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The earliest stages in our perception of the world have a subtle but powerful influence on later thought
processes; they provide the contextual cues within which our thoughts are framed and they adapt to many
different environments throughout our lives. Understanding the changes in these cues is crucial to
understanding how our perceptual ability develops, but these changes are often difficult to quantify in
sufficiently complex tasks where objective measures of development are available. Here we simulate
perceptual learning using neural networks and demonstrate fundamental changes in these cues as a function
of skill. These cues are cognitively grouped together to form perceptual templates that enable rapid ‘whole
scene’ categorisation of complex stimuli. Such categories reduce the computational load on our capacity
limited thought processes, they inform our higher cognitive processes and they suggest a framework of
perceptual pre-processing that captures the central role of perception in expertise.

W
hen chess grandmasters glance at a game they simply ‘get it’, not only do they choose better moves than
lesser players but often these moves occur to them within seconds of first looking at a game1, long
before they have an opportunity for detailed search and analysis. How are they able to do this?

Research on expertise highlights several key aspects. In games like chess, a high IQ is not necessary2 but at least
10,000 hours3 of training is vital. Over this time 300,000 or more chunks4, small frequently occurring patterns, will
be learned. This learning process will be non-linear: there will be times when skill plateaus5 and sharp transitional
points need to be negotiated6. But learning chunks and coupling them with moves is not enough for good
decisions. In the game of Go for example the best move predictor uses chunks and matches an expert’s choice
34% of the time7, insufficiently accurate for expert play by itself. To address the issue, amongst many others, of
integrating local knowledge such as chunks into a global relational context the Template Theory8 of expertise was
developed which models how chunks can be combined to form larger cognitive representations of the task space.

The Template Theory is a direct result of earlier work by Simon and colleagues who had considered the role of
perception9 in problem solving, particularly the first seconds of considering a complex problem10. Template
Theory addresses the primacy of perception and pattern recognition in tasks that previously had been thought to
be solely the domain of logical reasoning such as search, planning and evaluation, i.e. the domain of conscious
thought processes. Such conscious reasoning is characterised as slow, serial and capacity constrained whereas the
perceptual processes Simon considered are fast, parallel and unconstrained in capacity11. Recent work in this area
has shown that unconscious perceptual learning can occur in domains as complex as board games12, speech13 and
mathematics14. In such cases early perceptual processes can adapt and learn the complex and often noisy relation-
ships between visual elements, effectively acting as a pre-processing step that influences the later stages of
cognition. Most recently this has developed into the perceptual learning of human expertise15 and is characterised
by the developmental changes induced in early sensory regions of the brain by extensive experience. Such early
stage adaptations change the way in which a perceiver extracts information from the environment and it is often
implicit in two distinct ways: perceptual learning is implicit in that it is not a declarative learning process, instead it
occurs without the perceiver being aware of what is being learned16,17, and perceptual expertise is implemented
without awareness in so far as the perceiver is not overtly aware of the influence their acquired knowledge has on
the decisions they make18,19.

Simon summarised his results in the following way20: ‘‘The situation has provided a cue; this cue has given the
expert access to information stored in memory, and the information provides the answer […]’’ whereby ‘‘[w]e are
aware of the fact of recognition, which gives us access to our knowledge […]; we are not aware of the processes that
accomplish the recognition.’’ [original emphasis]. The goal of this work, then, is to find the perceptual templates
that amateurs and professionals have acquired through perceptual learning and that they implement as the basis
of their perceptual expertise when playing the oriental game of Go. Such templates are reduced representations of
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the state of a game, they contain a subset of the total number of pieces
on the board but this subset makes up the perceptually learnable
relationships in the game. The individual cues that make up a tem-
plate, i.e. the positions and colours of the game pieces, are processed in
parallel during the early stages of sensory perception, much as the
global relationships between elements in natural scenes are processed
in parallel in early stages of perception21. It is at this level of cognition
at which templates are employed giving rise to expert intuition22. A
principal difference between the amateurs and the professionals lies in
their perception of the global context of the game in which individual
moves are made23,24. In discussing the role of these templates we will
use recent results on early perceptual learning and the pre-processing
of visual stimuli to suggest that experts use the rapid recognition of
complex patterns, mediated by perceptual templates, in order to effi-
ciently constrain and guide their search for good moves.

Visual illusions highlight the subtle and persistent nature of such
perceptual pre-processing. The Ponzo illusion shown in figure 1
comes about through very early processing in the visual cortex, area
V1, and the subjective impact of the illusion is influenced by the
surface area of an individual’s V1 region25, highlighting the early
stages at which such effects occur and how they are influenced by
gross neural properties. In figure 1a. the illusion is that the top red bar
is longer than the bottom red bar and it is induced by the parallel
railway lines that appear to draw closer together in the distance. The
key is that the two red bars appear to be placed at different distances
from the observer, a perspective strongly informed by the relation-
ship between the converging tracks and the red bars. The converging
tracks act as cues that inform the observer of the different scales of
objects in different parts of the scene, and so the apparent differences
in the size of the bars is coherent with respect to these cues. Figure 1b.
shows how a sparse representation retaining only the two contextual
cues (the two lines that converge) and the relevant information (the
two red bars being compared) is able to maintain the sense of the
illusion when no other information is retained. Even when we are
consciously aware of being deceived by the illusion, such overt aware-
ness does not easily change the sense of the illusion, demonstrating
how the early stages of perception that use such learned cues are not

readily switched off. But when the contextual cues are removed
(figure 1c.) the illusion vanishes: the context informs us of a particu-
lar interpretation of the environment and while this guidance is often
a very useful heuristic at times it can lead us astray.

Such illusions are most likely at least partly a result of early cog-
nitive processes reducing the vast amount of information we receive
from the environment19. It has long been recognised that the
information capacity of short term memory is tightly constrained26

and it is now thought to hold only a few elements27. This bottleneck,
called the Working Memory (WM)28,29, sets an upper limit on how
much information can be held in active memory at any given time.
WM capacity is not thought to be improved by task specific learning
such as chess training30 or by perceptual expertise31, although generic
(i.e. non-task specific) training techniques have been shown to
improve WM capacity32. In order to manage these limitations early
perceptual processing does not expand the capacity of WM, instead it
reduces the amount of information being passed to our WM, cap-
turing only the relevant information necessary for higher order pro-
cessing. In the Ponzo illusion of figure 1 the environment is reduced
to the commonly occurring regularities that would usually inform
our scene comprehension and set the context, i.e. the two converging
lines, as well as the information relevant to the task, the parallel red
bars. In this sense the contextual information can be thought of as a
general purpose caricature of the scene that can be applied flexibly in
many different circumstances in which the omitted details are not
immediately relevant.

Such considerations suggest an important difficulty our cognitive
processes are able to address: the total information contained in an
environment is too vast to process using deliberative reasoning but
the information contained in localised chunks of the environment is
too focused to be useful by itself. What we would like to find are the
small number of visual cues that make up the salient aspects of the
environment and show how these cues change as a function of skill.
One approach is to use a neural network that can automatically form
ordered, compressed representations of sensory perceptions such as
Self-Organizing Maps (SoMs)33. SoMs have been used as a model of
neurological organisation34 as well as a tool for data-mining35 and

The original scene with  
all its complex detail: 

Some of the cues and  
the relevant information: 

Relevant information 
without the cues: 

a. b. c. 

Figure 1 | The original Ponzo illusion is shown in 1.a. The corresponding Perceptual Template (the converging lines) is shown in 1.b along with the red

bars about which a decision regarding their relative lengths needs to be made. In 1.b the detailed information has been removed but the information that

informs our judgement of the length of the red bars is retained. Without the perceptual template the illusion vanishes as can be seen in 1.c.
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they have the benefit of being unsupervised learners36, that is to say
they extract structural regularity from data without external guid-
ance. This last point is significant, from a behavioural perspective
human players implicitly learning relationships between game pieces
are not aware of what is being learned, they are only picking up on the
statistical regularities in the task environment17, this requires an
unsupervised process.

An SoM can be thought of as a non-linear extension of principal
component analysis37 based upon biological principles34. The key
idea is that a complex perception of the environment containing
many different elements, encoded as a vector xi 5 [x1, x2,…, xn], is
processed in parallel by a large array of neurons, as previously
theorised38 and recently observed in the laboratory39, whereby each
idealised neuron represents a learned model of the environment.
Algorithmically, an SoM neuron (a model mj) is a vector of the same
dimensions as the vectors that represent a perception of the envir-
onment: mj 5 [m1, m2,…,mn] for j g {1,…, N} neurons in the SoM.
When an SoM is presented with a training vector xi of the envir-
onment it is compared to all SoM neurons and one, the winning
neuron mc, is that which satisfies:

d xi,mc
� �

~ min
j

d xi,mj
� �� �

ð1Þ

where d(v1, v2) is usually the Euclidean distance between vectors v1

and v2. This is the metric used in the SoM MATLAB toolbox developed

at the Helsinki University of Technology40 and it was their imple-
mentation used in this work.

Initially all of the neurons mj have randomised elements. After
selecting mc the weights of neurons mk, k g {index of neurons ‘local’
to and including neuron c}, are updated:

mk
after~mk

beforezk:a:d xi,mk
� �

ð2Þ

The functions k and a refer to the convolution kernel and the learn-
ing rate33 respectively and while they have a temporal dependency
within the SoM toolbox they were otherwise left fixed through-
out this work. This algorithm updates the best matching neuron
in the SoM and all neurons locally connected to it, see figure 2
and the Methods section for a complete description of the SoM
implementation.

Our task environment is the choice of moves made in the oriental
game of Go. Go is played on a board made of a 19 3 19 grid on the
vertices of which game pieces, called stones, are placed. Before the
game starts, players choose to play with either black or white stones
and they take it in turns to place a stone on one of the vertices of the
board. The goal is to capture more territory than your opponent by
surrounding regions of the board with stones of your own colour that
are connected to each other in chains. A chain is formed by stones
that are placed directly next to each other in the north, south, east or
west direction on the grid. Stones are only removed when they are
completely surrounded by the stones of the other player such that
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Figure 2 | The computational implementation of Self-Organizing Maps for extracting the structured information from Go games given a move k. The

resultant trained SoM output at the end contains neurons with continuous weights, it is a further step to threshold these internal neuronal weights in

order to generate the unique templates.
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there are no more free vertices within the surrounded territory for the
surrounded player to play on. At the end of the game the player with
the most territory surrounded wins.

At any given point in the game there is a maximum of 361 possible
vertices on which to place a stone, or alternatively there are a max-
imum of 360 positions that can influence any given move. In order to
reduce this number we need to find those stones that frequently co-
occur when a given move is made, these stones make up the contex-
tual cues and a combination of these cues is an instance of a percep-
tual template. Note that for any move there will be many different
board configurations in which it occurs, and as a template is a
reduced representation of the state of the board (containing as it
does only those stones that have occurred frequently together) then
any given template can fit multiple game instances. In this sense
SoMs33 generate perceptual templates that categorise the different
‘game scenes’ in which moves are made. This constancy in the rela-
tionship between the multiple cues and the move itself is necessary
for an expert’s perceptual learning to occur41 and it is the basis on
which our SoMs are able to categorise high dimensional data42, also
see the Discussion below.

Each SoM neuron is a 13361 vector representing a ‘model’ of the
Go board when a move was made, each element within a neuron is a
learned weight wi in the interval [–1, 1] representing how ‘black’ or
‘white’ each board position is in that neuron’s model. Instead of using
these continuous values we set a cut-off value using a threshold
parameter t: jwij . t. This cut-off restricts the elements of each
neuron to the discrete values {–1, 0, 1} so each neuron encodes a
model of the game containing only black, white or empty positions
based on the threshold. The unique set of these neurons are the
perceptual templates42, they represent a collection of different con-
textual models of the game environment and are the reduced repre-
sentations of the state of the game corresponding to the structured
regularities that player’s are repeatedly exposed to each time they
make a move during game-play.

Results
Table 1 shows the template statistics: the total count of templates for
amateurs and professionals, the percentage increase in the number of
templates that a professional has compared to amateurs, the percent-
age of templates that are shared between amateurs and professionals
and the size (in terms of number of stones) of the largest templates.
Most notably the difference in the number of templates for amateurs
and professionals is quite small ranging from around 12% to 38%.
However the number of templates that are common to both ama-
teurs and professionals is equally small, ranging from around 12% to
19%. There is also a persistent difference in the maximum size of
amateur and professional templates, professionals being more than
100% larger at some threshold values although there are relatively
few of the largest templates for either amateurs or professionals (see
figure 3).

The distribution of the number of stones in each template for four
different threshold values is plotted in figure 3. For both amateurs
and professionals the mean number of stones was relatively small,
between approximately 3 and 6 stones and was more insensitive to
changes in the threshold parameter than might be expected. On the
other hand the tails for these distributions are quite different for
the two classes of players. Table 1 shows the maximum size differs

greatly, but this is caused by a very small number of larger templates.
A closer look at the templates showed that the professionals used a
small number of localised patterns of stones so frequently that they
were learned by the SoMs, something that happened considerably
less often for the amateurs. However the central portion of the prob-
ability distributions in figure 3 remains qualitatively very similar
across threshold values and player class.

Figure 4 measures the intersection between the amateur and pro-
fessional templates as a function of the professional template index-
ing (the indexing is discussed in the Methods section). As the index
increases (i.e. the size and complexity of the templates increases), the
rate of change in the size of the intersection set decreases until even-
tually adding a new professional template does not increases the size
of the intersecting set. A gradient of 1 in this curve implies that for
each professional template added there is a corresponding amateur
template, near the origin a sustained gradient of 1 is clear but as the
indexing increases the gradient progressively decreases, indicating
that the more complex a professional template is the less likely it will
also be in the amateur set of templates.

Discussion
The goal of this work has been to find and compare the structured
information, in the form of contextual cues, that is available to
experts and non-experts in the game of Go. It is argued that this
information is used during implicit learning and subsequent early
perceptual processing of information within a given domain of
expertise to aid in fast and accurate categorisation and decision-
making in complex environments. In particular, these processes
enable the reduction of the dense information perceived in a complex
natural environment using the available structured regularities.
Furthermore, the integration of these cues into a cognitive whole
leads to the notion of perceptual templates, the aggregate, sparse
representations of the salient features of the task environment that
enables many of the remarkable feats reported in studies of domain-
specific expertise.

Figure 5 shows a cognitive model that demonstrates how such
perceptual templates might be implemented. The entire scene is
initially processed by low level visual systems43 combined with per-
ceptual templates to produce a perceptual whole in a very short
period of time. Estimates of the length of time it takes to categorise
the ‘gist’ of complex scenes range from about 30 milliseconds up to
around 150 milliseconds44–47. Note that in the study by Thorpe et al.44

presentation times of the images (20 ms) were too brief to allow eye
movements to search the image, effectively requiring the subjects to
comprehend a complex image as a perceptual whole. This initial ‘feed
forward sweep’45 of perceptual information is too quick for neural
feedback pathways to influence the scene perception, suggesting that
strictly feedforward18 processes of complex visual scenes are suf-
ficient for early perceptual categorisations. Recent work on the
physiological basis of expertise, both theoretical48 and empirical49,
provides support for cognitive templates being located in the inferior
temporal cortex. It is this region that fMRI50 and diffusion tensor
imaging51 studies have strongly implicated the visual perception of
Go board patterns in experts but not novices.

In this sense our ability to form a categorical impression of a
complex scene is almost immediate and it is this categorical impres-
sion that perceptual templates capture. The implementation process

Table 1 | Threshold dependent properties of templates

Threshold Am. : Prof. count Intersection count % increase Am. to Prof. % of shared templates Am.: Prof. max. size

0.95 3,353 : 4,618 889 37.7% 19.3% 11 : 24
0.90 8,413 : 10,930 1,680 29.9% 15.4% 20 : 30
0.85 15,215 : 18,185 2,399 19.5% 13.2% 35 : 82
0.80 23,458 : 26,319 3,119 12.2% 11.8% 56 : 109
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is as follows: In figure 5 the combination of the four cues A, B, C and
D are compared in parallel to all of the perceptual templates (sim-
plified models of the world) the perceiver has learned and template 3
minimises the difference between the model it encodes and the cur-
rent visual environment and templates 1 and 2, for example, do not.
This results in an activation of a single template (template 3) that acts
to contextually activate a later network of processing modules, i.e.
which of the modules x, y or z should be activated to provide for
further analysis.

Template 3 activates the initial eye saccade to some region of the
scene (e.g. to cue B) for more deliberate processing in a serial fashion.
A combination of contextual information and localised analysis,
based on higher level cognitive outputs, may lead to further eye
saccades that allow for greater analysis of the environment. Such
detailed analysis is usually an evaluative process requiring a small
number of alternative strategies to be maintained in working mem-
ory at the same time. In this sense there is considerable conceptual
similarity between this model and that of both CHREST52 and the
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guided search38 models. Note that changes in the perceptual tem-
plates will result in changes in the patterns of the eye saccades that are
related to the development of expertise53,54. This early processing of
the context persistently influences perception, just as visual illusions
do, and provides the necessary categorical information required to
constrain later search heuristics and the evaluation of moves in order
to keep the computational load of such tasks within the bounds of our
limited cognitive capacities.

In light of the earlier discussion of visual illusions, it is known that
an illusion’s effect decreases over the time course of perception, illu-
sions being strongest in the first stages of perception and then modu-
lated by later, higher order, cognitive processes55. On the basis of this
evidence and that of the role of V1 on an illusion’s subjective impact25

and contextual relationships in visual scenes56, it is reasonable to
suggest that the categorisation of a scene happens relatively early
in visual processing and is modulated by later, top-down processes

Set of amateur  
templates 

Prof 
templates 

Figure 4 | The intersection between experts and non-experts. Top: A schematic representation of the intersection between sets of templates. The set of

amateur templates are held constant while the set of professional templates is allowed to increase. The size of the professional set is increasing in the

positive direction of the x-axis in the bottom plot, i.e. the larger the professional set the larger and more complex the templates are that have been included.

Bottom: The size of the intersecting set of amateur and professional templates as a function of the professionals’ indexing. Three different thresholds

shown, from bottom to top: 0.95, 0.90 and 0.85. Inset: An expansion near the origin.
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that enable a more precise comprehension of the local characteristics
of the scene. This is very similar to the scene-centred approach to
understanding the holistic properties of a scene, called the ‘gist’,
recently put forward by Oliva and colleagues21,43,57. There is a signifi-
cant difference though in that Oliva et al’s work is based upon natural
scene analysis and not strategic games, but further work is expected
to clarify the similarities in these different approaches. The fact that
the same mechanisms that are in play in game expertise might also be
in play during natural scene comprehension is an exciting possibility
that suggests a very general mechanism may mediate an exception-
ally broad range of complex task environments.

As mentioned above, there is considerable conceptual similarity
between our results on perceptual templates and the research of
Gobet and others on Template Theory, however the two are not
synonymous and some important distinctions should be made.
Template Theory developed out of chunking theory as a theoretical
construct by Chase and Simon53 and was based on the earlier work of
de Groot58 on chess expertise and Miller26 on capacity limits in our
cognitive processes. In the original Template Theory8, chunks con-
taining several chess pieces are learned by novices but as their experi-
ence grows so too does the size, in terms of the number of pieces they
contain, of these chunks. Chunks are stored in long term memory but
pointers to these chunks are held in short term memory that can only
hold around 3 such pointers due to capacity restrictions. As the
chunks grow in size the number of pointers does not increase but
the size of the chunks they point to do, thereby allowing experts
access to greater amounts of information and circumventing the
limited capacity of our working memory. Templates are larger and
more elaborate structures than chunks, they contain 15 to 20 game
pieces4 but they also have slots into which smaller chunks can be
inserted8. A template then is an example of a ‘‘schema’’ as studied
in psychology where they are ‘‘… implicitly learned in the process of
acquiring substantive knowledge …’’.4

Much of the high level description of Template Theory is similar to
the perceptual templates of this study: perceptual templates contain a

reduced number of game pieces (the core in Template Theory) that
are implicitly learned during the course of acquiring expertise, they
are augmented by detailed and localised analysis of the board (similar
to the role chunks have with respect to slots), they are composed of
consistently co-occurring game pieces that augment strategising,
move selection and circumvent some of our cognitive limitations.
The most significant difference between the two lies in the method of
extracting the templates. The CHREST cognitive architecture that
implements Template Theory uses a ‘roving eye’ to scan many chess
games in order to build chunks first and then more elaborated struc-
tures that eventually become templates59. That is to say that Template
Theory builds up from chunks to form more elaborated structures
containing a core and slots that can then contain a variety of different
chunks. There is considerable empirical support for this model59.

On the other hand the cognitive implementation of perceptual
templates acts much more like ‘SoM-filtered’ Bayesian inference. It
does not start from chunks and build up like Template Theory,
instead it takes the whole board as a single perceptual input. Each
training vector xi is a whole board configuration from which a move
was then made: xi R mk where the training vector xi varies from
instance to instance but the move mk does not, see figure 2. This
implicitly conditions the training vector on the move that was then
made. Given thousands of training vectors conditioned on a fixed
move a SoM (a single 50350 neural network) learns to categorise the
board configurations according to the frequently occurring game
pieces, filtering out all the infrequently occurring pieces.

This implementation is quite different from Template Theory, it
implies that when a certain move is made, we implicitly learn the
statistical regularities associated with that move. The resultant tem-
plates can then be used to invert this process: when a board config-
uration is perceived, for example during a game, and early perceptual
processes are required to suggest a few possible moves (as well as
communicating contextual-categorical information) the templates
compete amongst themselves, most likely based on a competitive
activation model60, to communicate to higher cognitive processes
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all of the moves that had learned that particular template. This is
because while the mapping xi R mk fixes the move during one SoM’s
learning, there are other SoMs trained on different moves using
different training vectors that may have learned the same perceptual
template, i.e. a single template might have been learned by multiple
moves resulting in multiple possible next moves being generated
from one template. Given the considerable differences in these two
different template paradigms it is not clear where the similarities and
the differences between the resultant templates lie.

There is already some interesting evidence suggesting a difference
in the two methods. The largest templates found using the highest
threshold parameter (t 5 0.95) was 24 stones (see table 1). By com-
parison Gobet and Simon reported psychological experiments4

showing that chess Masters have a maximum of around 15 chess
pieces in their chunks/templates. This most likely occurs because
chess positions are less stable than those of Go, stones in Go remain
in place unless captured which happens rarely when compared with
how often chess pieces move. This means that larger templates can be
learned more readily in Go because of the perceptual regularity of the
game pieces. A useful exercise for further study will be to implement
a SoM based perceptual templates analysis of chess positions.

Furthermore, future research into the role of such templates in
expert cognition should also be critically informed by psychological
experiments. For instance board configurations that more closely
match professional templates should result in more rapid generation
of possible next moves, i.e. perceptual templates should increase the
fluency of move generation for experts. Similarly, board configura-
tions that do not easily match any perceptual templates should
increase the time it takes a player to generate options for the next
move. Such experiments will help establish the psychological vali-
dity of perceptual templates and further inform their theoretical
development.

These results paint an intriguing picture of the perceptual tem-
plates available to skilled and unskilled practitioners. While there are
many thousands of unique templates (‘game scene’ categories), this
still represents a massive reduction in the total number of possible
scenes that would otherwise need to be analysed deliberately at all
levels of detail, much as many artificial intelligence systems do.
However, despite the striking similarities in several high-level prop-
erties, such as total number (table 1) and distributions of sizes (fig-
ure 3), the overlap between amateur and professional players is small
and they systematically diverge for the larger and more complex
templates (figure 4). From this we see that a professional’s perceptual
learning in the game of Go is informed by quite different information
to that of an amateur and that they share only the most basic
information. This is not a sufficient explanation for all of expertise:
these templates provide an approximate analysis of the game, they
still need to be connected with later cognitive processes and ulti-
mately with a decision regarding where to move. In this light, the
current work provides novel evidence of a measurable mechanism
for some of the remarkable differences in performance between
expert and non-expert decision-making in complex tasks.

Methods
Game data and preprocessing. We used 18,000 games of professional ranked players
(rank 5 dan professional and above) and 18,000 games of amateur players (rank 1 kyu,
1 dan or 2 dan amateur). The professional games were part of the GoGod database
available commercially at www.gogod.co.uk and the amateur games were recorded
during online play from the KGS Go server: www.gokgs.com.

Each game was converted into a 3 3 m matrix where m denotes the number of
moves played during the game, each mi 5 [x, y, 6i] where x, y g {1 … 19} are board
co-ordinates and 6i is the move number (a negative i represents a black move on the
ith turn, a positive i represents a white move). This is sufficient to encode an entire
game as a sequence of moves, but it ignores possible captures where previously played
stones are removed from the board, freeing up positions that can be played later in the
game. While this does not affect the encoding of the game (some positions might be
played more than once during a game, but this is irrelevant for the sequence of moves
played), it does have an effect on the learning vectors that are presented to the SoM

where stones have been removed after capture. This issue is addressed at the point at
which the game is ‘played out’ during the SoM analysis discussed below.

SoM implementation. Figure 2 provides a diagrammatic representation of the
implementation. In order for an SoM to learn which stones are commonly present
when a move is made, the state of the game when that move was made needs to be
encoded in a 1 3 361 vector (a linearised representation of the 19 3 19 board) where
each element of this vector was 11, –1 or 0 representing a white stone, a black stone or
an empty position, respectively.

Starting with either the professional or the amateur database of games, we first
nominate a (linearised) position on the board, position k g {1, …, 361}. A game
record is then chosen from the database and the game is recorded in the sequence in
which the moves were played in a 19 3 19 matrix (representing the current state of the
board, initially all entries set to 0) where either 11 or –1 is recorded depending on
whether a move was white or black, respectively. Each new move is checked to see if it
is a capturing move, if so all of the corresponding stones that are captured are
removed from the matrix and the game continues. This is repeated until a move is
made at position k (but is not yet recorded in the matrix). If the move at position k is a
white move, the state of the game is left unchanged, if it is black the game-state is
multiplied by –1, essentially making all moves at position k a ‘white’ move. This does
not change the strategic relationships between the stones but it does prevent the SoM
from learning separate templates for white and black moves. The game is then
stopped and the current (linearised) state of the board is then the training vector for
the SoM. In practice this means the training vectors are 1 3 361 vectors containing
61 and 0 elements representing the state of the game when a move was made at
position k. Note that each initial game record has a length equal to the number of
moves and so changes from one game to the next. However the training vectors
representing a board configuration are all of the same length: 1 3 361, enabling them
to be compared with the ‘world model’ encoded by each SoM neuron.

This procedure requires each of the 18,000 amateur and professional games to be
played until move k is found, but in some games k is never played in which case the
game record is not used leading to slightly fewer training vectors. Each training vector
is an input into a 50 3 50 neuron SoM that is dedicated to learning the board patterns
when move k is made. This procedure is repeated for all k g {1, …, 361}, resulting in
an aggregate SoM neural network containing 50 3 50 3 361 5 902, 500 neurons,
where each neuron is a 1 3 361 vector representing the learned real valued weights in
the interval [–1, 1] for each board position.

There are two of these aggregate SoM networks, one for the professionals and one
for the amateurs. These networks were too large to analyse directly so the learned
weights were set a threshold value t (described below), different values of which were
used to generate the results and this also significantly reduced the size of the datasets
we had to analyse, see Table 1.

Thresholding and sorting templates. In order to see where the most significant
differences in the templates lie they were sorted and indexed in three steps. A MATLAB

script takes a list of templates and first finds the unique templates (i.e. after
thresholding of the learned weights, the built-in MATLAB function unique [] removes
repeated templates and sorts them in ascending order), then by frequency of each
stone’s occurrence in list and finally by the number of stones in each template. In the
following script, list contains 902, 500 vectors (trained SoM neurons) of size 36131
with real-valued elements in the interval [–1, 1] and t is the threshold value. The list
that is output in the final step is a reduced set of unique, sorted templates with discrete
elements containing values {–1, 0, 1} representing the position and colour of stones on
a linearised board:

list (list . t) 5 1;
list (list , –t) 5 –1;
list (list .5 –t & list ,5 t) 5 0;
list 5 unique [list];
[,, index] 5 sort [sum [abs [list], 1], ‘descend’);
list 5 sortrows (list, –index);
[,, index] 5 sort [sum [abs [list], 2], ‘ascend’];
list 5 list (index, :);
The significant steps are template size (templates with fewer stones have lower

index values) and overall frequency of occurrence (lower index values are given to
templates in which their component stones occurred most often).
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6. Harré, M., Bossomaier, T. & Snyder, A. The development of human expertise in a

complex environment. Mind Mach 449–464 (2011).
7. Stern, D., Herbrich, R. & Graepel, T. Bayesian pattern ranking for move prediction

in the game of Go. In Proc 23rd Int Conf Mach Learning, 873–880 (ACM, 2006).
8. Gobet, F. & Simon, H. Templates in chess memory: A mechanism for recalling

several boards. Cognitive Psychol (1996).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 502 | DOI: 10.1038/srep00502 8

www.gogod.co.uk
www.gokgs.com


9. Simon, H. Theories of decision-making in economics and behavioral science. Am
Econ Rev 49, 253–283 (1959).

10. Simon, H. & Barenfeld, M. Information-processing analysis of perceptual
processes in problem solving. Psychol Rev 76, 473 (1969).

11. Kahneman, D. A perspective on judgment and choice: Mapping bounded
rationality. Am Psychol 58, 697 (2003).

12. Wan, X. et al. The neural basis of intuitive best next-move generation in board
game experts. Science 331, 341 (2011).

13. Toscano, J. & McMurray, B. Cue integration with categories: Weighting acoustic
cues in speech using unsupervised learning and distributional statistics. Cognitive
Sci 34, 434–464 (2010).

14. Kellman, P., Massey, C. & Son, J. Perceptual learning modules in mathematics:
Enhancing students pattern recognition, structure extraction, and fluency. Top
Cogn Sci 2, 285–305 (2010).

15. Kellman, P. & Garrigan, P. Perceptual learning and human expertise. Phys Life Rev
6, 53–84 (2009).

16. Lewicki, P., Hill, T. & Czyzewska, M. Nonconscious acquisition of information.
Am Psychol 47, 796 (1992).

17. Turk-Browne, N., Scholl, B., Chun, M. & Johnson, M. Neural evidence of
statistical learning: efficient detection of visual regularities without awareness.
J Cognitive Neurosci 21, 1934–1945 (2009).

18. Koivisto, M. & Revonsuo, A. Preconscious analysis of global structure: Evidence
from masked priming. Vis Cogn 11, 105–127 (2004).

19. Evans, J. Dual-processing accounts of reasoning, judgment, and social cognition.
Annu Rev Psychol 59, 255–278 (2008).

20. Simon, H. What is an ‘‘explanation’’ of behavior? Psychol Sci 3, 150 (1992).
21. Oliva, A. & Torralba, A. Building the gist of a scene: The role of global image

features in recognition. Prog Brain Res 155, 23–36 (2006).
22. Gobet, F. & Chassy, P. Expertise and intuition: A tale of three theories. Mind Mach

19, 151–180 (2009).
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