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We present a scale-invariant, template-based segmentation paradigm that sets up a graph and performs a
graph cut to separate an object from the background. Typically graph-based schemes distribute the nodes of
the graph uniformly and equidistantly on the image, and use a regularizer to bias the cut towards a particular
shape. The strategy of uniform and equidistant nodes does not allow the cut to prefer more complex
structures, especially when areas of the object are indistinguishable from the background. We propose a
solution by introducing the concept of a ‘‘template shape’’ of the target object in which the nodes are
sampled non-uniformly and non-equidistantly on the image. We evaluate it on 2D-images where the
object’s textures and backgrounds are similar, and large areas of the object have the same gray level
appearance as the background. We also evaluate it in 3D on 60 brain tumor datasets for neurosurgical
planning purposes.

G
raph-based approaches to segmentation have gained popularity in recent years both in the general
computer vision literature as well as in applied biomedical research1–4 because of their ability to provide
a globally optimal solution. This stands especially in contrast to another popular segmentation technique,

deformable models5,6, that can be easily confounded by local minima during the iterative segmentation (expan-
sion) process. In this study, we present a novel graph-based algorithm for segmenting 2D and 3D objects. The
algorithm sets up a graph and performs a graph cut to separate an object from the background. Typical graph-
based segmentation algorithms distribute the nodes of the graph uniformly and equidistantly on the image. Then,
a regularizer is added7,8 to bias the cut towards a particular shape9. This strategy does not allow the cut to prefer
more complex structures, especially when areas of the object are indistinguishable from the background. We solve
this problem by introducing the concept of a ‘‘template’’ shape of the object when sampling the graph nodes, i.e.,
the nodes of the graph are distributed non-uniformly and non-equidistantly on the image. This type of template-
based segmentation is particularly applicable to medical imagery, where it is easy to obtain initial landmarking10,11

and patient orientation from the information stored in the image headers. To evaluate our method, we dem-
onstrate results on 2D images where the gray level appearance of the objects and backgrounds are quite similar. In
3D, we demonstrate the results of the segmentation algorithm on 60 clinical Magnetic Resonance Imaging (MRI)
datasets of brain tumor (glioblastoma multiforme and pituitary adenoma) patients to support the time-
consuming manual slice-by-slice segmentation process typically performed by neurosurgeons.

Evolving from the cerebral supportive cells, gliomas are the most common primary brain tumors. The grading
system for astrocytomas according to the World Health Organization (WHO) subdivides grades I–IV, where
grade I tumors tend to be least aggressive12. Approximately 70% of the diagnosed tumors are malignant gliomas
(anaplastic astrocytoma WHO grade III, glioblastoma multiforme WHO grade IV). Subject to its histopatholo-
gical appearance, the grade IV tumor is given the name glioblastoma multiforme (GBM). The GBM is the most
frequent malignant primary tumor and is one of the most malignant human neoplasms. Due to their biological
behavior, surgery alone cannot cure this disease. Thus, current interdisciplinary therapeutic management com-
bines maximum safe resection, percutaneous radiation and in most cases, chemotherapy. Despite new radiation
strategies and the development of oral alkylating substances (for example Temozolomide), the survival rate is still
only approximately 15 months13. Although in former years the surgical role was controversial, current literature
shows maximum safe surgical resection as a positive predictor for extended patient survival14. Microsurgical
resection is currently optimized with the technical development of neuronavigation15 containing functional
datasets such as diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), magnetoence-
phalography (MEG), magnetic resonance spectroscopy (MRS), or positron-emission-computed-tomography
(PET). An early postoperative MRI with a contrast agent at the point of origin quantifies the tumor mass removal.
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Then, the patient undergoes frequent MRI scans during the time of
adjuvant therapy. Especially in case of a remnant tumor, the tumor
volume has to be rigidly registered so a new tumor growth is not
missed. For glioma segmentation in general (WHO grade I–IV),
several MRI-based algorithms have been introduced in the literature.

A good overview of deterministic and statistical segmentation
approaches is given by Angelini 16. Most of these are region-based
while the more recent ones are based on deformable models and
include edge information. Segmentation based on outlier detection
in T2-weighted MR data has been proposed by Prastawa et al.17,
whereby the image data is registered on a normal brain atlas to detect
the abnormal tumor region. Sieg et al.18 have introduced an approach
to segment contrast-enhanced, intracranial tumors and anatomical
structures of registered, multispectral MRI data. Using intensity-
based pixel probabilities for tumor tissue, Droske et al.19 have pre-
sented a deformable model, using a level set20 formulation, to divide
the MRI data into regions of similar image properties for tumor
segmentation. An interactive method for segmentation of full-
enhancing, ring-enhancing and non-enhancing tumors has been pro-
posed by Letteboer et al.21. Clark et al.22 introduced a knowledge-based
automated segmentation method for multispectral data in order to
partition glioblastomas. Gibbs et al.23 introduced a combination of
region growing and morphological edge detection for segmenting
enhancing tumors in T1-weighted MRI data.

In the following, we describe studies that are more closely related
to our contribution. For example, Song et al.24 introduced a novel
framework for automatic brain MRI tissue segmentation that over-
comes inherent difficulties associated with this particular segmenta-
tion problem. They use a graph cut/atlas-based registration
methodology that is iteratively optimized and incorporates probabil-
istic atlas priors and intensity-inhomogeneity correction for image
segmentation. The usage of prior knowledge to guide the segmenta-
tion has been presented in a publication of Zhang et al.25. In a first
step, they use the continuity among adjacent frames to generate a
motion template according to the Displaced Frame Difference’s
(DFD) higher character and a color template is established by using
k-means clustering. Afterwards (based upon the information derived
from motion and the color templates), the segmentation image is
defined as foreground, background and boundary regions. Finally,
the segmentation problem is formulated as an energy minimization
problem. Datteri et al.26 proposed a combination of two segmenta-
tion methods: atlas based segmentation and spectral gradient graph
cuts. To combine these two methods they first use the atlas-based
segmentation method to segment the image. Then, they generate a

third image used in the spectral gradient method as well as the source
and sink points needed to initialize the graph cut algorithm.

This article is organized as follows. In Section 2, the experimental
results are presented. Section 3 discusses our study and outlines areas
for prospective tasks. Section 4 describes the details of the used
material and the newly proposed approach. In part two of Section
4 (Calculation), a practical development from a theoretical basis is
presented. Part three of Section 4 (Theory) extends the background
of the contribution and lays the foundation for further work.

Results
To implement the presented segmentation scheme, the MeVisLab-
Platform (see http://www.mevislab.de) has been used and the algo-
rithm has been implemented in C11 as an additional MeVisLab-
module. Although the prototyping platform MeVisLab especially
targets medical applications, it is possible to process images from
other fields. Even when the graph was set up with a few hundred
rays and hundreds of nodes were sampled along each ray, the overall
segmentation (sending rays, graph construction and mincut com-
putation) for our implementation took only a few seconds on an Intel
Core i5-750 CPU, 4x2.66 GHz, 8 GB RAM, Windows XP Professional
x64 Version, Version 2003, Service Pack 2.

For 2D evaluation, we used several synthetic and real images.
Figure 1 shows a stone flounder (A). Stone flounders can blend into
their environment by changing their color, and therefore it is difficult
for the human eyes to detect them. In image B, the user-defined
template of a stone flounder is shown that has been used for setting
up the graph, and image C shows the nodes that have been generated
with this template. In image D, the nodes are superimposed on the
original image; the graph is twice as large as the template, therefore,
the scaling of the stone flounder does not play a role (i.e. it is scale
invariant), and the same template can be used for segmentation of
smaller or larger stone flounders. Finally, image E presents the seg-
mentation result.

In 3D, the algorithm has been evaluated on segmentation of brain
tumors (glioblastoma multiforme and pituitary adenoma) from 60
clinical Magnetic Resonance Imaging datasets from an active neuro-
surgical practice (see also Supplementary Information). All brain
tumors were somewhat spherically or elliptically shaped; therefore,
we used the surface of a polyhedron to construct the graph.
Segmentations performed by three neurosurgeons with several years
of experience in the resection of brain tumors are considered the ‘‘gold
standard’’ or ‘‘ground truth’’ against which we evaluate the results of
our algorithm. A comparison yields an average Dice Similarity

Figure 1 | (A) Kareius bicoloratus (stone flounder). (B) User-defined template of the stone flounder. (C) Nodes set up with the template. (D) Nodes

superimposed in the original image. (E) Segmentation result (white seed points).
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Coefficient (DSC)27,28 of about 80%. The Dice Similarity Coefficient is
a measure for spatial overlap of different segmentation results and is
commonly used in medical imaging studies to quantify the degree of
overlap between two segmented objects A and R, given by:

DSC~
2:V(A\R)

V(A)zV(R)
ð1Þ

The Dice Similarity Coefficient is the relative volume overlap between
A and R, where A and R are the binary masks from the automatic A
and the reference R segmentation. V :ð Þ is the volume (in cm3) of
voxels inside the binary mask, by means of counting the number of
voxels, then multiplying with the voxel size.

Figure 2 shows some segmentation results for glioblastoma multi-
forme. In image A, a 3D view of an automatically segmented tumor
(brown) is shown. The images B-D display different 3D views of an
automatically segmented tumor (red), and the voxelized tumor mask
is presented in image E. The images F-J show axial slices where the
result of the automatic tumor segmentation is superimposed. The
DSC for this segmentation is 81.33%, and the yellow point (inside the
tumor) in image H is the user-defined seed point. Manual segmenta-
tion performed by a neurosurgeon took 16 minutes for this dataset.
As shown in Figure 2, the segmentation works also with more ellipt-
ically shaped tumors. The algorithm only assumes that the object of
interest is not extremely tubular, like vessels or the spinal cord. Also,
the user-defined seed point does not have to be exactly in the center

of the tumor, as shown in image H of Figure 2 (yellow). Even with a
seed point that is located far from the center, the border of the tumor
in Figure 2 (red) could still be recovered with a DSC of over 80%
(note: the five axial slices F-J show only a small part of the tumor, the
whole tumor was spread across 60 slices).

Image A of Figure 3 shows a graph (nodes and edges) constructed
with a polyhedral surface to illustrate the dimensions of a typical
graph used for pituitary adenoma segmentation. Image B of
Figure 3 presents an axial slice of a pituitary adenoma with the
segmented border superimposed and a zoomed-in view of the pitu-
itary adenoma area for better illustration. The images C and D show
different sagittal cross-sections with an automatically segmented
pituitary adenoma (brown). Image E shows a 3D mask of an auto-
matically segmented pituitary adenoma (red). Five axial slices with
the superimposed border of the segmentation result (red) are pre-
sented in the images F-J where the user-defined seed point is located
in image H (blue).

Table 1, Table 2 and Table 3 provide the results (minimum, max-
imum, mean m and standard deviation s) for all GBMs, pituitary
adenomas and vertebrae that have been segmented with the pre-
sented algorithm and compared with manual slice-by-slice segmen-
tations from the neurosurgeons. Table 1 provides results for fifty
glioblastoma multiforme: volume of tumor (cm3), number of voxels
and Dice Similarity Coefficient. In Table 2, the results for ten pitu-
itary adenomas are presented: volume of tumor (cm3), number of

Figure 2 | (A) 3D view of an automatically segmented tumor (brown). (B)–(D) Different 3D views of an automatically segmented tumor (red). (E)

voxelized tumor mask. (F)–(J) Result of automatic tumor segmentation (DSC581.33%). The yellow point (inside the tumor) in image H is the user-

defined seed point. Manual segmentation performed by a neurological surgeon took 16 minutes for this dataset.

Figure 3 | (A) Graph (nodes and edges) constructed with a polyhedron surface. (B) Axial slice of a pituitary adenoma. (C) (D) Different views of sagittal

slices with an automatic segmented pituitary adenoma. (E) 3D mask of an automatically segmented pituitary adenoma. (F)–(J) Segmentation results for a

pituitary adenoma dataset. (H) user-defined seed point (blue).
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voxels, Dice Similarity Coefficient and the manual segmentation
times (minutes). Finally, Table 3 shows the results for vertebrae
segmentation: volume of vertebra (cm3), number of voxels and
Dice Similarity Coefficient. For a direct comparison and discussion
of our method with other methods from the literature we refer the
reader to previous publications29,30. In the first contribution29, the
results of vertebral segmentation – based on a rectangle shape –
are compared with an interactive multi-label N-D image segmenta-
tion method called GrowCut from Vezhnevets and Konouchine31. In
the other contribution30, our method – based on a spherical template
– is directly compared with a balloon inflation approach32 for WHO
grade IV glioma segmentation. Finally, we refer the reader to an
additional publication where our template-based approach has been
used to segment the bladder for MR-guided brachytherapy for gyne-
cologic malignancies33.

Discussion
In this contribution, we have presented a template-based segmenta-
tion scheme for 2D and 3D objects. To the best of our knowledge, this
is the first approach where the nodes of a graph-based algorithm have
been arranged according to a predefined template in a non-uniform
and a non-equidistant manner on an image. Using this new type of
segmentation algorithm, it is possible to reconstruct missing arcs and
kinks in an object. In addition, the presented method is scale invari-
ant. Experimental results for several 2D and 3D images based on 60
Magnetic Resonance Imaging datasets consisting of two types of
brain tumors, glioblastoma multiforme and pituitary adenoma, indi-
cate that the proposed algorithm requires less computing time and
gives results comparable to human experts using a simple cost func-
tion. The presented work is a generalization of recent work by the
authors29,34 to arbitrary user-defined shapes in 2D and 3D. In pre-
vious work34, a system for volumetric analysis of cerebral pathologies
was introduced that used a sphere template for the segmentation
process and therefore was limited to spherically-shaped objects.
In29 a rectangle-based segmentation algorithm for vertebrae MR
images was introduced. As stated in the background section of the
Introduction, there are proposed approaches from Song et al.24,
Zhang et al.25 and Datteri et al.26 that use prior knowledge like motion
and color templates and shape information in graph based
approaches. However, these approaches do not distribute the graphs
nodes non-uniformly and non-equidistantly on the image. Instead
they work on a regular grid, and compensate by adding complexity to
the objective function. In summary, the achieved research highlights
of the presented work are:

. A template-based segmentation paradigm for 2D and 3D objects

. Nodes are arranged according to a predefined template

. The approach represents a new type of graph-based algorithms

. It is possible to reconstruct missing arcs and kinks in an object

. The method is scale invariant

In our experience, and that of most applied researchers, automatic
segmentation methods are served well by companion editing tools
that can be used to efficiently ‘‘clean up’’ the results when needed.
Therefore, we developed a manual refinement method that takes
advantage of the basic design of graph-based image segmentation
algorithms35. The manual refinement method can also be used for
any graph-based image segmentation algorithms and therefore also
for the template-based segmentation scheme. For twelve GBM cases,
the Wilcoxon signed-rank test36,37 verified a significant improvement
(p50.016) for our manual refinement method for a significance level
of 0.05. However, the results presented in this study are not based on
the use of manual refinement after the initial segmentations.

There are several areas of future work. For example, the cost func-
tion for the weights can be customized. Another possibility is to
increase the sampling rate (for the nodes) near an object’s border,
because – with an equidistant sampling rate (along the rays) – there
are more nodes near the user-defined seed point and less nodes going
farther out. Moreover, the user-defined seed point position that is
located inside the object is also an issue that can be analyzed in the
future, e.g. for the stone flounder, the seed point has to be chosen
carefully. One option to improve the presented algorithm is to per-
form the segmentation iteratively: After segmentation has been per-
formed, the center of gravity of the segmentation can be used as a new
seed point for a new segmentation and so on. This may lead to
increased robustness with respect to the initialization.

Finally, we point the interested reader to publications from Sharon
et al.38 and Corso et al.39 that are based on algebraic multigrid meth-
ods and graph cuts (normalized cuts) in which they introduced
methods that adaptively build a graph and approximate cuts at vary-
ing resolutions and scales. A combination of their proposed method
with our approach would result in an interesting template-based
graph at every level.

Methods
The proposed segmentation scheme starts by setting up a directed graph from a user-
defined seed point that is located inside the object to be segmented. To set up the
graph, points are sampled along rays cast through the contour (2D) or surface (3D) of
an object template. The sampled points are the nodes n [ V of the graph G(V, E) and
e [ E is the corresponding set of edges. There are edges between the nodes and edges
that connect the nodes to a source s and a sink t to allow the computation of an s-t cut
(note: the source and the sink s, t [ V are virtual nodes). Similar to the notation
introduced by Li et al.4, the arcs ,vi,vj. [ E of the graph G connect two nodes vi,vj.
There are two types of ‘-weighted arcs: p-arcs Ap and r-arcs Ar (P is the number of
sampled points along one ray p5(0,…,P-1) and R is the number of rays cast to the
contour or surface of an object template r5(0,…,R-1)), where V(xn,yn) is a neighbor

Table 1 | Summary of results: min., max., mean m and standard deviation s for fifty glioblastoma multiforme (GBM)

Tumor Volume (cm3) Voxel Number

DSC (%)manual automatic manual automatic

min 0.47 0.46 524 783 46.33
max 119.28 102.98 1024615 884553 93.82
m 6 s 23.66624.89 21.02622.90 145305.54 137687.24 80.3768.93

Table 2 | Summary of results: min., max., mean m and standard deviation s for ten pituitary adenomas

PA Volume (cm3) Voxel Number

DSC (%)
Manual seg. time

(minutes)manual automatic manual automatic

min 0.84 1.18 4492 3461 71.07 3
max 15.57 14.94 106151 101902 84.67 5
m 6 s 6.3064.07 6.2264.08 47462.7 47700.6 77.4964.52 3.9160.54
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of V(x,y) – in other words V(xn,yn) and V(x,y) belong to two adjacent rays. For a
surface in 3D, the principle is the same, except that there is an additional dimension
for a node (V(x,y,z)):

Ap~ V x, yð Þ,V x, y{1ð Þh i yw0jf g

Ar~ V x, yð Þ,V xn, max (0, y{Drð ÞÞh if g
ð2Þ

Ap~ V x, y, zð Þ,V x, y, z{1ð Þh ijzw0f g

Ar~ V x, y, zð Þ,V xn, yn, max 0, z{Drð Þð Þh if g
ð3Þ

The arcs between two nodes along a ray Ap ensure that all nodes below the contour or
surface in the graph are included to form a closed set (correspondingly, the interior of
the object is separated from the exterior in the data). This principle is shown in
Figure 4 on the left side (A) for two rays of a circular template. The arcs Ar between the
nodes of different rays constrain the set of possible segmentations and enforce
smoothness via the regularization parameter Dr – the larger this parameter is, the
larger is the number of possible segmentations. The principle underlying the con-
struction of arcs between the nodes is shown in Figure 4 on the right side (B) – for rays
of a circular template and a delta value of two (Dr52). The arcs for different delta
values are presented in the lower right of Figure 4: Dr50 (left), Dr51 (middle) and
Dr52 (right).

After graph construction, the minimal cost closed set on the graph is computed via
a polynomial time s-t cut40. The s-t cut creates an optimal segmentation of the object
under the influence of the regularizing parameter Dr that controls the stiffness of the
surface. A delta value of zero ensures that the segmentation result has exactly the form
of the predefined template – and the position of the template depends on the best fit to
the gray levels or appearance of the image. The weights w(x,y) for every edge between
v [ V and the sink or source are assigned in the following manner: weights are set to
c(x,y) if z is zero; otherwise they are set to c(x,y)-c(x,y-1), where c(x,y) is the absolute
value of the difference between an average texture value of the desired object and the
texture value of the pixel at position (x,y) – for a detailed description see41–43. The
average texture value in this case, or the cost function in the general case, as well as the
weights, critically influence the segmentation result. Based on the assumption that the
user-defined seed point is inside the object, the average gray value can be estimated
automatically. Therefore, we integrate over a small square S (2D) or cube C (3D) of
dimension d centered on the user-defined seed point (sx, sy) in the 2D case and
(sx, sy, sz) in the 3D case:

ðd=2

{d=2

ðd=2

{d=2

S sxzx, syzy
� �

dxdy ð4Þ

ðd=2

{d=2

ðd=2

{d=2

ðd=2

{d=2

C sxzx, syzy, szzz
� �

dxdydz ð5Þ

The principle underlying the graph construction for a square is shown in Figure 5.
Image A of Figure 5 shows the corners of a square template that are used to set up the
graph. Image B shows the nodes that have been sampled along the rays that have been
sent through the template’s surface. Note that the distances between the nodes of one
ray correlate with the distances between the template’s center point (or for a later
segmentation, the user-defined seed point) and the template surface. In other words,
for every ray we have the same number of nodes between the center point and the
object’s border, but the length is different. In images C, D and E, different ‘-weighted
arcs are shown: C: the p-arcs Ap along the single rays, D: the r-arcs Ar between rays
with a delta value of Dr50. E: same as D only with a delta value of Dr51.

For the 3D case, both, the automatic segmentation method and a manual slice-by-
slice segmentation performed by a domain expert (for a later evaluation of the
automatic segmentation result) are post-processed in an identical manner. The
resulting contours (given as point clouds) of the object’s boundaries are triangulated
to get a closed surface. This closed surface is used to generate a solid 3D mask
(representing the segmented object), which is achieved by voxelization of the trian-
gulated mesh44.

The overall workflow of the introduced segmentation scheme is presented in
Figure 6. In the upper row, a 2D square template is used for vertebral segmentation. In
the lower row, a 3D sphere template is used to segment a GBM.

Calculation. Setting up the nodes of the graph with the user-defined template is
the step that requires the most ingenuity in the proposed algorithm. Generating
the arcs between the nodes and the source and the sink node is straightforward:
there are the ‘-weighted arcs that depend on the geometry (intracolumn arcs) and
the delta value (intercolumn arcs) used for the graph, and there are arcs that
connect the nodes to the source s and the sink t. These arcs depend on the gray
values of the nodes they connect – or rather they depend on the gray value
difference to an adjacent node. To integrate the user-defined template into the
construction of the graph, we need the coordinates in 2D or 3D describing the
object that we want to segment (e.g. for a square the edges of the square, see
Figure 5 A). Using these coordinates, the center of gravity of the object is
calculated, and the object is normalized with the maximum diameter, or rather
with the coordinate that has the maximum distance to the center of gravity. After
the user defines a seed point in the image (2D) or volume (3D), the normalized
object is constructed with its center of gravity point located at the user-defined
seed point. Then, rays are drawn radially (2D) or spherically (3D) out from the
seed point through the contour (2D) or surface (3D) of the normalized object. To

Table 3 | Summary of results: min., max., mean m and standard deviation s for nine vertebrae.

Vertebrae Volume (cm3) Voxel Number

DSC (%)manual automatic manual automatic

min 0.25 0.24 1015 995 87.37
max 0.51 0.49 2091 2010 94.93
m 6 s 0.4260.072 0.4060.073 1722 1656 90.9762.2

Figure 4 | The two different types of arcs for a graph that is used to segment circular shaped objects: Ap arcs (A) and Ar arcs (B). Lower right: Intercolumn

edges for: Dr50 (left), Dr51 (middle) and Dr52 (right).

www.nature.com/scientificreports
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calculate the intersection points of the rays with the object, its contour (in 2D) or
surface (in 3D) has to be closed. In our implementation, we assume that the user
provides the object’s contour as 2D coordinates ordered in the clockwise direction,
and we connect the points one after the other and finally connect the last point
with the first point to get a closed 2D contour. To get a closed surface of the 3D
objects, the object is triangulated45. However, this is not necessary for a spherical
or elliptical segmentation where a sphere is used as a template. Thus, the
computing time for the triangulation and the following ray-triangle intersection
calculation can be avoided by using the surface points of a polyhedron. Their
surface coordinates already provide the locations where the rays have to be sent
through.

The intersection point of a ray with the object provides the distance between the
nodes for this ray, because all rays have the same number of nodes from the center of
gravity point to the intersection with the contour or surface. For intersections that are
located closer to the center of gravity point we get smaller distances, and for inter-
sections that are located farther away from the center of gravity point we get larger
distances. Calculating the intersection of a ray with a 2D object is straightforward,
since it is simply a line-line intersection. One line is the actual ray and the other line is
one straight line between two adjacent points of the predefined template. Since
triangulated objects are used for 3D segmentation, ray-triangle intersections for the
3D template segmentation have to be calculated. To implement ray-triangle inter-
sections, there are several fast algorithms, such as the algorithms proposed by Möller
and Trumbore46 and by Badouel47. Given that the calculations of the ray-triangle
intersections require the largest fraction of computing power, a GPU realization of
these calculations48 is used for objects with complex shapes.

Theory. The procedure of setting up the nodes of the graph based on the template
biases the cut towards a particular shape, and the delta value Dr is a regularizer that
influences the variations of the results. In other words, the delta valueDr specifies how
much the segmentation results are allowed to deviate from the user-defined template.
For example, a delta value of zero (Dr50) forces the segmentation result to have the
exact shape of the template, which is optimal for problems where the shape but not the
scale of the object is known. As is the case with regularizers in general, the delta value
has to be chosen carefully corresponding to the segmentation problem. On the one
hand, the segmentation results should not be too ‘‘stiff’’ with respect to the template,
such that the algorithm is not flexible enough to handle some variations of the object
and miss them during the segmentation process. On the other hand, if the delta value
is too large, one risks obtaining results with shapes that do not correspond to the
predefined template anymore. We studied this tradeoff for vertebral segmentation
with a square template for different delta values29. Principal component analysis
(PCA), also known as Karhunen-Loeve transform49 can potentially be used as an
interesting mechanism for incorporating additional domain knowledge about the
shape of the target object into our algorithm, and also better informing the selection of
the value for the delta regularizing parameter. This concept of using PCA for
characterizing shapes is well developed in Active Shape Models (ASM)50 and the
shape model formulation of the Active Appearance Models (AAM)51. AAMs model
the variability of shapes within an object class by removing variation introduced by
rotational, translational and scaling effects from the training shapes, and all shapes
need to be aligned to each other with respect to the mentioned transformations before
a statistical analysis can be done. After the principal modes of variation (and
corresponding eigenvalues) are computed from training data, legal shape instance s

Figure 5 | (A) Square template given by its corners. (B) Nodes set up with the template. (C) p-arcs Ap along the rays. (D) r-arcs Ar between rays (Dr50).

(E) r-arcs Ar between rays (Dr51).

Figure 6 | Principle workflow of the presented segmentation scheme in 2D and 3D. In 2D a square template is used to segment a vertebra. In 3D a sphere

template is used to segment a glioblastoma multiforme (GBM).

www.nature.com/scientificreports
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contained in the distribution derived from the training set can be generated from the
model by deforming the mean shape�s by a linear combination of eigenvectors. Thus,
the shape model is described by

s~�szWsbs ð6Þ

where bs is a vector containing the model parameters weighting the contribution of
each eigenvector to the deformation, and Ws are the eigenvectors. To incorporate this
shape model formulation into the template-based approach introduced in this
contribution, first, a mean shape of the target object can be computed from several
registered, manual segmentations using standard PCA. This mean shape�s can then be
input as the template or the distribution of the graph’s nodes for our method. The next
step is to establish a relationship between the variations of the object from the mean
shape (as are obtained in standard PCA), and the delta regularizer of our algorithm.
We believe that a reasonable scalar estimate of the delta value Dr can be computed
proportional to the quantity max(Wsbs).
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