K) =

We can then calculate the the auto-correlations and cross-correlations and from this,
our effective covariance matrix. To begin, we note that in the quasimonochromatic,

paraxial approximation, {Ei (pi-3)) E] (pj,zjﬂ (3([), p})ég, where p are the
coordinates in the transverse plane'“O. As such, these behave under the expectation
value as though they were the usual single mode operators a. Henceforth, we will
assume that we are always considering correlations on planes at equal distances from
the source as is conventional for ghost imaging setups. For individual modes or
correlated pairs:

. ikozj ki 2
—ikge™% dp e‘%\ﬂ/—/d e P
2nz; ¢
j
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<ET(P,‘, (/’p )> <Zg* 0isZ; K) (Pj,Z; K/)&+(K>&(K/)>
=2 (g + (im0 (02 ) ) (@ (0)a()

_ Z\:< koeikuz

2nz

ko \? 2 o
2,;) (@ ()a) > <Jdﬂsdﬂ oo =loi=aF grto M>
<2 > (r)a(k) <J dp,e 210 /’>|2*‘/’r*/’s‘z>
nz
a ezi(/', ) J dp, oo (pi=ni)
an
=(a" (k)a(x))o ( -p)).
For the calculation, we have assumed a large disk-like source and a large number of

modes. These are standard assumptions made in the derivation of the non-local
biphoton model of ghost imaging®**. Our calculation indicates that

<Ef(p,-,z)f5 (pj,z) > oc <5{+(K)&(IC)> when p; =
at any point on a single plane or paired points on CCD and bucket planes is
proportional to the expectation value for a given mode in the momentum-basis. This
behaviour reflects that of lens-based ghost imaging. In fact, it shows that we have a
proportionality between photon counts in the source-plane and detection planes,
which is not an entirely surprising result.

We can also go further and define effective operators in a similar manner to how we

—iK-p's

p. L2
[dp o~ Blp —p, e Jdp elo—ri[e

><@f(,€)&(,<>>

pj» and is 0 otherwise. The correlation

- 1 N
did for lens-based imaging by writing E, = ﬁ J A,E(p,z)dp where we are integ-
P

rating over a pixel with area A,. We can test that the correct commutation relation
holds for this operator under the expectation value using similar assumptions as
above.

It is then also easy to show that <E;EP> oc (@' (i)a(x)). Again, the behaviour
reflects that of lensed ghost imaging. This leaves an integration over the bucket
detector to fully characterise our scheme. The only difference to the above calculation
is that we are integrating over a larger area, A;. It is evident that the auto-correlations

will be the same. For the cross-correlations we find <E§f5p> oc <M>.
2_;1

Essentially, we scale the cross-correlations by the inverse square root of the ratio of the

bucket detector area to the pixel area. This yields an identical scaling with changes in

our three parameters I, R, M as for the lens-based imaging.
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